Amenability of operator algebras on Banach spaces, II

Volker Runde

University of Alberta

NBFAS, Leeds, June 1, 2010
The finite-dimensional case

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $B(E)$

A positive example $B(\ell^p \oplus \ell^q)$ with $p \neq q$

$B(\ell^p)$
The finite-dimensional case

Example

Let E be a Banach space with $n := \text{dim}(E) < \infty$ so that $B(E) = K(E) \cong M_n$. Let G be a finite subgroup of invertible elements of M_n such that $\text{span}(G) = M_n$. Set $d := 1 |G| \sum_{g \in G} g \otimes g - 1$. Then $a \cdot d = d \cdot a$ ($a \in M_n$) and $\Delta d = I_n$. Hence, $K(E) = B(E)$ is amenable.
The finite-dimensional case

Example

Let E be a Banach space
The finite-dimensional case

Example

Let E be a Banach space with $n := \dim E < \infty$
The finite-dimensional case

Example

Let E be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$
The finite-dimensional case

Example

Let E be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n.
The finite-dimensional case

Example

Let E be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n such that $\text{span } G = M_n$.
The finite-dimensional case

Example

Let E be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n such that $\text{span } G = M_n$.

Set

$$d := \frac{1}{|G|} \sum_{g \in G} g \otimes g^{-1}. $$
The finite-dimensional case

Example

Let E be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n such that $\text{span } G = M_n$. Set

$$d := \frac{1}{|G|} \sum_{g \in G} g \otimes g^{-1}.$$

Then

$$a \cdot d = d \cdot a \quad (a \in M_n)$$
The finite-dimensional case

Example

Let E be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n such that $\text{span } G = M_n$. Set

$$d := \frac{1}{|G|} \sum_{g \in G} g \otimes g^{-1}.$$

Then

$$a \cdot d = d \cdot a \quad (a \in M_n)$$

and $\Delta d = I_n$.

The finite-dimensional case

Example

Let E be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n such that $\text{span } G = M_n$.

Set

$$d := \frac{1}{|G|} \sum_{g \in G} g \otimes g^{-1}.$$

Then

$$a \cdot d = d \cdot a \quad (a \in M_n)$$

and $\Delta d = I_n$.

Hence, $\mathcal{K}(E) = \mathcal{B}(E)$ is amenable.
Some more results

Amenability of operator algebras on Banach spaces, II
Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$
A positive example
$\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq q$
$\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)
$\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 < p < \infty$ or $E = C(T)$.

Amenable Banach algebras must have bounded approximate identities.

Theorem (N. Grønbæk & G. A. Willis, 1994)
Suppose that E has the approximation property.
Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example
Let $E = \ell^2 \hat{\otimes} \ell^2$.
Then E has the approximation property, but $E^* = \mathcal{B}(\ell^2)$ doesn’t.
Hence, $\mathcal{K}(E)$ does not have a bounded approximate identity and is thus not amenable.
Some more results

Theorem (B. E. Johnson, 1972)

For any Banach space E, the following conditions are equivalent:

1. $K(E)$ is amenable.
2. E is isomorphic to an l^p-space with $1 < p < \infty$ or $E \cong C(T)$.

Amenable Banach algebras must have bounded approximate identities.

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $K(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example

Let $E = l^2 \hat{\otimes} l^2$. Then E has the approximation property, but $E^* = B(l^2)$ doesn't. Hence, $K(E)$ does not have a bounded approximate identity and is thus not amenable.
Some more results

Theorem (B. E. Johnson, 1972)

\(\mathcal{K}(E) \) is amenable if
Some more results

Theorem (B. E. Johnson, 1972)

\[\mathcal{K}(E) \text{ is amenable if } E = \ell^p \text{ with } 1 < p < \infty \]
Some more results

Theorem (B. E. Johnson, 1972)

\[\mathcal{K}(E) \text{ is amenable if } E = \ell^p \text{ with } 1 < p < \infty \text{ or } E = C(\mathbb{T}).\]
Some more results

Theorem (B. E. Johnson, 1972)

\[\mathcal{K}(E) \text{ is amenable if } E = \ell^p \text{ with } 1 < p < \infty \text{ or } E = C(\mathbb{T}). \]

Amenable Banach algebras must have bounded approximate identities...
Some more results

Theorem (B. E. Johnson, 1972)

\[\mathcal{K}(E) \text{ is amenable if } E = \ell^p \text{ with } 1 < p < \infty \text{ or } E = C(\mathbb{T}). \]

Amenable Banach algebras must have bounded approximate identities.

Theorem (N. Grønbæk & G. A. Willis, 1994)

Example: Let \(E = \ell^2 \mathbb{Z} \otimes \ell^2 \mathbb{Z} \). Then \(E \) has the approximation property, but \(E^* = \mathcal{B}(\ell^2) \) doesn’t. Hence, \(\mathcal{K}(E) \) does not have a bounded approximate identity and is thus not amenable.
Some more results

Theorem (B. E. Johnson, 1972)

\[\mathcal{K}(E) \text{ is amenable if } E = \ell^p \text{ with } 1 < p < \infty \text{ or } E = C(\mathbb{T}). \]

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that \(E \) has the approximation property.
Some more results

Theorem (B. E. Johnson, 1972)

\(\mathcal{K}(E) \) is amenable if \(E = \ell^p \) with \(1 < p < \infty \) or \(E = \mathcal{C}(\mathbb{T}) \).

Amenable Banach algebras must have bounded approximate identities. . .

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that \(E \) has the approximation property. Then \(\mathcal{K}(E) \) has a bounded approximate identity.
Some more results

Theorem (B. E. Johnson, 1972)

\[\mathcal{K}(E) \text{ is amenable if } E = \ell^p \text{ with } 1 < p < \infty \text{ or } E = C(\mathbb{T}). \]

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that \(E \) has the approximation property. Then \(\mathcal{K}(E) \) has a bounded approximate identity if and only if \(E^* \) has the bounded approximation property.
Some more results

Theorem (B. E. Johnson, 1972)

\[\mathcal{K}(E) \text{ is amenable if } E = \ell^p \text{ with } 1 < p < \infty \text{ or } E = \mathcal{C}(\mathbb{T}). \]

Amenable Banach algebras must have bounded approximate identities.

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that \(E \) has the approximation property. Then \(\mathcal{K}(E) \) has a bounded approximate identity if and only if \(E^* \) has the bounded approximation property.

Example

Let \(E = \ell^2 \hat{\otimes} \ell^2 \). Then \(E \) has the approximation property, but \(E^* = \mathcal{B}(\ell^2) \) doesn’t. Hence, \(\mathcal{K}(E) \) does not have a bounded approximate identity and is thus not amenable.
Some more results

Theorem (B. E. Johnson, 1972)

\(\mathcal{K}(E) \) is amenable if \(E = \ell^p \) with \(1 < p < \infty \) or \(E = \mathcal{C}(\mathbb{T}) \).

Amenable Banach algebras must have bounded approximate identities.

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that \(E \) has the approximation property. Then \(\mathcal{K}(E) \) has a bounded approximate identity if and only if \(E^* \) has the bounded approximation property.

Example

Let \(E = \ell^2 \hat{\otimes} \ell^2 \).
Some more results

Theorem (B. E. Johnson, 1972)

\[\mathcal{K}(E) \text{ is amenable if } E = \ell^p \text{ with } 1 < p < \infty \text{ or } E = C(\mathbb{T}). \]

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that \(E \) has the approximation property. Then \(\mathcal{K}(E) \) has a bounded approximate identity if and only if \(E^* \) has the bounded approximation property.

Example

Let \(E = \ell^2 \hat{\otimes} \ell^2 \). Then \(E \) has the approximation property,
Some more results

Theorem (B. E. Johnson, 1972)

\(\mathcal{K}(E) \) is amenable if \(E = \ell^p \) with \(1 < p < \infty \) or \(E = C(\mathbb{T}) \).

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that \(E \) has the approximation property. Then \(\mathcal{K}(E) \) has a bounded approximate identity if and only if \(E^* \) has the bounded approximation property.

Example

Let \(E = \ell^2 \hat{\otimes} \ell^2 \). Then \(E \) has the approximation property, but \(E^* = \mathcal{B}(\ell^2) \) doesn’t.
Some more results

Theorem (B. E. Johnson, 1972)

$\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 < p < \infty$ or $E = C(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example

Let $E = \ell^2 \hat{\otimes} \ell^2$. Then E has the approximation property, but $E^* = B(\ell^2)$ doesn’t. Hence, $\mathcal{K}(E)$ does not have a bounded approximate identity.
Some more results

Theorem (B. E. Johnson, 1972)

\[\mathcal{K}(E) \text{ is amenable if } E = \ell^p \text{ with } 1 < p < \infty \text{ or } E = C(\mathbb{T}). \]

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that \(E \) has the approximation property. Then \(\mathcal{K}(E) \) has a bounded approximate identity if and only if \(E^* \) has the bounded approximation property.

Example

Let \(E = \ell^2 \hat{\otimes} \ell^2 \). Then \(E \) has the approximation property, but \(E^* = \mathcal{B}(\ell^2) \) doesn’t. Hence, \(\mathcal{K}(E) \) does not have a bounded approximate identity and is thus not amenable.
Finite, biorthogonal systems
Finite, biorthogonal systems

Definition

Finite, biorthogonal systems

Definition

A finite, biorthogonal system is a set \(\{ (x_j, \phi_k) : j, k = 1, \ldots, n \} \subset E \times E^* \) such that
\[\langle x_j, \phi_k \rangle = \delta_{j,k} \]
for \(j, k = 1, \ldots, n \).

