Sequential and distributive forcing without choice

J. Schilhan

University of East Anglia

STUK 7
January 14, 2022

joint with A. Karagila
Forcing over models of ZFC is very well understood.

Moreover, research of the past decades has shown that they are not merely curiosities but are vital in understanding ZFC itself (e.g., large cardinals, structure of the reals).

Of particular importance are models of DC.

Forcing over models of ZF is not well understood, with or without DC.

Recall:

Definition

Dependent choice, DC, says that every tree without maximal nodes has an infinite branch. DC \prec_κ, says that for every $\alpha < \kappa$ and an α-closed tree T without maximal nodes, T has a branch of length α.
Forcing over models of ZFC is very well understood.

But there is nothing stopping us from forcing over models of ZF + ¬AC.

Moreover, research of the past decades has shown that they are not merely curiosities but are vital in understanding ZFC itself (e.g., large cardinals, structure of the reals).

Of particular importance are models of DC.

Forcing over models of ZF is not well understood, with or without DC.

Recall: Definition

Dependent choice, DC, says that every tree without maximal nodes has an infinite branch. DC<κ, says that for every α < κ and an α-closed tree T without maximal nodes, T has a branch of length α.
Forcing over models of ZFC is very well understood.

But there is nothing stopping us from forcing over models of ZF + ¬AC.

Moreover, research of the past decades has shown that they are not merely curiosities but are vital in understanding ZFC itself (e.g., large cardinals, structure of the reals)
Forcing over models of ZFC is very well understood.

But there is nothing stopping us from forcing over models of \(ZF + \neg AC\).

Moreover, research of the past decades has shown that they are not merely curiosities but are vital in understanding ZFC itself (e.g. large cardinals, structure of the reals).

Of particular importance are models of DC.
Forcing over models of ZFC is very well understood.

But there is nothing stopping us from forcing over models of ZF + ¬AC.

Moreover, research of the past decades has shown that they are not merely curiosities but are vital in understanding ZFC itself (e.g. large cardinals, structure of the reals).

Of particular importance are models of DC.

Forcing over models of ZF is not well understood, with or without DC.
Forcing over models of ZFC is very well understood.

But there is nothing stopping us from forcing over models of ZF + ¬AC.

Moreover, research of the past decades has shown that they are not merely curiosities but are vital in understanding ZFC itself (e.g. large cardinals, structure of the reals)

Of particular importance are models of DC.

Forcing over models of ZF is not well understood, with or without DC.

Recall:

Definition

Dependent choice, DC, says that every tree without maximal nodes has an infinite branch. DC$_{<\kappa}$, says that for every $\alpha < \kappa$ and an α-closed tree T without maximal nodes, T has a branch of length α.
Who loves AC a lot?

Theorem

Let M be $L(R)$ of an $Add(\omega, \omega_1)$-extension of V and κ be a regular uncountable cardinal, then DC holds in M and for each of the following there is a forcing P not adding reals:

▶ M_P is an $Add(\omega, \kappa)$-extension of V.
▶ M_P is a $Add(\omega, \omega_1)^*S\omega_2$ extension of V.
▶ M_P is a $Add(\omega, \omega_1)^*SI\omega_2$ extension of V.

If M is richer, e.g. the Solovay model, we can obtain many more models like this.

Question

Is there any result where it is easier to force over M? Can we add a dominating family of size ω_1 while not introducing a mad family over the Solovay model? (Roitman’s problem: $d = \omega_1 < a$)
Who loves AC a lot?

People that work on cardinal invariants. (which includes myself)
Who loves AC a lot?

People that work on cardinal invariants. (which includes myself)

Theorem

Let M be $L(\mathbb{R})$ of an $\text{Add}(\omega, \omega_1)$-extension of V and κ be a regular uncountable cardinal, then DC holds in M and for each of the following there is a forcing \mathbb{P} not adding reals:

- M is richer, e.g. the Solovay model, we can obtain many more models like this.

Question

Is there any result where it is easier to force over M? Can we add a dominating family of size ω_1 while not introducing a mad family over the Solovay model? (Roitman's problem: $d = \omega_1 < a$)
Who loves AC a lot?

People that work on cardinal invariants. (which includes myself)

Theorem

Let M be $L(R)$ of an $Add(\omega, \omega_1)$-extension of V and κ be a regular uncountable cardinal, then DC holds in M and for each of the following there is a forcing \mathbb{P} not adding reals:

- $M^\mathbb{P}$ is an $Add(\omega, \kappa)$-extension of V.
- $M^\mathbb{P}$ is a $Add(\omega, \omega_1) \ast S_{\omega_2}$ extension of V.
- $M^\mathbb{P}$ is a $Add(\omega, \omega_1) \ast S\mathbb{I}_{\omega_2}$ extension of V.

If M is richer, e.g. the Solovay model, we can obtain many more models like this.

Question

Is there any result where it is easier to force over M? Can we add a dominating family of size ω_1 while not introducing a mad family over the Solovay model? (Roitman's problem: $d = \omega_1 < a$)
Who loves AC a lot?

People that work on cardinal invariants. (which includes myself)

Theorem

Let M be $L(\mathbb{R})$ of an $\text{Add}(\omega, \omega_1)$-extension of V and κ be a regular uncountable cardinal, then DC holds in M and for each of the following there is a forcing \mathbb{P} not adding reals:

- $M^\mathbb{P}$ is an $\text{Add}(\omega, \kappa)$-extension of V.
- $M^\mathbb{P}$ is a $\text{Add}(\omega, \omega_1) \ast \mathcal{S}_{\omega_2}$ extension of V.
- $M^\mathbb{P}$ is a $\text{Add}(\omega, \omega_1) \ast \mathcal{SI}_{\omega_2}$ extension of V.

If M is richer, e.g. the Solovay model, we can obtain many more models like this.
Who loves AC a lot?

People that work on cardinal invariants. (which includes myself)

Theorem

Let M be $L(\mathbb{R})$ of an $\text{Add}(\omega, \omega_1)$-extension of V and κ be a regular uncountable cardinal, then DC holds in M and for each of the following there is a forcing \mathbb{P} not adding reals:

- $M^\mathbb{P}$ is an $\text{Add}(\omega, \kappa)$-extension of V.
- $M^\mathbb{P}$ is a $\text{Add}(\omega, \omega_1) \ast S_{\omega_2}$ extension of V.
- $M^\mathbb{P}$ is a $\text{Add}(\omega, \omega_1) \ast S_{\omega_2}$ extension of V.

If M is richer, e.g. the Solovay model, we can obtain many more models like this.

Question

Is there any result where it is easier to force over M? Can we add a dominating family of size ω_1 while not introducing a mad family over the Solovay model? (Roitman’s problem: $\mathfrak{d} = \omega_1 < \alpha$)
Preserving DC

We established that models of DC play an important role. So the following question is natural:

Question
Which forcings preserve DC?
Preserving DC

We established that models of DC play an important role. So the following question is natural:

Question
Which forcings preserve DC?

Theorem (Asperó-Karagila)

Proper forcing preserves DC.
Preserving DC

We established that models of DC play an important role. So the following question is natural:

Question
Which forcings preserve DC?

Theorem (Asperó-Karagila)
Proper forcing preserves DC.

Corollary
σ-closed forcing preserves DC.

A close relative to σ-closure is σ-distributivity. Typically applications of σ-closure only require σ-distributivity.

Question
Does σ-distributive forcing preserve DC?
Distributive and sequential

Definition

\(\mathbb{P} \) is \(\leq \left| X \right| - \)distributive if for any family \(\langle D_x : x \in X \rangle \) of dense open subsets of \(\mathbb{P} \), \(\bigcap_{x \in X} D_x \) is dense.

In ZFC, distributivity and sequentiality are equivalent (for non-trivial forcings). What happens in ZF?

Sequential and distributive forcing without choice
Definition

\mathbb{P} is $\leq |X|$-distributive if for any family $\langle D_x : x \in X \rangle$ of dense open subsets of \mathbb{P}, $\bigcap_{x \in X} D_x$ is dense.

Note: Whenever \mathbb{P} is $\leq |X|$-distributive and $Y \leq^* X$ (X surjects onto Y), then \mathbb{P} is $\leq |Y|$-distributive.
Distributive and sequential

Definition

\mathbb{P} is $\leq |X|$-distributive if for any family $\langle D_x : x \in X \rangle$ of dense open subsets of \mathbb{P}, $\bigcap_{x \in X} D_x$ is dense.

Note: Whenever \mathbb{P} is $\leq |X|$-distributive and $Y \preceq^* X$ (X surjects onto Y), then \mathbb{P} is $\leq |Y|$-distributive.

Definition

\mathbb{P} is $\leq |X|$-sequential if for any \mathbb{P}-generic G over V and any $f : X \rightarrow V$ in $V[G]$, $f \in V$.

In ZFC, distributivity and sequentiality are equivalent (for non-trivial forcings). What happens in ZF?
Lemma

Suppose \mathbb{P} is $\leq |X|$-distributive, then \mathbb{P} is $\leq |X|$-sequential.
Distributive and sequential

Lemma

Suppose \mathbb{P} is $\leq |X|$-distributive, then \mathbb{P} is $\leq |X|$-sequential.

Proof.

Let \dot{f} be a \mathbb{P}-name for f. For every $x \in X$, we let

$$D_x := \{ p \in \mathbb{P} : \exists y \in V (p \models \dot{f}(\check{x}) = \check{y}) \}.$$
Distributive and sequential

Lemma
Suppose \mathbb{P} is $\leq |X|$-distributive, then \mathbb{P} is $\leq |X|$-sequential.