Remark

If \(\{ (x_j, \phi_k) : j, k = 1, \ldots, n \} \) is a finite, biorthogonal system, then \(\theta : M_n \to F(E), [\alpha_{j,k}] \mapsto \sum_{j,k=1}^n \alpha_{j,k} x_j \otimes \phi_k \) is an algebra homomorphism.
Finite, biorthogonal systems

Definition

A finite, biorthogonal system
Finite, biorthogonal systems

Definition

A finite, biorthogonal system is a set\[\{(x_j, \phi_k) : j, k = 1, \ldots, n\} \subset E \times E^* \]
Finite, biorthogonal systems

Definition

A finite, biorthogonal system is a set

\[\{ (x_j, \phi_k) : j, k = 1, \ldots, n \} \subset E \times E^* \]

such that

\[\langle x_j, \phi_k \rangle = \delta_{j,k} \quad (j, k = 1, \ldots, n). \]
Finite, biorthogonal systems

Definition

A **finite, biorthogonal system** is a set\(\{(x_j, \phi_k) : j, k = 1, \ldots, n\} \subset E \times E^* \) such that
\[
\langle x_j, \phi_k \rangle = \delta_{j,k} \quad (j, k = 1, \ldots, n).
\]

Remark

If \(\{(x_j, \phi_k) : j, k = 1, \ldots, n\} \) is a finite, biorthogonal system, then \(\theta : M_n \to \mathcal{F}(E) \), \(\[\alpha_j, k\] \mapsto \sum_{j, k=1}^{n} \alpha_{j, k} x_j \otimes \phi_k \) is an algebra homomorphism.
Finite, biorthogonal systems

Definition

A **finite, biorthogonal system** is a set
\[\{(x_j, \phi_k) : j, k = 1, \ldots, n\} \subset E \times E^* \text{ such that} \]
\[\langle x_j, \phi_k \rangle = \delta_{j,k} \quad (j, k = 1, \ldots, n). \]

Remark

If \(\{(x_j, \phi_k) : j, k = 1, \ldots, n\} \) is a finite, biorthogonal system,
Finite, biorthogonal systems

Definition

A finite, biorthogonal system is a set
\[
\{(x_j, \phi_k) : j, k = 1, \ldots, n\} \subset E \times E^* \text{ such that}
\]
\[
\langle x_j, \phi_k \rangle = \delta_{j,k} \quad (j, k = 1, \ldots, n).
\]

Remark

If \(\{(x_j, \phi_k) : j, k = 1, \ldots, n\} \) is a finite, biorthogonal system, then
\[
\theta : M_n \to \mathcal{F}(E), \quad [\alpha_{j,k}] \mapsto \sum_{j,k=1}^{n} \alpha_{j,k} x_j \otimes \phi_k
\]
Finite, biorthogonal systems

Definition

A **finite, biorthogonal system** is a set
\[\{(x_j, \phi_k) : j, k = 1, \ldots, n\} \subset E \times E^* \] such that
\[\langle x_j, \phi_k \rangle = \delta_{j,k} \quad (j, k = 1, \ldots, n). \]

Remark

If \(\{(x_j, \phi_k) : j, k = 1, \ldots, n\} \) is a finite, biorthogonal system, then
\[\theta : M_n \to \mathcal{F}(E), \quad [\alpha_{j,k}] \mapsto \sum_{j,k=1}^n \alpha_{j,k} x_j \otimes \phi_k \]

is an algebra homomorphism.
Property (A)
Amenability of operator algebras on Banach spaces, II

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Property (A)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)
Property \((\mathbb{A})\)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that \(E\) has property \((\mathbb{A})\) if
Property \((\mathbb{A})\)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that \(E\) has property \((\mathbb{A})\) if there is a net \((\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, \ldots, n_{\lambda}\})_{\lambda}\) of finite biorthogonal systems.
Property \((\mathbb{A})\)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that \(E\) has property \((\mathbb{A})\) if there is a net
\(\{(x_j, \lambda, \phi_k, \lambda) : j, k = 1, \ldots, n_\lambda\}_\lambda\) of finite biorthogonal systems with corresponding homomorphisms \(\theta_\lambda : M_{n_\lambda} \to \mathcal{F}(E)\)
Property (A)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that E has property (A) if there is a net $(\{(x_j,\lambda, \phi_k,\lambda) : j, k = 1, \ldots, n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \rightarrow \mathcal{F}(E)$ with the following properties:

1. $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow \text{id}_E$ uniformly on compacts;
2. $\theta_{\lambda}(I_{n_{\lambda}}^*) \rightarrow \text{id}_{E^*}$ uniformly on compacts;
3. for each λ, there is a finite group G_{λ} of invertible elements of $M_{n_{\lambda}}$ spanning $M_{n_{\lambda}}$ such that $\sup_{\lambda} \max_{g \in G_{\lambda}} \| \theta_{\lambda}(g) \| < \infty$.
Property (\(\mathcal{A}\))

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that \(E\) has property (\(\mathcal{A}\)) if there is a net \(((x_j, \lambda, \phi_k, \lambda) : j, k = 1, \ldots, n_\lambda)\)\(_\lambda\) of finite biorthogonal systems with corresponding homomorphisms \(\theta_\lambda : M_{n_\lambda} \to \mathcal{F}(E)\) with the following properties:

1. \(\theta_\lambda(I_{n_\lambda}) \to \text{id}_E\) uniformly on compacts;
Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that E has property (A) if there is a net $(\{(x_{j,k}, \phi_k, \lambda) : j, k = 1, \ldots, n_\lambda\})_\lambda$ of finite biorthogonal systems with corresponding homomorphisms $\theta_\lambda : M_{n_\lambda} \to \mathcal{F}(E)$ with the following properties:

1. $\theta_\lambda(I_{n_\lambda}) \to \text{id}_E$ uniformly on compacts;
2. $\theta_\lambda(I_{n_\lambda^*}) \to \text{id}_{E^*}$ uniformly on compacts;
Property (A)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that E has property (A) if there is a net $\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, \ldots, n_\lambda\}_\lambda$ of finite biorthogonal systems with corresponding homomorphisms $\theta_\lambda : M_{n_\lambda} \to \mathcal{F}(E)$ with the following properties:

1. $\theta_\lambda(I_{n_\lambda}) \to \text{id}_E$ uniformly on compacts;
2. $\theta_\lambda(I_{n_\lambda})^* \to \text{id}_{E^*}$ uniformly on compacts;
3. for each λ,

Property (A)
Property (A)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that E has property (A) if there is a net $(\{ (x_{j,\lambda, k,\lambda}) : j, k = 1, \ldots, n_{\lambda} \})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \rightarrow \mathcal{F}(E)$ with the following properties:

1. $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow \text{id}_E$ uniformly on compacts;
2. $\theta_{\lambda}(I_{n_{\lambda}}^*) \rightarrow \text{id}_{E^*}$ uniformly on compacts;
3. for each λ, there is a finite group G_{λ}
Property (\mathcal{A})

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that E has property (\mathcal{A}) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, \ldots, n_\lambda\})_\lambda$ of finite biorthogonal systems with corresponding homomorphisms $\theta_\lambda : M_{n_\lambda} \to \mathcal{F}(E)$ with the following properties:

1. $\theta_\lambda(I_{n_\lambda}) \to \text{id}_E$ uniformly on compacts;
2. $\theta_\lambda(I_{n_\lambda})^* \to \text{id}_{E^*}$ uniformly on compacts;
3. for each λ, there is a finite group G_{λ} of invertible elements of M_{n_λ}.
Property \((A)\)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that \(E\) has property \((A)\) if there is a net \(\{(x_{j,k}, \phi_k, \lambda) : j, k = 1, \ldots, n_\lambda\}_\lambda\) of finite biorthogonal systems with corresponding homomorphisms \(\theta_\lambda : M_{n_\lambda} \to \mathcal{F}(E)\) with the following properties:

1. \(\theta_\lambda(I_{n_\lambda}) \to \text{id}_E\) uniformly on compacts;
2. \(\theta_\lambda(I_{n_\lambda}^*) \to \text{id}_{E^*}\) uniformly on compacts;
3. for each \(\lambda\), there is a finite group \(G_\lambda\) of invertible elements of \(M_{n_\lambda}\) spanning \(M_{n_\lambda}\).
Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq q$

Property (A)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that E has property (A) if there is a net $(\{(x_{j,k,\lambda}) : j, k = 1, \ldots, n_\lambda\})_\lambda$ of finite biorthogonal systems with corresponding homomorphisms $\theta_\lambda : M_{n_\lambda} \to \mathcal{F}(E)$ with the following properties:

1. $\theta_\lambda(I_{n_\lambda}) \to \text{id}_E$ uniformly on compacts;
2. $\theta_\lambda(I_{n_\lambda})^* \to \text{id}_{E^*}$ uniformly on compacts;
3. for each λ, there is a finite group G_λ of invertible elements of M_{n_λ} spanning M_{n_λ} such that

$$\sup_{\lambda} \max_{g \in G_\lambda} \|\theta_\lambda(g)\| < \infty.$$
Property (A) and the amenability of $\mathcal{K}(E)$
Property \((A)\) and the amenability of \(\mathcal{K}(E)\)

The idea behind \((A)\)

<table>
<thead>
<tr>
<th>Property ((A)) and the amenability of (\mathcal{K}(E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>The idea behind ((A))</td>
</tr>
</tbody>
</table>

Property \((A)\)

Use the diagonals of the \(M_n\)'s to construct an approximate diagonal for \(\mathcal{K}(E)\).

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that \(E\) has property \((A)\).

Then \(\mathcal{K}(E)\) **is amenable.**

Examples

1. \(L^p(\mu)\) has property \((A)\) for all \(1 \leq p < \infty\) and all \(\mu\).
2. \(C(K)\) has property \((A)\) for each compact \(K\), therefore \(L^\infty(\mu)\) for each \(\mu\).
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$’s
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$’s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1. $L^p(\mu)$ has property (A) for all $1 \leq p < \infty$ and all μ.
2. $C(K)$ has property (A) for each compact K, as does $L^\infty(\mu)$ for each μ.

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example

$\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ and $\mathcal{B}(\ell^p)$
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n,\lambda}$’s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Examples
1. $L^p(\mu)$ has property (A) for all $1 \leq p < \infty$ and all μ.
2. $C(K)$ has property (A) for each compact K, as does $L_\infty(\mu)$ for each μ.
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A).
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.
Property (\(\mathbb{A}\)) and the amenability of \(\mathcal{K}(E)\)

The idea behind (\(\mathbb{A}\))

Use the diagonals of the \(M_{n\lambda}\)'s to construct an approximate diagonal for \(\mathcal{K}(E)\).

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that \(E\) has property (\(\mathbb{A}\)). Then \(\mathcal{K}(E)\) is amenable.

Examples
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1. $L^p(\mu)$ has property (A)
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$’s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1. $L^p(\mu)$ has property (A) for all $1 \leq p < \infty$
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$’s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1. $L^p(\mu)$ has property (A) for all $1 \leq p < \infty$ and all μ.
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$’s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1. $L^p(\mu)$ has property (A) for all $1 \leq p < \infty$ and all μ.
2. $C(K)$ has property (A)
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1. $L^p(\mu)$ has property (A) for all $1 \leq p < \infty$ and all μ.
2. $C(K)$ has property (A) for each compact K.
Property (A) and the amenability of $\mathcal{K}(E)$

The idea behind (A)

Use the diagonals of the $M_{n\lambda}$’s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1. $L^p(\mu)$ has property (A) for all $1 \leq p < \infty$ and all μ.
2. $C(K)$ has property (A) for each compact K, as does therefore $L^\infty(\mu)$ for each μ.

The “scalar plus compact” problem
The “scalar plus compact” problem

Question
The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E
The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$?
The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C}\text{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C}\text{id}_E$ and $E^* = \ell_1$.
The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$
The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$ and $E^* = \ell^1$.
The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$ and $E^ = \ell^1$.***

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

...
The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^* has property (A).
The “scalar plus compact” problem

Question
Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)
There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)
Suppose that E^* has property (A). Then so has E.
The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^* has property (A). Then so has E.

Corollary
Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \text{id}_E$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^* has property (A). Then so has E.