Proof.
Let \dot{f} be a \mathbb{P}-name for f. For every $x \in X$, we let

$$D_x := \{ p \in \mathbb{P} : \exists y \in V (p \models \dot{f}(\check{x}) = \check{y}) \}.$$

If $p \in \bigcap_{x \in X} D_x \cap G$, then $f(x) = y$, where y is unique such that $p \models \dot{f}(\check{x}) = \check{y}$.

\square
Minor positive results

Theorem

Let \mathbb{P} be $\leq |X|$-distributive, then AC_X is preserved.
Minor positive results

Theorem

Let \mathbb{P} be $\leq |X|$-distributive, then AC_X is preserved.

Definition

AC_X says that any family $\langle A_x : x \in X \rangle$ of non-empty sets has a choice function $f : X \to \bigcup_{x \in X} A_x$.
Minor positive results

Theorem

Let \mathbb{P} be $\leq |X|$-distributive, then AC_X is preserved.

Definition

AC_X says that any family $\langle A_x : x \in X \rangle$ of non-empty sets has a choice function $f : X \to \bigcup_{x \in X} A_x$.

Proof.

Let $p \in \mathbb{P}$, \dot{F} be a \mathbb{P}-name such that $p \vDash \forall x \in \check{X}(\dot{F}(x) \neq \emptyset)$. Let

$$D_x := \{q \in \mathbb{P} : \exists \tau (q \vDash \tau \in F(\check{x}))\}.$$
Minor positive results

Theorem
Let \mathbb{P} be $\leq |X|$-distributive, then AC_X is preserved.

Definition
AC_X says that any family $\langle A_x : x \in X \rangle$ of non-empty sets has a choice function $f : X \to \bigcup_{x \in X} A_x$.

Proof.
Let $p \in \mathbb{P}$, \dot{F} be a \mathbb{P}-name such that $p \vdash \forall x \in \check{X}(\dot{F}(x) \neq \emptyset)$. Let

$$D_x := \{ q \in \mathbb{P} : \exists \tau (q \vdash \tau \in F(\check{x})) \}.$$

If $q \in \bigcup_{x \in X} D_x$, use AC_X to pick a name τ_x for every x such that $q \vdash \tau_x \in F(\check{x})$. Combine the τ_x to form a name.
Now what about DC?

Recall that proper forcing preserves DC.

Definition

\(\mathbb{P} \) is *quasiproper* iff for every \(p \in \mathbb{P} \) and a set \(X \), there is a countable elementary submodel \(M \) of \(V_\alpha \), for some large \(\alpha \), such that \(p, X, \mathbb{P} \in M \) and there is an \(M \)-generic condition \(q \leq p \).

The difference with properness is that \(M \) strongly depends on the choice of \(p \), whereas in properness, any \(M \) works.

E.g. club shooting through a stationary, co-stationary set is quasiproper, but of course far from being proper. But even there, there is a stationary set of \(M \)'s that work.
Now what about DC?

Recall that proper forcing preserves DC.

Definition

\(\mathbb{P} \) is *quasiproper* iff for every \(p \in \mathbb{P} \) and a set \(X \), there is a countable elementary submodel \(M \) of \(V_\alpha \), for some large \(\alpha \), such that \(p, X, \mathbb{P} \in M \) and there is an \(M \)-generic condition \(q \leq p \).

The difference with properness is that \(M \) strongly depends on the choice of \(p \), whereas in properness, any \(M \) works.
Now what about DC?

Recall that proper forcing preserves DC.

Definition

\(\mathbb{P} \) is *quasiproper* iff for every \(p \in \mathbb{P} \) and a set \(X \), there is a countable elementary submodel \(M \) of \(V_{\alpha} \), for some large \(\alpha \), such that \(p, X, \mathbb{P} \subseteq M \) and there is an \(M \)-generic condition \(q \leq p \).

The difference with properness is that \(M \) strongly depends on the choice of \(p \), whereas in properness, any \(M \) works.

E.g. club shooting through a stationary, co-stationary set is quasiproper, but of course far from being proper. But even there, there is a stationary set of \(M \)’s that work.
Now what about DC?

Theorem

Quasiproper forcing preserves DC. Moreover if \mathbb{P} is σ-sequential and \mathbb{P} preserves DC, then \mathbb{P} is quasiproper.
Now what about DC?

Theorem

Quasiproper forcing preserves DC. Moreover if P is σ-sequential and P preserves DC, then P is quasiproper.

If \dot{T} is a name for a tree without maximal nodes, $\dot{T} \in M$ and $G \cap M$ is generic over M, then $\dot{T}^G \cap M[G \cap M]$ is a subtree of \dot{T}^G with the same properties.
Now what about DC?

Theorem

Quasiproper forcing preserves DC. Moreover if \(P \) is \(\sigma \)-sequential and \(P \) preserves DC, then \(P \) is quasiproper.