Corollary

There is an infinite-dimensional Banach space E.
The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C}\, \text{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C}\, \text{id}_E$ and $E^ = \ell^1$.***

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^ has property (A). Then so has E.***

Corollary

There is an infinite-dimensional Banach space E such that $\mathcal{B}(E)$ is amenable.
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, I
Non-amenability of $B(\ell^p \oplus \ell^q)$ for $p \neq q$, I

Theorem (G. A. Willis, unpublished)
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, I

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$.
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, I

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, I

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients
Non-amenability of $B(\ell^p \oplus \ell^q)$ for $p \neq q$, I

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $B(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

1. A quotient of an amenable Banach algebra is again amenable.
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, I

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

1. A quotient of an amenable Banach algebra is again amenable.
2. Every complemented closed ideal of an amenable Banach algebra is amenable.
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, I

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

1. A quotient of an amenable Banach algebra is again amenable.
2. Every complemented closed ideal of an amenable Banach algebra is amenable.
3. Every amenable Banach algebra has a bounded approximate identity.
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, I

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

1. A quotient of an amenable Banach algebra is again amenable.
2. Every complemented closed ideal of an amenable Banach algebra is amenable.
3. Every amenable Banach algebra has a bounded approximate identity.
4. **Pitt’s Theorem.**
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$.

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

1. A quotient of an amenable Banach algebra is again amenable.
2. Every complemented closed ideal of an amenable Banach algebra is amenable.
3. Every amenable Banach algebra has a bounded approximate identity.
4. Pitt’s Theorem. If $p > q$, then $\mathcal{B}(\ell^p, \ell^q) = \mathcal{K}(\ell^p, \ell^q)$.

Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof. Suppose that $p > q$. Note that $\mathcal{B}(\ell^p \oplus \ell^q) = [\mathcal{B}(\ell^p), \mathcal{B}(\ell^q), \mathcal{B}(\ell^q), \mathcal{B}(\ell^q)]$ and $K(\ell^p \oplus \ell^q) = [K(\ell^p), K(\ell^q), K(\ell^q), K(\ell^q)]$, so that $C(\ell^p \oplus \ell^q) = [C(\ell^p), 0, C(\ell^q)]$. Then $I := [0, 0, 0]$ is a complemented ideal of $C(\ell^p \oplus \ell^q)$, thus is amenable, and thus has a BAI. But $I^2 = \{0\}$. . .
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = \left[\mathcal{B}(\ell^p) \mathcal{B}(\ell^q, \ell^p) \mathcal{B}(\ell^q) \right]$$

and

$$\mathcal{K}(\ell^p \oplus \ell^q) = \left[\mathcal{K}(\ell^p) \mathcal{K}(\ell^q, \ell^p) \mathcal{K}(\ell^p, \ell^q) \mathcal{K}(\ell^q) \right],$$

so that

$$\mathcal{C}(\ell^p \oplus \ell^q) = \left[\mathcal{C}(\ell^p) \ast 0 \mathcal{C}(\ell^q) \right].$$

Then

$$I := \left[0 \ast 0 0 \right] \neq \{0\}$$

is a complemented ideal of $\mathcal{C}(\ell^p \oplus \ell^q)$, thus is amenable, and thus has a BAI. But

$$I^2 = \{0\}. . .$$
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$.
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \\ \mathcal{B}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$
Non-amenability of $B(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$B(\ell^p \oplus \ell^q) = \begin{bmatrix} B(\ell^p) & B(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & B(\ell^q) \end{bmatrix}$$
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

and

$$\mathcal{K}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{K}(\ell^p) & \mathcal{K}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{K}(\ell^q) \end{bmatrix},$$
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$
\mathcal{B}(\ell^p \oplus \ell^q) = \begin{bmatrix}
\mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \\
\mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q)
\end{bmatrix}
$$

and

$$
\mathcal{K}(\ell^p \oplus \ell^q) = \begin{bmatrix}
\mathcal{K}(\ell^p) & \mathcal{K}(\ell^q, \ell^p) \\
\mathcal{K}(\ell^p, \ell^q) & \mathcal{K}(\ell^q)
\end{bmatrix},
$$

so that

$$
\mathcal{C}(\ell^p \oplus \ell^q) = \begin{bmatrix}
\mathcal{C}(\ell^p) & * \\
0 & \mathcal{C}(\ell^q)
\end{bmatrix}.
$$
Non-amenability of $B(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$B(\ell^p \oplus \ell^q) = \begin{bmatrix} B(\ell^p) & B(\ell^q, \ell^p) \\ K(\ell^p, \ell^q) & B(\ell^q) \end{bmatrix}$$

and

$$K(\ell^p \oplus \ell^q) = \begin{bmatrix} K(\ell^p) & K(\ell^q, \ell^p) \\ K(\ell^p, \ell^q) & K(\ell^q) \end{bmatrix},$$

so that

$$C(\ell^p \oplus \ell^q) = \begin{bmatrix} C(\ell^p) & * \\ 0 & C(\ell^q) \end{bmatrix}.$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $C(\ell^p \oplus \ell^q)$,
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

and

$$\mathcal{K}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{K}(\ell^p) & \mathcal{K}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{K}(\ell^q) \end{bmatrix},$$

so that

$$\mathcal{C}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{C}(\ell^p) & * \\ 0 & \mathcal{C}(\ell^q) \end{bmatrix}.$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $\mathcal{C}(\ell^p \oplus \ell^q)$, thus is amenable,
Non-amenability of $B(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$B(\ell^p \oplus \ell^q) = \begin{bmatrix} B(\ell^p) & B(\ell^q, \ell^p) \\ K(\ell^p, \ell^q) & B(\ell^q) \end{bmatrix}$$

and

$$K(\ell^p \oplus \ell^q) = \begin{bmatrix} K(\ell^p) & K(\ell^q, \ell^p) \\ K(\ell^p, \ell^q) & K(\ell^q) \end{bmatrix},$$

so that

$$C(\ell^p \oplus \ell^q) = \begin{bmatrix} C(\ell^p) & * \\ 0 & C(\ell^q) \end{bmatrix}.$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $C(\ell^p \oplus \ell^q)$, thus is amenable, and thus has a BAI.
Non-amenability of $B(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$B(\ell^p \oplus \ell^q) = \begin{bmatrix} B(\ell^p) & B(\ell^q, \ell^p) \\ K(\ell^p, \ell^q) & B(\ell^q) \end{bmatrix}$$

and

$$K(\ell^p \oplus \ell^q) = \begin{bmatrix} K(\ell^p) & K(\ell^q, \ell^p) \\ K(\ell^p, \ell^q) & K(\ell^q) \end{bmatrix},$$

so that

$$C(\ell^p \oplus \ell^q) = \begin{bmatrix} C(\ell^p) & * \\ 0 & C(\ell^q) \end{bmatrix}.$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $C(\ell^p \oplus \ell^q)$, thus is amenable, and thus has a BAI. But $I^2 = \{0\} \ldots$
Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, II

Proof.

Suppose that $p > q$. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

and

$$\mathcal{K}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{K}(\ell^p) & \mathcal{K}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{K}(\ell^q) \end{bmatrix},$$

so that

$$\mathcal{C}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{C}(\ell^p) & * \\ 0 & \mathcal{C}(\ell^q) \end{bmatrix}.$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $\mathcal{C}(\ell^p \oplus \ell^q)$, thus is amenable, and thus has a BAI. But $I^2 = \{0\}$... □
Non-amenability of \(\mathcal{B}(\ell^p) \) for \(p = 1, 2, \infty \)
Non-amenability of $B(\ell^p)$ for $p = 1, 2, \infty$

Theorem (C. J. Read, <2006)
Non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$

Theorem (C. J. Read, <2006)

$\mathcal{B}(\ell^1)$ is not amenable.
Non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$

Theorem (C. J. Read, <2006)

$\mathcal{B}(\ell^1)$ is not amenable.

Progress since

2. Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.

Question

Is $\mathcal{B}(\ell^p)$ amenable for any $p \in (1, \infty) \setminus \{2\}$?
Non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$

Theorem (C. J. Read, <2006)

$\mathcal{B}(\ell^1)$ is not amenable.

Progress since

Theorem (C. J. Read, <2006)

$\mathcal{B}(\ell^1)$ is not amenable.

Progress since

2. Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.
Non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$

Theorem (C. J. Read, <2006)

$\mathcal{B}(\ell^1)$ is not amenable.

Progress since

2. Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.

Question
Non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$

Theorem (C. J. Read, <2006)

$\mathcal{B}(\ell^1)$ is not amenable.

Progress since

2. Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.

Question

Is $\mathcal{B}(\ell^p)$ amenable?
Non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$

Theorem (C. J. Read, <2006)

$\mathcal{B}(\ell^1)$ is not amenable.

Progress since

2. Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.

Question

Is $\mathcal{B}(\ell^p)$ amenable for any $p \in (1, \infty) \setminus \{2\}$?
What if $B(\ell^p)$ were amenable?
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:
1. $\mathcal{B}(\ell^p(E))$ is amenable;
2. $\ell^\infty(\mathcal{B}(\ell^p(E)))$ is amenable.

Idea
$\ell^p(\ell^p(E)) \sim \ell^p(E)$
$\ell^\infty(\mathcal{B}(\ell^p(E))) \sim \text{block diagonal matrices in } \mathcal{B}(\ell^p(E))$

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$.

Then so are the Banach algebras $\ell^\infty(\mathcal{B}(\ell^p))$ and $\ell^\infty(K(\ell^p))$.
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $\mathcal{B}(\ell^p(E))$ is amenable;
2. $\ell^\infty(\mathcal{B}(\ell^p(E)))$ is amenable.
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $\mathcal{B}(\ell^p(E))$ is amenable;
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $\mathcal{B}(\ell^p(E))$ is amenable;
2. $\ell^\infty(\mathcal{B}(\ell^p(E)))$ is amenable.
Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $K(E)$

Amenability of $B(E)$

A positive example $B(\ell^p \oplus \ell^q)$ with $p \neq p$

$B(\ell^p)$

What if $B(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $B(\ell^p(E))$ is amenable;
2. $\ell^\infty(B(\ell^p(E)))$ is amenable.

Idea

$\ell^p(E) \cong \ell^p(\ell^p(E)) \cong \ell^p(\ell^q)$

Corollary

Suppose that $B(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then so are the Banach algebras $\ell^\infty(B(\ell^p))$ and $\ell^\infty(K(\ell^p))$.
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $\mathcal{B}(\ell^p(E))$ is amenable;
2. $\ell^\infty(\mathcal{B}(\ell^p(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $\mathcal{B}(\ell^p(E))$ is amenable;
2. $\ell^\infty(\mathcal{B}(\ell^p(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^\infty(\mathcal{B}(\ell^p(E))) \cong$ block diagonal matrices in $\mathcal{B}(\ell^p(\ell^p(E)))$
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $\mathcal{B}(\ell^p(E))$ is amenable;
2. $\ell^\infty(\mathcal{B}(\ell^p(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^\infty(\mathcal{B}(\ell^p(E))) \cong \text{block diagonal matrices in } \mathcal{B}(\ell^p(\ell^p(E)))$

Corollary
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $\mathcal{B}(\ell^p(E))$ is amenable;
2. $\ell^\infty(\mathcal{B}(\ell^p(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^\infty(\mathcal{B}(\ell^p(E))) \cong$ block diagonal matrices in $\mathcal{B}(\ell^p(\ell^p(E)))$

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$.
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $\mathcal{B}(\ell^p(E))$ is amenable;
2. $\ell^\infty(\mathcal{B}(\ell^p(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^\infty(\mathcal{B}(\ell^p(E))) \cong \text{block diagonal matrices in } \mathcal{B}(\ell^p(\ell^p(E)))$

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then so are the Banach algebras $\ell^\infty(\mathcal{B}(\ell^p))$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$
What if $\mathcal{B}(\ell^p)$ were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1. $\mathcal{B}(\ell^p(E))$ is amenable;
2. $\ell^\infty(\mathcal{B}(\ell^p(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^\infty(\mathcal{B}(\ell^p(E))) \cong \text{block diagonal matrices in } \mathcal{B}(\ell^p(\ell^p(E)))$

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then so are the Banach algebras $\ell^\infty(\mathcal{B}(\ell^p))$ and $\ell^\infty(\mathcal{K}(\ell^p))$.
Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $B(E)$

A positive example

$B(\ell^p \oplus \ell^q)$ with $p \neq q$

$B(\ell^p)$
\(\mathcal{L}^p \)-spaces, I

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let \(p \in [1, \infty] \) and let \(\lambda \geq 1 \).

A Banach space \(E \) is called a \(\mathcal{L}^p_\lambda \)-space if, for every finite-dimensional subspace \(X \) of \(E \), there is a finite-dimensional subspace \(Y \supset X \) of \(E \) with

\[
\| Y, \ell^p \| \dim Y \leq \lambda.
\]

We call \(E \) an \(\mathcal{L}^p \)-space if it is an \(\mathcal{L}^p_\lambda \)-space for some \(\lambda \geq 1 \).

Examples

1. All Banach spaces isomorphic to an \(\mathcal{L}^p \)-space are \(\mathcal{L}^p \)-spaces.
2. Let \(p \in (1, \infty) \setminus \{2\} \).

Then \(\ell^p(\ell^2) \) and \(\ell^2 \oplus \ell^p \) are \(\mathcal{L}^p \)-spaces, but not isomorphic to \(\mathcal{L}^p \)-spaces.
\textbf{\mathcal{L}^p-spaces, I}

\textbf{Definition (J. Lindenstrauss & A. Pełczyński, 1968)}

Let $p \in [1, \infty]$ and let $\lambda \geq 1$.

\begin{enumerate}
\item All Banach spaces isomorphic to an \mathcal{L}^p-space are \mathcal{L}^p-spaces.
\item Let $p \in (1, \infty) \setminus \{2\}$. Then $\ell^p(\ell^2)$ and $\ell^2 \oplus \ell^p$ are \mathcal{L}^p-spaces, but not isomorphic to \mathcal{L}^p-spaces.
\end{enumerate}
Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \geq 1$. A Banach space E is called a \mathcal{L}_λ^p-space if,
Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \geq 1$. A Banach space E is called a \mathcal{L}_p^λ-space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with

$$d(Y, \ell_p \dim Y) \leq \lambda.$$
Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \geq 1$. A Banach space E is called a \mathcal{L}_λ^p-space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E.
\(\mathcal{L}^p \)-spaces, I

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let \(p \in [1, \infty] \) and let \(\lambda \geq 1 \). A Banach space \(E \) is called a \(\mathcal{L}^p_\lambda \)-space if, for every finite-dimensional subspace \(X \) of \(E \), there is a finite-dimensional subspace \(Y \supset X \) of \(E \) with

\[
d(Y, \ell^p_{\dim Y}) \leq \lambda.
\]
\(\mathcal{L}^p \)-spaces, I

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let \(p \in [1, \infty] \) and let \(\lambda \geq 1 \). A Banach space \(E \) is called a \(\mathcal{L}^p_\lambda \)-space if, for every finite-dimensional subspace \(X \) of \(E \), there is a finite-dimensional subspace \(Y \supset X \) of \(E \) with \(d(Y, \ell^p_{\dim Y}) \leq \lambda \). We call \(E \) an \(\mathcal{L}^p \)-space.
\(\mathcal{L}^p \)-spaces, I

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let \(p \in [1, \infty] \) and let \(\lambda \geq 1 \). A Banach space \(E \) is called a \(\mathcal{L}^p_\lambda \)-space if, for every finite-dimensional subspace \(X \) of \(E \), there is a finite-dimensional subspace \(Y \supset X \) of \(E \) with
\[
d(Y, \ell^p_{\dim Y}) \leq \lambda.
\]
We call \(E \) an \(\mathcal{L}^p \)-space if it is an \(\mathcal{L}^p_\lambda \)-space for some \(\lambda \geq 1 \).
Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$

$\mathcal{B}(\ell^p)$

L^p-spaces, I

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \geq 1$. A Banach space E is called a L^p_λ-space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^p_{\dim Y}) \leq \lambda$. We call E an L^p-space if it is an L^p_λ-space for some $\lambda \geq 1$.

Examples
L^p-spaces, 1

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \geq 1$. A Banach space E is called a L^p_λ-space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^p_{\dim Y}) \leq \lambda$. We call E an L^p-space if it is an L^p_λ-space for some $\lambda \geq 1$.

Examples

1. All Banach spaces isomorphic to an L^p-space are L^p-spaces.
Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \geq 1$. A Banach space E is called a \mathcal{L}_p^λ-space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell_p^{\dim Y}) \leq \lambda$. We call E an \mathcal{L}_p-space if it is an \mathcal{L}_p^λ-space for some $\lambda \geq 1$.

Examples

1. All Banach spaces isomorphic to an L^p-space are \mathcal{L}^p-spaces.
2. Let $p \in (1, \infty) \setminus \{2\}$.
Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let \(p \in [1, \infty] \) and let \(\lambda \geq 1 \). A Banach space \(E \) is called a \(\mathcal{L}_\lambda^p \)-space if, for every finite-dimensional subspace \(X \) of \(E \), there is a finite-dimensional subspace \(Y \supset X \) of \(E \) with \(d(Y, \ell^p_{\dim Y}) \leq \lambda \). We call \(E \) an \(\mathcal{L}^p \)-space if it is an \(\mathcal{L}_\lambda^p \)-space for some \(\lambda \geq 1 \).

Examples

1. All Banach spaces isomorphic to an \(L^p \)-space are \(\mathcal{L}^p \)-spaces.
2. Let \(p \in (1, \infty) \setminus \{2\} \). Then \(\ell^p(\ell^2) \) and \(\ell^2 \oplus \ell^p \) are \(\mathcal{L}^p \)-spaces,
Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \geq 1$. A Banach space E is called a \mathcal{L}_λ^p-space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^p_{\dim Y}) \leq \lambda$. We call E an \mathcal{L}^p-space if it is an \mathcal{L}_λ^p-space for some $\lambda \geq 1$.

Examples

1. All Banach spaces isomorphic to an L^p-space are \mathcal{L}^p-spaces.

2. Let $p \in (1, \infty) \setminus \{2\}$. Then $\ell^p(\ell^2)$ and $\ell^2 \oplus \ell^p$ are \mathcal{L}^p-spaces, but not isomorphic to L^p-spaces.
Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example

$\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq q$

$\mathcal{B}(\ell^p)$
\(\mathcal{L}^p \)-spaces, II

Theorem (M. Daws & VR, 2008)

\[\text{Theorem (M. Daws & VR, 2008)} \]

Let \(p \in [1, \infty] \). Then one of the following is true:

1. \(\ell_\infty(K(E)) \) is amenable for every \(L^p \)-space \(E \) with \(\dim E = \infty \);
2. \(\ell_\infty(K(E)) \) is not amenable for any \(L^p \)-space \(E \) with \(\dim E = \infty \).

Corollary

Suppose that \(\mathcal{B}(\ell^p) \) is amenable for some \(p \in [1, \infty) \).

Then \(\ell_\infty(K(\ell^p)) \) is amenable.

Question

Is \(\ell_\infty(K(\ell^p \oplus \ell^q)) \) amenable for any \(p \in (1, \infty) \setminus \{2\} \)?
Theorem (M. Daws & VR, 2008)

Let $p \in [1, \infty]$. Then one of the following is true:

1. $\ell_\infty(K(E))$ is amenable for every L^p-space E with $\dim E = \infty$;
2. $\ell_\infty(K(E))$ is not amenable for any L^p-space E with $\dim E = \infty$.

Corollary

Suppose that $B(\ell^p)$ is amenable for some $p \in [1, \infty)$.

Then $\ell_\infty(K(\ell^p \oplus \ell^q))$ is amenable for every L^p-space E with $\dim E = \infty$.

Question

Is $\ell_\infty(K(\ell^p \oplus \ell^q))$ amenable for any $p \in (1, \infty) \setminus \{2\}$?
\[\mathcal{L}^p \text{-spaces, II} \]

Theorem (M. Daws & VR, 2008)

Let \(p \in [1, \infty] \). Then one of the following is true:

1. \(\ell^\infty(\mathcal{K}(E)) \) is **amenable** for every \(\mathcal{L}^p \)-space \(E \) with \(\dim E = \infty \);
Let $p \in [1, \infty]$. Then one of the following is true:

1. $\ell^\infty(\mathcal{K}(E))$ is amenable for every \mathcal{L}^p-space E with $\dim E = \infty$;
2. $\ell^\infty(\mathcal{K}(E))$ is not amenable for any \mathcal{L}^p-space E with $\dim E = \infty$.

Corollary

Suppose that $\mathcal{B}(\ell^p \oplus \ell^q)$ is amenable for some $p \in [1, \infty)$. Then $\ell^\infty(\mathcal{K}(\ell^2 \oplus \ell^p))$ is amenable for every \mathcal{L}^p-space E with $\dim E = \infty$.

Question

Is $\ell^\infty(\mathcal{K}(\ell^2 \oplus \ell^p))$ amenable for any $p \in (1, \infty) \setminus \{2\}$?
\(\mathcal{L}^p\)-spaces, II

Theorem (M. Daws & VR, 2008)

Let \(p \in [1, \infty] \). Then one of the following is true:

1. \(\ell^\infty(\mathcal{K}(E)) \) is amenable for every \(\mathcal{L}^p \)-space \(E \) with \(\dim E = \infty \);
2. \(\ell^\infty(\mathcal{K}(E)) \) is not amenable for any \(\mathcal{L}^p \)-space \(E \) with \(\dim E = \infty \).

Corollary
L^p-spaces, II

Theorem (M. Daws & VR, 2008)

Let $p \in [1, \infty]$. Then one of the following is true:

1. $\ell^\infty(K(E))$ is amenable for every L^p-space E with $\dim E = \infty$;
2. $\ell^\infty(K(E))$ is not amenable for any L^p-space E with $\dim E = \infty$.

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$.