If \(\dot{T} \) is a name for a tree without maximal nodes, \(\dot{T} \in M \) and \(G \cap M \) is generic over \(M \), then \(\dot{T}^G \cap M[G \cap M] \) is a subtree of \(\dot{T}^G \) with the same properties. But it is countable, so we can define a branch.
Now what about DC?

Theorem

Quasiproper forcing preserves DC. Moreover if \mathbb{P} is σ-sequential and \mathbb{P} preserves DC, then \mathbb{P} is quasiproper.
Now what about DC?

Theorem

Quasiproper forcing preserves DC. Moreover if \mathbb{P} is σ-sequential and \mathbb{P} preserves DC, then \mathbb{P} is quasiproper.

Note that the second part for ZFC is saying that σ-distributive forcings are quasiproper.
Now what about DC?

Theorem

Quasiproper forcing preserves DC. Moreover if \mathbb{P} is σ-sequential and \mathbb{P} preserves DC, then \mathbb{P} is quasiproper.

Note that the second part for ZFC is saying that σ-distributive forcings are quasiproper.

In $V[G]$, construct an elementary chain $\langle M_n : n \in \omega \rangle$ of countable elementary submodels of $(V_\alpha)^V$ such that for every n and $D \in M_n$ dense,

$$M_{n+1} \cap D \cap G \neq \emptyset.$$
Now what about DC?

Theorem

Quasiproper forcing preserves DC. Moreover if \mathbb{P} is σ-sequential and \mathbb{P} preserves DC, then \mathbb{P} is quasiproper.

Note that the second part for ZFC is saying that σ-distributive forcings are quasiproper.

In $V[G]$, construct an elementary chain $\langle M_n : n \in \omega \rangle$ of countable elementary submodels of $(V_\alpha)^V$ such that for every n and $D \in M_n$ dense,

$$M_{n+1} \cap D \cap G \neq \emptyset.$$

$M := \bigcup_{n \in \omega} M_n \in V$ is elementary in $(V_\alpha)^V$ and $G \cap M \cap D \neq \emptyset$ for every $D \in M$ dense.
Now what about DC?

Theorem

Quasiproper forcing preserves DC. Moreover if \mathbb{P} is σ-sequential and \mathbb{P} preserves DC, then \mathbb{P} is quasiproper.

Note that the second part for ZFC is saying that σ-distributive forcings are quasiproper.

In $V[G]$, construct an elementary chain $\langle M_n : n \in \omega \rangle$ of countable elementary submodels of $(V_\alpha)^V$ such that for every n and $D \in M_n$ dense,

$$M_{n+1} \cap D \cap G \neq \emptyset.$$

$M := \bigcup_{n \in \omega} M_n \in V$ is elementary in $(V_\alpha)^V$ and $G \cap M \cap D \neq \emptyset$ for every $D \in M$ dense. But then some condition in G forces this and it is a generic condition.
Main result

Theorem

Let κ be an infinite cardinal. It is consistent with $\text{ZF} + \text{DC}_{<\kappa}$ that

1. there is a κ-distributive forcing that violates DC,
Main result

Theorem

Let κ be an infinite cardinal. It is consistent with $\text{ZF} + \text{DC}_{<\kappa}$ that

1. there is a κ-distributive forcing that violates DC,
2. there is a κ-sequential forcing that violates AC_ω.

Corollary

It is consistent, that κ-sequential does not imply κ-distributive.

It is consistent, that σ-distributive forcing does not preserve DC.
Main result

Theorem
Let κ be an infinite cardinal. It is consistent with $\text{ZF} + \text{DC}_{<\kappa}$ that
1. there is a κ-distributive forcing that violates DC,
2. there is a κ-sequential forcing that violates AC_ω.

Corollary
It is consistent, that κ-sequential does not imply κ-distributive.
It is consistent, that σ-distributive forcing does not preserve DC.

The \(\kappa\)-Cohen model

Let \(\kappa\) be a regular cardinal and assume GCH. The \(\kappa\)-Cohen model is constructed as follows:

Consider \(\mathbb{P} = \text{Add}(\kappa, \kappa)\) which consists of \(p : \text{dom} \; p \to 2^{<\kappa}\), \(\text{dom} \; p \in [\kappa]^{<\kappa}\). This adds \(\kappa\) many \(\kappa\)-Cohen reals \(\langle \dot{c}_\alpha^G : \alpha < \kappa \rangle\).

We let \(G\) be the group of automorphisms of \(\mathbb{P}\) induced by permutations of \(\kappa\):

\[
\pi(p)(\alpha) = p(\pi^{-1}(\alpha)).
\]

\(\pi\) further extends to \(\mathbb{P}\)-names by recursion on their rank:

\[
\pi(\dot{x}) = \{(\pi(p), \pi(\dot{y})) : (p, \dot{y}) \in \dot{x}\}.
\]

Note: \(\pi(\dot{c}_\alpha) = \dot{c}_{\pi(\alpha)}\).
The κ-Cohen model

For any $E \in [\kappa]^{<\kappa}$, we let $\text{fix}(E) := \{\pi \in G : \pi \restriction E = \text{id}\}$.