\(\mathcal{L}^p \)-spaces, II

Theorem (M. Daws & VR, 2008)

Let \(p \in [1, \infty] \). Then one of the following is true:

1. \(\ell^\infty(\mathcal{K}(E)) \) is amenable for every \(\mathcal{L}^p \)-space \(E \) with \(\dim E = \infty \);

2. \(\ell^\infty(\mathcal{K}(E)) \) is not amenable for any \(\mathcal{L}^p \)-space \(E \) with \(\dim E = \infty \).

Corollary

Suppose that \(\mathcal{B}(\ell^p) \) is amenable for some \(p \in [1, \infty) \). Then \(\ell^\infty(\mathcal{K}(E)) \) is amenable.
Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$
Amenability of $\mathcal{B}(E)$
A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$
$\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

Let $p \in [1, \infty]$. Then one of the following is true:

1. $\ell^\infty(\mathcal{K}(E))$ is amenable for every \mathcal{L}^p-space E with $\dim E = \infty$;
2. $\ell^\infty(\mathcal{K}(E))$ is not amenable for any \mathcal{L}^p-space E with $\dim E = \infty$.

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then $\ell^\infty(\mathcal{K}(E))$ is amenable for every \mathcal{L}^p-space E with $\dim E = \infty$.
Theorem (M. Daws & VR, 2008)

Let $p \in [1, \infty]$. Then one of the following is true:

1. $\ell^\infty(K(E))$ is amenable for every \mathcal{L}^p-space E with $\dim E = \infty$;
2. $\ell^\infty(K(E))$ is not amenable for any \mathcal{L}^p-space E with $\dim E = \infty$.

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then $\ell^\infty(K(E))$ is amenable for every \mathcal{L}^p-space E with $\dim E = \infty$.

Question

Is $\ell^\infty(K(\ell^p \oplus \ell^q))$ amenable for any $p \in (1, \infty) \setminus \{2\}$?
Theorem (M. Daws & VR, 2008)

Let \(p \in [1, \infty] \). Then one of the following is true:

1. \(\ell^\infty(\mathcal{K}(E)) \) is amenable for every \(\mathcal{L}^p \)-space \(E \) with \(\dim E = \infty \);

2. \(\ell^\infty(\mathcal{K}(E)) \) is not amenable for any \(\mathcal{L}^p \)-space \(E \) with \(\dim E = \infty \).

Corollary

Suppose that \(\mathcal{B}(\ell^p) \) is amenable for some \(p \in [1, \infty) \). Then \(\ell^\infty(\mathcal{K}(E)) \) is amenable for every \(\mathcal{L}^p \)-space \(E \) with \(\dim E = \infty \).

Question

Is \(\ell^\infty(\mathcal{K}(\ell^2 \oplus \ell^p)) \) amenable for any \(p \in (1, \infty) \setminus \{2\} \)?
Ozawa’s proof revisited, I
Definition
Ozawa’s proof revisited, I

Definition

A locally compact group G has **Kazhdan’s property** (T).

Examples:
1. All compact groups have property (T), as does $SL(3, \mathbb{Z})$.
2. Amenable groups have property (T) if and only if they are compact.
3. F_2 and $SL(2, \mathbb{R})$ are not amenable, but lack property (T).

Definition

A locally compact group G has Kazhdan’s property (T) if there are $\epsilon > 0$
Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T) if there are $\epsilon > 0$ and a compact set $K \subseteq G$.
Ozawa’s proof revisited, I

Definition

A locally compact group G has **Kazhdan’s property (T)** if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property:
Ozawa’s proof revisited, I

Definition

A locally compact group G has **Kazhdan’s property (T)** if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H}, there is $k \in K$ such that
\[
\|\pi(k)\xi - \xi\| > \epsilon.
\]
Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H} and for every unit vector $\xi \in \mathcal{H}$,
Ozawa’s proof revisited, 1

Definition

A locally compact group G has Kazhdan’s property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H} and for every unit vector $\xi \in \mathcal{H}$, there is $k \in K$ such that $\|\pi(k)\xi - \xi\| > \epsilon$.

Examples

1. All compact groups have property (T), as does $\text{SL}(3, \mathbb{Z})$.
2. Amenable groups have property (T) if and only if they are compact.
3. F_2 and $\text{SL}(2, \mathbb{R})$ are not amenable, but lack property (T).
Ozawa’s proof revisited, I

Definition

A locally compact group G has **Kazhdan’s property (T)** if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H} and for every unit vector $\xi \in \mathcal{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi - \xi\| > \epsilon.$$
Ozawa’s proof revisited, I

Definition

A locally compact group \(G \) has **Kazhdan’s property (T)** if there are \(\epsilon > 0 \) and a compact set \(K \subset G \) with the following property: for every irreducible, unitary representation \(\pi \) of \(G \) on \(\mathcal{H} \) and for every unit vector \(\xi \in \mathcal{H} \), there is \(k \in K \) such that

\[
\| \pi(k)\xi - \xi \| > \epsilon.
\]

Examples
Ozawa’s proof revisited, I

Definition

A locally compact group G has **Kazhdan’s property (T)** if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H} and for every unit vector $\xi \in \mathcal{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi - \xi\| > \epsilon.$$

Examples

1. All compact groups have property (T), as does

$$\mathcal{B}(\ell^p \oplus \ell^q) \quad \text{with} \quad p \neq q \quad \text{and} \quad \mathcal{B}(\ell^p)$$
Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H} and for every unit vector $\xi \in \mathcal{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi - \xi\| > \epsilon.$$

Examples

1. All compact groups have property (T), as does $\text{SL}(3, \mathbb{Z})$.
Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H} and for every unit vector $\xi \in \mathcal{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi - \xi\| > \epsilon.$$

Examples

1. All compact groups have property (T), as does $\text{SL}(3, \mathbb{Z})$.
2. Amenable groups have property (T)
Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H} and for every unit vector $\xi \in \mathcal{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi - \xi\| > \epsilon.$$

Examples

1. All compact groups have property (T), as does $\text{SL}(3, \mathbb{Z})$.
2. Amenable groups have property (T) if and only if they are compact.
Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T) if there are $\epsilon > 0$ and a compact set $K \subseteq G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H} and for every unit vector $\xi \in \mathcal{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi - \xi\| > \epsilon.$$

Examples

1. All compact groups have property (T), as does $\text{SL}(3, \mathbb{Z})$.
2. Amenable groups have property (T) if and only if they are compact.
3. \mathbb{F}_2 and $\text{SL}(2, \mathbb{R})$ are not amenable,
Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathcal{H} and for every unit vector $\xi \in \mathcal{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi - \xi\| > \epsilon.$$

Examples

1. All compact groups have property (T), as does $\text{SL}(3, \mathbb{Z})$.
2. Amenable groups have property (T) if and only if they are compact.
3. \mathbb{F}_2 and $\text{SL}(2, \mathbb{R})$ are not amenable, but lack property (T).
Ozawa’s proof revisited, II

Amenability of operator algebras on Banach spaces, II
Volker Runde

Amenability of $\mathcal{K}(E)$
Amenability of $\mathcal{B}(E)$
A positive example
$\mathcal{B}(\ell^p \oplus \ell^q)$
with $p \neq q$
$\mathcal{B}(\ell^p)$
Ozawa’s proof revisited, II

The setup
Ozawa’s proof revisited, II

The setup

Since $\text{SL}(3, \mathbb{Z})$ has property (T),

...
Ozawa’s proof revisited, II

The setup

Since $\text{SL}(3, \mathbb{Z})$ has property (T), it is finitely generated
Ozawa’s proof revisited, II

The setup

Since $\text{SL}(3, \mathbb{Z})$ has property (T), it is finitely generated by g_1, \ldots, g_m, say.
The setup

Since $\text{SL}(3,\mathbb{Z})$ has property (T), it is finitely generated by g_1, \ldots, g_m, say.
Write \mathbb{P} for the set of prime numbers.
Ozawa’s proof revisited, II

The setup

Since $\text{SL}(3, \mathbb{Z})$ has property (T), it is finitely generated by g_1, \ldots, g_m, say.
Write \mathbb{P} for the set of prime numbers.
Let $p \in \mathbb{P},$
Ozawa’s proof revisited, II

The setup

Since \(\text{SL}(3, \mathbb{Z}) \) has property \((T)\), it is finitely generated by \(g_1, \ldots, g_m \), say.

Write \(\mathbb{P} \) for the set of prime numbers.

Let \(p \in \mathbb{P} \), and let \(\Lambda_p \) be the projective plane over \(\mathbb{Z}/p\mathbb{Z} \).
Ozawa’s proof revisited, II

The setup

Since $\text{SL}(3, \mathbb{Z})$ has property (T), it is finitely generated by g_1, \ldots, g_m, say.
Write \mathbb{P} for the set of prime numbers.
Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$.
Then $\text{SL}(3, \mathbb{Z})$ acts on Λ_p through matrix multiplication.
Ozawa’s proof revisited, II

The setup

Since $\text{SL}(3, \mathbb{Z})$ has property (T), it is finitely generated by g_1, \ldots, g_m, say.
Write \mathbb{P} for the set of prime numbers.
Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$.
Then $\text{SL}(3, \mathbb{Z})$ acts on Λ_p through matrix multiplication.
This group action induces a unitary representation
$\pi_p : \text{SL}(3, \mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p))$.

Ozawa’s proof revisited, II

The setup

Since SL(3, \mathbb{Z}) has property (\mathcal{T}), it is finitely generated by \(g_1, \ldots, g_m\), say.
Write \(\mathbb{P}\) for the set of prime numbers.
Let \(p \in \mathbb{P}\), and let \(\Lambda_p\) be the projective plane over \(\mathbb{Z}/p\mathbb{Z}\).
Then SL(3, \mathbb{Z}) acts on \(\Lambda_p\) through matrix multiplication.
This group action induces a unitary representation \(\pi_p : SL(3, \mathbb{Z}) \to B(\ell^2(\Lambda_p))\).
Choose \(S_p \subset \Lambda_p\) with \(|S_p| = \frac{|\Lambda_p| - 1}{2}\).
Ozawa’s proof revisited, II

The setup

Since SL(3, \mathbb{Z}) has property (T), it is finitely generated by \(g_1, \ldots, g_m \), say.

Write \(\mathbb{P} \) for the set of prime numbers.

Let \(p \in \mathbb{P} \), and let \(\Lambda_p \) be the projective plane over \(\mathbb{Z}/p\mathbb{Z} \).

Then SL(3, \mathbb{Z}) acts on \(\Lambda_p \) through matrix multiplication.

This group action induces a unitary representation \(\pi_p : SL(3, \mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p)) \).

Choose \(S_p \subset \Lambda_p \) with \(|S_p| = \frac{\Lambda_p| - 1}{2} \) and define a unitary \(\pi_p(g_{m+1}) \in \mathcal{B}(\ell^2(\Lambda_p)) \).
Ozawa’s proof revisited, II

The setup

Since SL(3, \mathbb{Z}) has property (T), it is finitely generated by g_1, \ldots, g_m, say.

Write \mathbb{P} for the set of prime numbers.

Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$.

Then SL(3, \mathbb{Z}) acts on Λ_p through matrix multiplication.

This group action induces a unitary representation

$\pi_p : SL(3, \mathbb{Z}) \to B(\ell^2(\Lambda_p))$.

Choose $S_p \subset \Lambda_p$ with $|S_p| = \frac{|\Lambda_p|-1}{2}$ and define a unitary

$\pi_p(g_{m+1}) \in B(\ell^2(\Lambda_p))$ via

$$\pi_p(g_{m+1})e_\lambda =$$
Ozawa’s proof revisited, II

The setup

Since $\text{SL}(3, \mathbb{Z})$ has property (T), it is finitely generated by g_1, \ldots, g_m, say.
Write \mathbb{P} for the set of prime numbers.
Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$.
Then $\text{SL}(3, \mathbb{Z})$ acts on Λ_p through matrix multiplication.
This group action induces a unitary representation $\pi_p : \text{SL}(3, \mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p))$.
Choose $S_p \subset \Lambda_p$ with $|S_p| = \frac{|\Lambda_p|-1}{2}$ and define a unitary $\pi_p(g_{m+1}) \in \mathcal{B}(\ell^2(\Lambda_p))$ via

$$\pi_p(g_{m+1}) e_\lambda = \begin{cases} e_\lambda, & \lambda \in S_p, \end{cases}$$
Ozawa’s proof revisited, II

The setup

Since $SL(3, \mathbb{Z})$ has property (T), it is finitely generated by g_1, \ldots, g_m, say.
Write \mathbb{P} for the set of prime numbers.
Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$.
Then $SL(3, \mathbb{Z})$ acts on Λ_p through matrix multiplication.
This group action induces a unitary representation $\pi_p : SL(3, \mathbb{Z}) \to B(\ell^2(\Lambda_p))$.

Choose $S_p \subset \Lambda_p$ with $|S_p| = \frac{|\Lambda_p|-1}{2}$ and define a unitary $\pi_p(g_{m+1}) \in B(\ell^2(\Lambda_p))$ via

$$\pi_p(g_{m+1})e_\lambda = \begin{cases}
 e_\lambda, & \lambda \in S_p, \\
 -e_\lambda, & \lambda \notin S_p.
\end{cases}$$
Ozawa’s proof revisited, III

Ozawa’s proof revisited, III

It is impossible to find, for each $\epsilon > 0$, a number $r \in \mathbb{N}$ with the following property: for each $p \in P$ there are $\xi_1, \xi_2, \ldots, \xi_r, \eta_1, \eta_2, \ldots, \eta_r \in \ell_2(\Lambda_p)$ such that

$$\sum_{k=1}^r \xi_k \otimes \eta_k \neq 0$$

and

$$\left\| \sum_{k=1}^r \xi_k \otimes \eta_k - \left(\pi_p(g_j) \otimes \pi_p(g_j) \right) \right\|_{\ell_2(\Lambda_p) \otimes \ell_2(\Lambda_p)} \leq \epsilon \left\| \sum_{k=1}^r \xi_k \otimes \eta_k \right\|_{\ell_2(\Lambda_p) \otimes \ell_2(\Lambda_p)}$$

for $j = 1, \ldots, m + 1$.
Ozawa’s Lemma

*It is impossible to find, for each $\epsilon > 0$, a number $r \in \mathbb{N}$ with the following property: for each $p \in \mathbb{P}$ there are $\xi_{1,p}, \eta_{1,p}, \ldots, \xi_{r,p}, \eta_{r,p} \in \ell^2(\Lambda_p)$ such that $\sum_{k=1}^{r} \xi_{k,p} \otimes \eta_{k,p} \neq 0$ and

\[
\left\| \sum_{k=1}^{r} \xi_{j,p} \otimes \eta_{k,p} - (\pi_p(g_j) \otimes \pi_p(g_j))(\xi_{k,p} \otimes \eta_{k,p}) \right\|_{\ell^2(\Lambda_p) \hat{\otimes} \ell^2(\Lambda_p)} \\
\leq \epsilon \left\| \sum_{k=1}^{r} \xi_{k,p} \otimes \eta_{k,p} \right\|_{\ell^2(\Lambda_p) \hat{\otimes} \ell^2(\Lambda_p)} (j = 1, \ldots, m + 1).
\]
Ozawa’s proof revisited, IV

Ingredients

1. $\text{SL}(3, \mathbb{Z})$ has Kazhdan’s property (T).
2. The non-commutative Mazur map is uniformly continuous.
3. A key inequality.

For $p = 1, 2, \infty$, $N \in \mathbb{N}$, $S \in \mathcal{B}(\ell^p, \ell^p_N)$, and $T \in \mathcal{B}(\ell^p', \ell^p_N)$:

$$\sum_{n=1}^{\infty} \| S e_n \|_{\ell^2_N} \| T e_n^* \|_{\ell^2_N} \leq N \| S \| \| T \|.$$

(This estimate is no longer true for $p \in (1, \infty) \setminus \{2\}$.)'
Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of \(\mathcal{K}(E) \)

Amenability of \(B(E) \)

A positive example \(B(\ell^p \oplus \ell^q) \) with \(p \neq p \)

\(B(\ell^p) \)

Ozawa’s proof revisited, IV

Ingredients
Ingredients

1. $\text{SL}(3, \mathbb{Z})$ has Kazhdan’s property (T).
Ozawa’s proof revisited, IV

Ingredients

1. SL(3, \mathbb{Z}) has Kazhdan’s property (T).
2. The non-commutative Mazur map is uniformly continuous.
Ozawa’s proof revisited, IV

Ingredients

1. \(SL(3, \mathbb{Z}) \) has Kazhdan’s property (\(T \)).
2. The non-commutative Mazur map is uniformly continuous.
3. A key inequality.
Ingredients

1. SL(3, \mathbb{Z}) has Kazhdan’s property \((T)\).
2. The non-commutative Mazur map is uniformly continuous.
3. A key inequality. For \(p = 1, 2, \infty\),

\[
\sum_{n=1}^{\infty} \|S e_n\|_{\ell^2_N} \|T e_n^*\|_{\ell^2_N} \leq N \|S\| \|T\|.
\] (This estimate is no longer true for \(p \in (1, \infty) \setminus \{2\} \).)
Ozawa’s proof revisited, IV

Ingredients

1. $\text{SL}(3, \mathbb{Z})$ has Kazhdan’s property (T).
2. The non-commutative Mazur map is uniformly continuous.
3. A key inequality. For $p = 1, 2, \infty$, $N \in \mathbb{N}$,
Ozawa’s proof revisited, IV

Ingredients

1. **SL(3, \mathbb{Z})** has Kazhdan’s property \((T)\).
2. The non-commutative Mazur map is uniformly continuous.
3. **A key inequality.** For \(p = 1, 2, \infty\), \(N \in \mathbb{N}\), \(S \in \mathcal{B}(\ell^p, \ell^p_N)\), and \(T \in \mathcal{B}(\ell^{p'}, \ell^{p'}_N)\):

\[
\sum_{n=1}^{\infty} \|S e_n\|_{\ell^2_N} \|T e_n^*\|_{\ell^2_N} \leq N \|S\| \|T\|.
\]

(This estimate is no longer true for \(p \in (1, \infty) \setminus \{2\} \).)
Ozawa’s proof revisited, IV

Ingredients

1. SL(3, ℤ) has Kazhdan’s property (T).
2. The non-commutative Mazur map is uniformly continuous.
3. A key inequality. For \(p = 1, 2, \infty \), \(N \in \mathbb{N} \), \(S \in \mathcal{B}(\ell^p, \ell^p_N) \), and \(T \in \mathcal{B}(\ell^{p'}, \ell^{p'}_N) \):

\[
\sum_{n=1}^{\infty} \|S e_n\|_{\ell^2_N} \|T e_n^*\|_{\ell^2_N} \leq N \|S\| \|T\|.
\]
Ozawa’s proof revisited, IV

Ingredients

1. SL(3, \mathbb{Z}) has Kazhdan’s property (T).
2. The non-commutative Mazur map is uniformly continuous.
3. A key inequality. For \(p = 1, 2, \infty, N \in \mathbb{N}, S \in \mathcal{B}(\ell^p, \ell^p_N), \) and \(T \in \mathcal{B}(\ell^p', \ell^p_N') \):

\[
\sum_{n=1}^{\infty} \|Se_n\|_{\ell^2_N} \|Te_n^*\|_{\ell^2_N} \leq N \|S\| \|T\|.
\]

(This estimate is no longer true for \(p \in (1, \infty) \setminus \{2\} \).)
A non-amenability result for $\ell_\infty(\mathcal{K}(\ell^2 \oplus E))$, I

Let E be a Banach space with a basis $(x_n)_{n=1}^{\infty}$ such that there is $C > 0$ with

$$\sum_{n=1}^{\infty} \|Sx_n\| \|Tx_n^*\| \leq CN \|S\| \|T\|$$

($N \in \mathbb{N}, S \in B(E, \ell_2^N), T \in B(E^*, \ell_2^N)$).

Then $\ell_\infty(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses of the theorem: c_0, ℓ_1, and ℓ_2.
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, I

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is $C > 0$ with

$$\sum_{n=1}^\infty \|S x_n\| \|T^*_n\| \leq C N \|S\| \|T\|$$

($N \in \mathbb{N}$, $S \in \mathcal{B}(E, \ell^2_N)$, $T \in \mathcal{B}(E^*, \ell^2_N)$).

Then $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses of the theorem: c_0, ℓ^1, and ℓ^2.
Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$.
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, I

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is $C > 0$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, I

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is $C > 0$ with

$$\sum_{n=1}^\infty \|Sx_n\| \|Tx_n^*\| \leq C N \|S\| \|T\|$$

$$(N \in \mathbb{N}, S \in \mathcal{B}(E, \ell^2_N), T \in \mathcal{B}(E^*, \ell^2_N)).$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, I

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^{\infty}$ such that there is $C > 0$ with

$$\sum_{n=1}^{\infty} \|Sx_n\| \|Tx_n^*\| \leq C N \|S\| \|T\| \quad (N \in \mathbb{N}, \ S \in \mathcal{B}(E, \ell^2_N), \ T \in \mathcal{B}(E^*, \ell^2_N)).$$

Then $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, I

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is $C > 0$ with

$$\sum_{n=1}^\infty \|Sx_n\| \|Tx_n^*\| \leq C N \|S\| \|T\|$$

$(N \in \mathbb{N}, \; S \in \mathcal{B}(E, \ell^2_N), \; T \in \mathcal{B}(E^*, \ell^2_N))$.