A \mathbb{P}-name \dot{x} is symmetric if there is $E \in [\kappa]^{<\kappa}$ so that $\pi(\dot{x}) = \dot{x}$ for every $\pi \in \text{fix}(E)$.

A \mathbb{P}-name \dot{x} is hereditarily symmetric if it is symmetric and all names appearing in it are hereditarily symmetric. The class of hereditarily symmetric names is called HS.

Definition
Let G be \mathbb{P}-generic over V. The κ-Cohen model is $M := \{\dot{x}^G : \dot{x} \in \text{HS}\}$.

Theorem
$V \subseteq M \subseteq V[G]$ and $M \models \text{ZF + DC}_{<\kappa}$. $A := \{\dot{c}_\alpha^G : \alpha < \kappa\} \in M$ and every well-orderable subset of A is contained in $\{\dot{c}_\alpha^G : \alpha < \beta\}$ for some $\beta < \kappa$.
Main result

Theorem

Let κ be an infinite cardinal. It is consistent with $\text{ZF} + \text{DC}_{<\kappa}$ that

1. there is a κ-distributive forcing that violates DC,
2. there is a κ-sequential forcing that violates AC_ω.
Main result

Theorem

Let κ be an infinite cardinal. It is consistent with $\text{ZF} + \text{DC}_{<\kappa}$ that

1. there is a κ-distributive forcing that violates DC,
2. there is a κ-sequential forcing that violates AC_ω.

The first forcing \mathbb{Q}_0 is very natural:
Main result

Theorem

Let κ be an infinite cardinal. It is consistent with $\text{ZF} + \text{DC}_{<\kappa}$ that

1. there is a κ-distributive forcing that violates DC,
2. there is a κ-sequential forcing that violates AC_{ω}.

The first forcing \mathbb{Q}_0 is very natural:

\mathbb{Q}_0 consists of (reverse) well-founded trees (t, \trianglelefteq), ordered by end-extension, such that $t \subseteq A$ is well-orderable. It adds a generic tree on A.
Lemma

\mathcal{Q}_0 is κ-distributive.
Lemma
\(\mathcal{Q}_0 \) is \(\kappa \)-distributive.

Proof.
Work in \(V \). Let \(\dot{F} \in \text{HS} \) and \(p \in \mathbb{P} \) such that \(p \models \dot{F}(\alpha) \subseteq \mathcal{Q}_0 \) is dense open for every \(\alpha < \beta, \beta < \kappa \).
Lemma
\(\mathcal{Q}_0 \) is \(\kappa \)-distributive.

Proof.
Work in \(V \). Let \(\dot{F} \in HS \) and \(p \in \mathbb{P} \) such that \(p \Vdash \dot{F}(\alpha) \subseteq \dot{Q}_0 \) is dense open for every \(\alpha < \beta, \beta < \kappa \). Say \(\text{fix}(E) \) fixes \(\dot{F} \).
Generic trees

Lemma

Q_0 is κ-distributive.

Proof.

Work in V. Let $\dot{F} \in HS$ and $p \in P$ such that $p \Vdash \dot{F}(\alpha) \subseteq \dot{Q}_0$ is dense open for every $\alpha < \beta$, $\beta < \kappa$. Say fix(E) fixes \dot{F}. Also let $\dot{t}, \dot{\triangle} \in HS$ and wlog we may assume that $p \Vdash_p (\dot{t}, \dot{\triangle}) \in \dot{Q}_0 \land \dot{t} = \dot{A} \upharpoonright E$ and dom $p = E$.

Sequential and distributive forcing without choice
Lemma

Q_0 is κ-distributive.

Proof.

Work in V. Let $\dot{F} \in HS$ and $p \in P$ such that $p \Vdash \dot{F}(\alpha) \subseteq \dot{Q}_0$ is dense open for every $\alpha < \beta$, $\beta < \kappa$. Say $\text{fix}(E)$ fixes \dot{F}. Also let $\dot{t}, \dot{\triangleleft} \in HS$ and wlog we may assume that $p \Vdash P(\dot{t}, \dot{\triangleleft}) \in \dot{Q}_0 \land t = \dot{A} \upharpoonright E$ and $\text{dom} \ p = E$. In M, by $\text{DC}_{<\kappa}$ there are $(t_\alpha, \trianglelefteq_\alpha) \in Q_0$,

$$(t_\alpha, \trianglelefteq_\alpha) \leq (t, \triangleleft) \land (t_\alpha, \trianglelefteq_\alpha) \in F(\alpha).$$
Lemma
\mathcal{Q}_0 is κ-distributive.