Then $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example
Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is $C > 0$ with

$$\sum_{n=1}^\infty \|Sx_n\| \cdot \|Tx_n^*\| \leq C N \|S\| \cdot \|T\|$$

$$(N \in \mathbb{N}, \ S \in \mathcal{B}(E, \ell^2_N), \ T \in \mathcal{B}(E^*, \ell^2_N)).$$

Then $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses of the theorem:
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, I

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is $C > 0$ with

$$\sum_{n=1}^\infty \|Sx_n\| \|Tx_n^*\| \leq C N \|S\| \|T\|$$

$$(N \in \mathbb{N}, \ S \in B(E, \ell^2_{N}), \ T \in B(E^*, \ell^2_{N})).$$

Then $\ell^\infty(K(\ell^2 \oplus E))$ is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses of the theorem: c_0, ℓ^1, and ℓ^2.
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, I

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is $C > 0$ with

$$\sum_{n=1}^\infty \|S x_n\| \|T x_n^*\| \leq C N \|S\| \|T\|$$

$(N \in \mathbb{N}, \, S \in B(E, \ell^2_N), \, T \in B(E^*, \ell^2_N))$.

Then $\ell^\infty(K(\ell^2 \oplus E))$ is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses of the theorem: c_0, ℓ^1.
Amenability of operator algebras on Banach spaces, II
Volker Runde

Amenability of $\mathcal{K}(E)$
Amenability of $B(E)$
A positive example $B(\ell^p \oplus \ell^q)$ with $p \neq q$

A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, I

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is $C > 0$ with

$$\sum_{n=1}^{\infty} \| Sx_n \| \| T^*_n \| \leq C N \| S \| \| T \|$$

$$(N \in \mathbb{N}, \ S \in B(E, \ell^2_N), \ T \in B(E^*, \ell^2_N)).$$

Then $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses of the theorem: c_0, ℓ^1, and ℓ^2.
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, II
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, II
Lemma

Let \mathcal{A} be an amenable Banach algebra, and let $e \in \mathcal{A}$ be an idempotent. Then,
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, II

Lemma

Let \mathcal{A} be an amenable Banach algebra, and let $e \in \mathcal{A}$ be an idempotent. Then, for any $\epsilon > 0$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, II

Lemma

Let \mathcal{A} be an amenable Banach algebra, and let $e \in \mathcal{A}$ be an idempotent. Then, for any $\epsilon > 0$ and any finite subset F of $e\mathcal{A}e$,
A non-amenability result for \(\ell^\infty(\mathcal{K}(\ell^2 \oplus E)), \) II

Lemma

Let \(\mathcal{A} \) be an amenable Banach algebra, and let \(e \in \mathcal{A} \) be an idempotent. Then, for any \(\epsilon > 0 \) and any finite subset \(F \) of \(e\mathcal{A}e \), there are \(a_1, b_1, \ldots, a_r, b_r \in \mathcal{A} \)
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, II

Lemma

Let \mathfrak{A} be an amenable Banach algebra, and let $e \in \mathfrak{A}$ be an idempotent. Then, for any $\epsilon > 0$ and any finite subset F of $e\mathfrak{A}e$, there are $a_1, b_1, \ldots, a_r, b_r \in \mathfrak{A}$ such that

$$\sum_{k=1}^{r} a_k b_k = e$$

and

$$\|\sum_{k=1}^{r} x_a a_k \otimes b_k - x_a a_k \otimes b_k x\| < \epsilon \quad (x \in F).$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, II

Lemma

Let \mathcal{A} be an amenable Banach algebra, and let $e \in \mathcal{A}$ be an idempotent. Then, for any $\epsilon > 0$ and any finite subset F of $e\mathcal{A}e$, there are $a_1, b_1, \ldots, a_r, b_r \in \mathcal{A}$ such that

$$\sum_{k=1}^{r} a_k b_k = e$$

and

$$\left\| \sum_{k=1}^{r} x a_k \otimes b_k - a_k \otimes b_k x \right\|_{\mathcal{A} \hat{\otimes} \mathcal{A}} < \epsilon \quad (x \in F).$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, III
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, III
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, III

Sketched proof of the Theorem

Embed

$$\ell^\infty - \bigoplus_{p \in \mathbb{P}} B(\ell^2(\Lambda_p))$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, III

Sketched proof of the Theorem

Embed

$$\ell^\infty - \bigoplus_{p \in \mathbb{P}} B(\ell^2(\Lambda_p)) \subset \ell^\infty - \bigoplus_{p \in \mathbb{P}} \mathcal{K}(\ell^2 \oplus E)$$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, III

Sketched proof of the Theorem

Embed

$$\ell^\infty \bigoplus_{p \in \mathbb{P}} B(\ell^2(\Lambda_p)) \subset \ell^\infty \bigoplus_{p \in \mathbb{P}} K(\ell^2 \oplus E) =: \mathfrak{A}$$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, III

Sketched proof of the Theorem

Embed

$$\ell^\infty - \bigoplus_{p \in \mathbb{P}} B(\ell^2(\Lambda_p)) \subset \ell^\infty - \bigoplus_{p \in \mathbb{P}} K(\ell^2 \oplus E) =: \mathcal{A}$$

as “upper left corners”.

Amenability of operator algebras on Banach spaces, II
Volker Runde

Amenability of $K(E)$

Amenability of $B(E)$

A positive example $B(\ell^p \oplus \ell^q)$ with $p \neq q$ in $B(\ell^p)$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, III

Sketched proof of the Theorem

Embed

$$\ell^\infty - \bigoplus_{p \in \mathbb{P}} B(\ell^2(\Lambda_p)) \subset \ell^\infty - \bigoplus_{p \in \mathbb{P}} \mathcal{K}(\ell^2 \oplus E) =: \mathcal{A}$$

as “upper left corners”. Let \mathcal{A} act on

$$\ell^2(\mathbb{P}, \ell^2 \oplus E)$$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, III

Sketched proof of the Theorem

Embed

$$\ell^\infty - \bigoplus_{p \in P} B(\ell^2(\Lambda_p)) \subset \ell^\infty - \bigoplus_{p \in P} K(\ell^2 \oplus E) =: \mathcal{A}$$

as “upper left corners”. Let \mathcal{A} act on

$$\ell^2(P, \ell^2 \oplus E) \cong \ell^2(P, \ell^2) \oplus \ell^2(P, E).$$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, IV
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, IV

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$,
Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in B(\ell^2)$ be the canonical projection
Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates.
Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the p^{th} ℓ^2-summand.
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, IV

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in B(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the p^{th} ℓ^2-summand of

$$\ell^2(\mathbb{P}, \ell^2) \oplus \ell^2(\mathbb{P}, E).$$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, IV

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in B(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the p^{th} ℓ^2-summand of

$$\ell^2(\mathbb{P}, \ell^2) \oplus \ell^2(\mathbb{P}, E).$$

Set $e = (P_p)_{p\in\mathbb{P}}$.

A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, IV

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the p^{th} ℓ^2-summand of

$$\ell^2(\mathbb{P}, \ell^2) \oplus \ell^2(\mathbb{P}, E).$$

Set $e = (P_p)_{p \in \mathbb{P}}$. Then e is an idempotent in \mathcal{A}.
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, IV

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the p^{th} ℓ^2-summand of

$$
\ell^2(\mathbb{P}, \ell^2) \oplus \ell^2(\mathbb{P}, E).
$$

Set $e = (P_p)_{p \in \mathbb{P}}$. Then e is an idempotent in \mathcal{A} with

$$
e \mathcal{A} e = \ell^\infty - \bigoplus_{p \in \mathbb{P}} \mathcal{B}(\ell^2(\Lambda_p)).$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, V
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, V

Sketched proof of the Theorem (continued)
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, V

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^\infty(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, V

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^\infty(\mathcal{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.
Let $\epsilon > 0$ be arbitrary.
Sketched proof of the Theorem (continued)

Assume towards a contradiction that \(\ell^\infty(\mathcal{P}, \mathcal{K}(\ell^2 \oplus E)) \) is amenable.

Let \(\epsilon > 0 \) be arbitrary. By the previous Lemma
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, V

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^\infty(P, K(\ell^2 \oplus E))$ is amenable.

Let $\epsilon > 0$ be arbitrary. By the previous Lemma there are thus $a_1, b_1, \ldots, a_r, b_r \in \mathcal{A}$
A non-amenability result for $\ell^\infty (\mathcal{K}(\ell^2 \oplus E))$, V

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^\infty (\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

Let $\epsilon > 0$ be arbitrary. By the previous Lemma there are thus $a_1, b_1, \ldots, a_r, b_r \in \mathcal{A}$ such that $\sum_{k=1}^{r} a_k b_k = e$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, V

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^\infty(\mathbb{P}, K(\ell^2 \oplus E))$ is amenable. Let $\epsilon > 0$ be arbitrary. By the previous Lemma there are thus $a_1, b_1, \ldots, a_r, b_r \in \mathcal{A}$ such that $\sum_{k=1}^r a_k b_k = e$ and

$$\left\| \sum_{k=1}^r x a_k \otimes b_k - a_k \otimes b_k x \right\| < \frac{\epsilon}{(C + 1)(m + 1)} \quad (x \in F),$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, V

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^\infty(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

Let $\epsilon > 0$ be arbitrary. By the previous Lemma there are thus $a_1, b_1, \ldots, a_r, b_r \in \mathcal{A}$ such that $\sum_{k=1}^r a_k b_k = e$ and

$$\left\| \sum_{k=1}^r x a_k \otimes b_k - a_k \otimes b_k x \right\| < \frac{\epsilon}{(C + 1)(m + 1)} \quad (x \in F),$$

where

$$F := \{ (\pi_p(g_j))_{p \in \mathbb{P}} : j = 1, \ldots, m + 1 \}.$$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, VI

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $K(E)$

Amenability of $B(E)$

A positive example $B(\ell^p \oplus \ell^q)$ with $p \neq q$

$B(\ell^p)$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, VI

Sketched proof of the Theorem (continued)
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, VI

Sketched proof of the Theorem (continued)

For $p, q \in \mathbb{P}$ and $n \in \mathbb{N}$, define
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, VI

Sketched proof of the Theorem (continued)

For $p, q \in \mathbb{P}$ and $n \in \mathbb{N}$, define

$$T_p(q, n) := \sum_{k=1}^{r} P_p a_k(e_q \otimes e_n) \otimes P^*_p b_k^*(e_q^* \otimes e_n^*)$$

$$+ P_p a_k(e_q \otimes x_n) \otimes P^*_p b_k^*(e_q^* \otimes x_n^*)$$

Note that $T_p(q, n) \in \ell^2(\Lambda_p \hat{\otimes} \ell^2(\Lambda_p))$.
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, VI

Sketched proof of the Theorem (continued)

For $p, q \in \mathbb{P}$ and $n \in \mathbb{N}$, define

$$T_p(q, n) := \sum_{k=1}^{r} P_p a_k (e_q \otimes e_n) \otimes P_p^* b_k^* (e_q^* \otimes e_n^*)$$

$$+ P_p a_k (e_q \otimes x_n) \otimes P_p^* b_k^* (e_q^* \otimes x_n^*)$$

Note that

$$T_p(q, n) \in \ell^2(\Lambda_p) \hat{\otimes} \ell^2(\Lambda_p).$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, VII
A sketched proof of the Theorem (continued)