Proof.
Work in V. Let $\dot{F} \in \text{HS}$ and $p \in \mathbb{P}$ such that $p \Vdash \dot{F}(\alpha) \subseteq \dot{\mathcal{Q}}_0$ is dense open for every $\alpha < \beta$, $\beta < \kappa$. Say $\text{fix}(E)$ fixes \dot{F}. Also let $\dot{t}, \dot{\triangleleft} \in \text{HS}$ and wlog we may assume that $p \Vdash_{\mathbb{P}} (\dot{t}, \dot{\triangleleft}) \in \dot{\mathcal{Q}}_0 \land \dot{t} = \dot{A} \upharpoonright E$ and $\text{dom } p = E$. In M, by $\text{DC}_{<\kappa}$ there are $(t_\alpha, \triangleleft_\alpha) \in \mathcal{Q}_0$,

$$(t_\alpha, \triangleleft_\alpha) \leq (t, \triangleleft) \land (t_\alpha, \triangleleft_\alpha) \in \mathcal{F}(\alpha).$$

In V, by κ-closure of \mathbb{P} we find $p_\alpha \leq p$, $t_\alpha, \triangleleft_\alpha \in \text{HS}$ and $E_\alpha \in [\kappa]^{<\kappa}$ so that

$$\text{dom } p_\alpha = E_\alpha \land p_\alpha \Vdash \cdots \land t_\alpha = \dot{A} \upharpoonright E_\alpha.$$
Lemma

\(\mathcal{Q}_0 \) is \(\kappa \)-distributive.

Proof.

Work in \(V \). Let \(\dot{F} \in \text{HS} \) and \(p \in \mathbb{P} \) such that \(p \Vdash \dot{F}(\alpha) \subseteq \dot{Q}_0 \) is dense open for every \(\alpha < \beta, \beta < \kappa \). Say \(\text{fix}(E) \) fixes \(\dot{F} \). Also let \(\dot{t}, \dot{\triangle} \in \text{HS} \) and wlog we may assume that \(p \Vdash \mathbb{P}(\dot{t}, \dot{\triangle}) \in \dot{Q}_0 \land \dot{t} = \dot{A} \upharpoonright E \) and \(\text{dom } p = E \).

In \(M \), by \(\text{DC}_{<\kappa} \) there are \((t_\alpha, \triangle_\alpha) \in \mathcal{Q}_0 \),

\[
(t_\alpha, \triangle_\alpha) \leq (t, \triangle) \land (t_\alpha, \triangle_\alpha) \in F(\alpha).
\]

In \(V \), by \(\kappa \)-closure of \(\mathbb{P} \) we find \(p_\alpha \leq p, \dot{t}_\alpha, \dot{\triangle}_\alpha \in \text{HS} \) and \(E_\alpha \in [\kappa]^{<\kappa} \) so that

\[
\text{dom } p_\alpha = E_\alpha \land p_\alpha \Vdash \cdots \land \dot{t}_\alpha = \dot{A} \upharpoonright E_\alpha.
\]

The trick is to find permutations \(\pi_\alpha \in \mathcal{G} \) fixing \(E \), such that for every \(\alpha < \gamma < \beta \),

\[
\pi''_\alpha E_\alpha \cap \pi''_\gamma E_\gamma = E.
\]
Generic trees

Then

\[\pi_\alpha(p_\alpha) \models \pi_\alpha(t_\alpha, \trianglelefteq_\alpha) \leq \pi_\alpha(t, \trianglelefteq) \land \pi_\alpha(t_\alpha, \trianglelefteq_\alpha) \in \pi_\alpha(\dot{F}(\check{\alpha})) \]
Then

\[\pi_\alpha(p_\alpha) \vdash \pi_\alpha(t_\alpha, \trianglelefteq_\alpha) \leq \pi_\alpha(t, \trianglelefteq) \land \pi_\alpha(t_\alpha, \trianglelefteq_\alpha) \in \pi_\alpha(F(\check{\alpha})) \]

so

\[\pi_\alpha(p_\alpha) \vdash \pi_\alpha(t_\alpha, \trianglelefteq_\alpha) \leq (t, \trianglelefteq) \land \pi_\alpha(t_\alpha, \trianglelefteq_\alpha) \in F(\check{\alpha}). \]
Generic trees

Then

\[\pi_\alpha(p_\alpha) \vdash \pi_\alpha(\dot{t}_\alpha, \dot{\sqsubseteq}_\alpha) \leq \pi_\alpha(\dot{t}, \dot{\sqsubseteq}) \land \pi_\alpha(\dot{t}_\alpha, \dot{\sqsubseteq}_\alpha) \in \pi_\alpha(\dot{F}(\dot{\alpha})) \]

so

\[\pi_\alpha(p_\alpha) \vdash \pi_\alpha(\dot{t}_\alpha, \dot{\sqsubseteq}_\alpha) \leq (\dot{t}, \dot{\sqsubseteq}) \land \pi_\alpha(\dot{t}_\alpha, \dot{\sqsubseteq}_\alpha) \in \dot{F}(\dot{\alpha}). \]

Also \(p' = \bigcup_{\alpha < \beta} \pi_\alpha(p_\alpha) \leq p \) and if \(\dot{t}' := \bigcup_{\alpha < \beta} \pi_\alpha(\dot{t}_\alpha), \)
\(\dot{\sqsubseteq}' := \bigcup_{\alpha < \beta} \pi_\alpha(\dot{\sqsubseteq}_\alpha), \) then

\[p' \vdash (\dot{t}', \dot{\sqsubseteq}') \leq (\dot{t}, \dot{\sqsubseteq}) \land (\dot{t}', \dot{\sqsubseteq}') \in \bigcap_{\alpha < \beta} \dot{F}(\alpha). \]

The names are fixed by \(\text{fix}(E'), \) \(E' = \bigcup_{\alpha < \beta} \pi''_\alpha E_\alpha \in [\kappa]^{<\kappa}. \)
Generic trees

Lemma

If G is \mathbb{Q}_0-generic over V, then $T = \bigcup G \in V[G]$ is a tree without maximal nodes and no infinite branch.
Generic trees

Lemma
If G is \mathbb{Q}_0-generic over V, then $T = \bigcup G \in V[G]$ is a tree without maximal nodes and no infinite branch.

Proof.
Suppose $(t, \sqsubseteq) \models a \in t \land a$ is maximal, then pick $b \in A \setminus t$ and extend t by putting b above a.
Lemma

If G is \mathbb{Q}_0-generic over V, then $T = \bigcup G \in V[G]$ is a tree without maximal nodes and no infinite branch.

Proof.

Suppose $(t, \leq) \forces a \in t \land a$ is maximal, then pick $b \in A \setminus t$ and extend t by putting b above a.

If $\langle a_n : n \in \omega \rangle \in V[G]$ is a branch in T, then $\langle a_n : n \in \omega \rangle \in V$.
Lemma
If G is \mathbb{Q}_0-generic over V, then $T = \bigcup G \in V[G]$ is a tree without maximal nodes and no infinite branch.

Proof.
Suppose $(t, \sqsubseteq) \models a \in t \land a$ is maximal, then pick $b \in A \setminus t$ and extend t by putting b above a.
If $\langle a_n : n \in \omega \rangle \in V[G]$ is a branch in T, then $\langle a_n : n \in \omega \rangle \in V$. If $$(t, \sqsubseteq) \models \langle a_n : n \in \omega \rangle$$ is a branch,
then there is $n > 0$ such that $a_n \notin t$ as t is well-founded.
Lemma

If G is \mathbb{Q}_0-generic over V, then $T = \bigcup G \in V[G]$ is a tree without maximal nodes and no infinite branch.

Proof.
Suppose $(t, \sqsubseteq) \forces a \in t \land a$ is maximal, then pick $b \in A \setminus t$ and extend t by putting b above a.
If $\langle a_n : n \in \omega \rangle \in V[G]$ is a branch in T, then $\langle a_n : n \in \omega \rangle \in V$. If

$$(t, \sqsubseteq) \forces \langle a_n : n \in \omega \rangle \text{ is a branch},$$

then there is $n > 0$ such that $a_n \notin t$ as t is well-founded. Extend t by adding a_n as a minimal element. \qed
Main result

Theorem
Let κ be an infinite cardinal. It is consistent with $\text{ZF} + \text{DC}_{<\kappa}$ that
1. there is a κ-distributive forcing that violates DC,
2. there is a κ-sequential forcing that violates AC_ω.

Q1 consist of partitions e of a well-orderable subset of A into finitely many pieces. When extending a condition e, we may add new pieces and extend already present ones, but without combining them. The generic adds a partition of A.

Sequential and distributive forcing without choice University of East Anglia
Main result

Theorem

Let κ be an infinite cardinal. It is consistent with $\text{ZF} + \text{DC}_{<\kappa}$ that

1. there is a κ-distributive forcing that violates DC,
2. there is a κ-sequential forcing that violates AC_ω.

\mathcal{Q}_1 consist of partitions e of a well-orderable subset of A into finitely many pieces. When extending a condition e, we may add new pieces and extend already present ones, but without combining them.
Main result

Theorem

Let κ be an infinite cardinal. It is consistent with $ZF + DC_{<\kappa}$ that

1. there is a κ-distributive forcing that violates DC,
2. there is a κ-sequential forcing that violates AC_ω.

Q_1 consist of partitions e of a well-orderable subset of A into finitely many pieces. When extending a condition e, we may add new pieces and extend already present ones, but without combining them. The generic adds a partition of A.
Main result

Q_1 is not σ-distributive ($D_n = \{ e \in Q_1 : |e| > n \}$), but:

Lemma

Q_1 is κ-sequential.
Main result

\mathbb{Q}_1 is not σ-distributive ($D_n = \{e \in \mathbb{Q}_1 : |e| > n\}$), but:

Lemma

\mathbb{Q}_1 is κ-sequential.

Proof.

In M, \dot{f} is a \mathbb{Q}_1 name. In V, $[\dot{f}] \in HS$, fix(E) fixes $[\dot{f}]$, a is a partition of E, dom $p = E$ and

\[p \models P \dot{A} \upharpoonright a \models \mathbb{Q}_1 [\dot{f}] : \gamma \to \dot{M}. \]
Main result

\(Q_1 \) is not \(\sigma \)-distributive \((D_n = \{ e \in Q_1 : |e| > n \})\), but:

Lemma

\(Q_1 \) is \(\kappa \)-sequential.

Proof.

In \(M \), \(\dot{f} \) is a \(Q_1 \) name. In \(V \), \([\dot{f}] \in HS\), \(\text{fix}(E) \) fixes \([\dot{f}]\), \(a \) is a partition of \(E \), \(\text{dom } p = E \) and

\[p \models P \dot{A} \upharpoonright a \models Q_1 [\dot{f}]: \gamma \rightarrow \dot{M}. \]

We claim that in \(M \), \(\dot{A} \upharpoonright a \), decides all values of \(f \). Otherwise

\[p' \models \dot{A} \upharpoonright a_0 \models Q_1 [\dot{f}](\alpha) = \dot{x} \land \dot{A} \upharpoonright a_1 \models Q_1 [\dot{f}](\alpha) = \dot{y}. \]

\(a_0 \) and \(a_1 \) are partitions of \(E' \supseteq E \) extending \(a \), \(\text{dom } p' = E' \).
Generic partitions

Let π fix E and map $E' \setminus E$ away from itself. Then $q := \pi(p') \cup p' \leq p$, $q \models \dot{A} \upharpoonright a_0 \parallel \dot{A} \upharpoonright \pi(a_1)$, so

$$q \models \dot{x} = \pi(\dot{y}).$$

But also $q \models \dot{A} \upharpoonright a_1 \parallel \dot{A} \upharpoonright \pi(a_1)$ so

$$q \models \dot{y} = \pi(\dot{y}).$$

Ultimately

$$q \models \dot{x} = \dot{y}.$$
Lemma

The generic partition E of A is an amorphous set.
Lemma

The generic partition E of A is an amorphous set.

A set X is amorphous if it is infinite and every subset is either finite or cofinite. An amorphous set witnesses a failure of AC_ω as follows:
Lemma

The generic partition E of A is an amorphous set.

A set X is amorphous if it is infinite and every subset is either finite or cofinite. An amorphous set witnesses a failure of AC_ω as follows:

Suppose we can pick $a_n \in [X]^n$ for every $n \in \omega$.
Lemma

The generic partition E of A is an amorphous set.

A set X is amorphous if it is infinite and every subset is either finite or cofinite. An amorphous set witnesses a failure of AC_ω as follows:

Suppose we can pick $a_n \in [X]^n$ for every $n \in \omega$. Let

$$k_n > \sum_{i < n} k_i.$$

Then suppose we can pick $x_n \in a_{k_n} \setminus \bigcup_{i < n} a_{k_i}$ for every $n \in \omega$. Then \{x_n : n \in \omega\} is a countably infinite subset of X, so X is not amorphous.
Open questions

Question
Assume $\neg\text{AC}$. Is there a σ-sequential forcing that is not σ-sequential? Is the equivalence some known choice principle?

Theorem
If there is an infinite set A, such that $\mathcal{P}(A) < \omega$ is Dedekind-finite (no countable subset), then $\text{Add}(A, 1)$ is σ-sequential but not σ-distributive.

Theorem
In the Gitik model, every σ-sequential forcing is trivial. In particular, σ-distributive \iff σ-sequential.

In the Gitik model, every cardinal is singular of cofinality ω. It uses a proper class of strongly compact cardinals.
Open questions

Question
Assume $\neg AC$. Is there a σ-sequential forcing that is not σ-sequential? Is the equivalence some known choice principle?

Theorem
If there is an infinite set A, such that $[A]^{<\omega}$ is Dedekind-finite (no countable subset), then $\text{Add}(A, 1)$ is σ-sequential but not σ-distributive.
Open questions

Question
Assume \(\neg \text{AC} \). Is there a \(\sigma \)-sequential forcing that is not \(\sigma \)-sequential? Is the equivalence some known choice principle?

Theorem
If there is an infinite set \(A \), such that \([A]^{<\omega}\) is Dedekind-finite (no countable subset), then \(\text{Add}(A,1) \) is \(\sigma \)-sequential but not \(\sigma \)-distributive.

Theorem
In the Gitik model, every \(\sigma \)-sequential forcing is trivial. In particular, \(\sigma \)-distributive \(\iff \sigma \)-sequential.

In the Gitik model, every cardinal is singular of cofinality \(\omega \). It uses a proper class of strongly compact cardinals.
Thank you!