It follows that

\[\sum_{q \in P} \sum_{n=1}^{\infty} \| T_{p}(q, n) - (\pi_{p}(g_{j}) \otimes \pi_{p}(g_{j})) T_{p}(q, n) \| \leq \epsilon m + 1 |\Lambda_{p}| \]

for \(j = 1, \ldots, m + 1 \) and \(p \in P \) and thus

\[\sum_{q \in P} \sum_{n=1}^{m+1} \sum_{j=1}^{m+1} \| T_{p}(q, n) - (\pi_{p}(g_{j}) \otimes \pi_{p}(g_{j})) T_{p}(q, n) \| \leq \epsilon |\Lambda_{p}| . \]
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, VII

Sketched proof of the Theorem (continued)

It follows that
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, VII

Sketched proof of the Theorem (continued)

It follows that
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, VII

Sketched proof of the Theorem (continued)

It follows that

$$\sum_{q \in \mathbb{P}} \sum_{n=1}^\infty \| T_p(q, n) - ((\pi_p(g_j) \otimes \pi_p(g_j)) T_p(q, n) \| \leq \frac{\epsilon}{m+1} |\Lambda_p|$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, VII

Sketched proof of the Theorem (continued)

It follows that

$$\sum_{q \in \mathcal{P}} \sum_{n=1}^{\infty} \left\| T_p(q, n) - \left((\pi_p(g_j) \otimes \pi_p(g_j)) T_p(q, n) \right) \right\| \leq \frac{\epsilon}{m + 1} |\Lambda_p|$$

for $j = 1, \ldots, m + 1$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, VII

Sketched proof of the Theorem (continued)

It follows that

$$\sum_{q \in \mathbb{P}} \sum_{n=1}^{\infty} \| T_p(q, n) - ((\pi_p(g_j) \otimes \pi_p(g_j)) T_p(q, n) \| \leq \frac{\epsilon}{m + 1} |\Lambda_p|$$

for $j = 1, \ldots, m + 1$ and $p \in \mathbb{P}$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, VII

Sketched proof of the Theorem (continued)

It follows that

$$\sum_{q \in \mathbb{P}} \sum_{n=1}^{\infty} \left\| T_p(q, n) - ((\pi_p(g_j) \otimes \pi_p(g_j)) T_p(q, n) \right\| \leq \frac{\epsilon}{m+1} |\Lambda_p|$$

for $j = 1, \ldots, m+1$ and $p \in \mathbb{P}$ and thus

$$\sum_{q \in \mathbb{P}} \sum_{n=1}^{\infty} \sum_{j=1}^{m+1} \left\| T_p(q, n) - ((\pi_p(g_j) \otimes \pi_p(g_j)) T_p(q, n) \right\| \leq \epsilon |\Lambda_p|.$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, VIII
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, VIII

Sketched proof of the Theorem (continued)
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, VIII

Sketched proof of the Theorem (continued)

On the other hand:

$$\sum_{q \in \mathcal{P}} \sum_{n=1}^{\infty} \| T_p(q, n) \| \geq \sum_{n=1}^{\infty} \left| \sum_{k=1}^{r} \langle P_p a_k, p e_n, P_p^* b_k, p e_n^* \rangle + \sum_{k=1}^{r} \langle P_p a_k, p x_n, P_p^* b_k, p x_n^* \rangle \right|$$
Sketched proof of the Theorem (continued)

On the other hand:

\[
\sum_{q \in \mathbb{P}} \sum_{n=1}^{\infty} \| T_p(q, n) \| \\
\geq \sum_{n=1}^{\infty} \left| \sum_{k=1}^{r} \langle P_p a_k, p e_n, P_p b_k^* p e_n^* \rangle + \sum_{k=1}^{r} \langle P_p a_k, p x_n, P_p b_k^* p x_n^* \rangle \right| \\
= \text{Tr} \sum_{k=1}^{r} b_k p P_p a_k p
\]
Sketched proof of the Theorem (continued)

On the other hand:

\[
\sum_{q \in \mathbb{P}} \sum_{n=1}^{\infty} \| T_p(q, n) \| \geq \sum_{n=1}^{\infty} \left| \sum_{k=1}^{r} \langle P_p a_k, p e_n, P_p^* b_k, p e_n^* \rangle + \sum_{k=1}^{r} \langle P_p a_k, p x_n, P_p^* b_k, p x_n^* \rangle \right| \\
= \text{Tr} \sum_{k=1}^{r} b_k, p P_p a_k, p \\
= \text{Tr} \sum_{k=1}^{r} P_p a_k, p b_k, p
\]
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, VIII

Sketched proof of the Theorem (continued)

On the other hand:

$$\sum_{q \in \mathcal{P}} \sum_{n=1}^{\infty} \| T_p(q, n) \| \geq \sum_{n=1}^{\infty} \left| \sum_{k=1}^{r} \langle P_p a_k, p e_n, P_p^* b_k^*, p e_n^* \rangle + \sum_{k=1}^{r} \langle P_p a_k, p x_n, P_p^* b_k^*, p x_n^* \rangle \right|$$

$$= \text{Tr} \sum_{k=1}^{r} b_{k,p} P_p a_{k,p}$$

$$= \text{Tr} \sum_{k=1}^{r} P_p a_{k,p} b_{k,p}$$

$$= \text{Tr} P_p$$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, VIII

Sketched proof of the Theorem (continued)

On the other hand:

$$\sum_{q \in \mathbb{P}} \sum_{n=1}^\infty \| T_p(q, n) \| \geq \sum_{n=1}^\infty \left| \sum_{k=1}^r \langle P_p a_k, p e_n, P_p^* b_k, p e_n^* \rangle + \sum_{k=1}^r \langle P_p a_k, p x_n, P_p^* b_k, p x_n^* \rangle \right|$$

$$= \text{Tr} \sum_{k=1}^r b_k, p P_p a_k, p$$

$$= \text{Tr} \sum_{k=1}^r P_p a_k, p b_k, p$$

$$= \text{Tr} P_p = |\Lambda_p|.$$
A non-amenability result for $\ell^\infty(K(\ell^2 \oplus E))$, IX
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, IX

Sketched proof of the Theorem (conclusion)
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, IX

Sketched proof of the Theorem (conclusion)

It follows that,
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, IX

Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$,
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, IX

Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$, there are $q \in \mathbb{P}$ and $n \in \mathbb{N}$
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, IX

Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$, there are $q \in \mathbb{P}$ and $n \in \mathbb{N}$ with $T_p(q, n) \neq 0$
Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$, there are $q \in \mathbb{P}$ and $n \in \mathbb{N}$ with $T_p(q, n) \neq 0$ and

$$\| T_p(q, n) - ((\pi_p(g_j) \otimes \pi_p(g_j)) T_p(q, n) \| \leq \epsilon \| T_p(q, n) \|$$

for $j = 1, \ldots, m + 1$.
Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$, there are $q \in \mathbb{P}$ and $n \in \mathbb{N}$ with $T_p(q, n) \neq 0$ and

$$\|T_p(q, n) - ((\pi_p(g_j) \otimes \pi_p(g_j)) T_p(q, n))\| \leq \epsilon \|T_p(q, n)\|$$

for $j = 1, \ldots, m + 1$, which violates Ozawa’s Lemma.
A non-amenability result for $\ell^\infty(\mathcal{K}(\ell^2 \oplus E))$, IX

Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$, there are $q \in \mathbb{P}$ and $n \in \mathbb{N}$ with $T_p(q, n) \neq 0$ and

$$\|T_p(q, n) - ((\pi_p(g_j) \otimes \pi_p(g_j)) T_p(q, n))\| \leq \epsilon \|T_p(q, n)\|$$

for $j = 1, \ldots, m + 1$, which violates Ozawa’s Lemma.
p-summing operators
p-summing operators

Definition

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called p-summing if the amplification $id_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \hat{\otimes} E$ to $\ell^p (F)$. The operator norm of $id_{\ell^p} \otimes T : \ell^p \hat{\otimes} E \to \ell^p (F)$ is called the p-summing norm of T and denoted by $\pi_p(T)$.

Theorem (Y. Gordon, 1969)

$\pi_p(id_{\ell^2 N^n}) \sim N^{1/2}$ for all $p \in [1, \infty)$.
\(p \)-summing operators

Definition

Let \(p \in [1, \infty) \),
p-summing operators

Definition

Let $p \in [1, \infty)$, and E and F be Banach spaces.
p-summing operators

Definition

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called p-summing.
p-summing operators

Definition

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called p-summing if the amplification

\[\text{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F \]

is p-summing.
Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $B(E)$

A positive example $B(\ell^p \oplus \ell^q)$ with $p \neq q$

$B(\ell^p)$

p-summing operators

Definition

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called p-summing if the amplification $\text{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \hat{\otimes} E$ to $\ell^p(F)$.

Theorem (Y. Gordon, 1969)

$\pi_p(\text{id}_{\ell^2}) \sim \frac{1}{2}$ for all $p \in [1, \infty)$.

The operator norm of $\text{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ is called the p-summing norm of T and denoted by $\pi_p(T)$.

The operator id_{ℓ^p} is called the p-summing operator on ℓ^p.

A positive example $B(\ell^p \oplus \ell^q)$ with $p \neq q$.

$B(\ell^p)$
p-summing operators

Definition

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called **p-summing** if the amplification $\text{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \hat{\otimes} E$ to $\ell^p(F)$. The operator norm of $\text{id}_{\ell^p \otimes T} : \ell^p \hat{\otimes} E \to \ell^p(F)$ is called the **p-summing norm** of T.
Definition

Let \(p \in [1, \infty) \), and \(E \) and \(F \) be Banach spaces. A linear map \(T : E \to F \) is called \(p \)-summing if the amplification \(\text{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F \) extends to a bounded map from \(\ell^p \hat{\otimes} E \) to \(\ell^p(F) \). The operator norm of \(\text{id}_{\ell^p \otimes T} : \ell^p \hat{\otimes} E \to \ell^p(F) \) is called the \(p \)-summing norm of \(T \) and denoted by \(\pi_p(T) \).
\begin{defn}
Let \(p \in [1, \infty) \), and \(E \) and \(F \) be Banach spaces. A linear map \(T : E \to F \) is called \textit{\(p \)-summing} if the amplification \(\text{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F \) extends to a bounded map from \(\ell^p \hat{\otimes} E \) to \(\ell^p(F) \). The operator norm of \(\text{id}_{\ell^p \otimes T} : \ell^p \hat{\otimes} E \to \ell^p(F) \) is called the \textit{\(p \)-summing norm} of \(T \) and denoted by \(\pi_p(T) \).
\end{defn}

\begin{thm}[Y. Gordon, 1969]
\end{thm}
p-summing operators

Definition

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called p-summing if the amplification $\text{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \hat{\otimes} E$ to $\ell^p(F)$. The operator norm of $\text{id}_{\ell^p \otimes T} : \ell^p \hat{\otimes} E \to \ell^p(F)$ is called the p-summing norm of T and denoted by $\pi_p(T)$.

Theorem (Y. Gordon, 1969)

$$\pi_p(\text{id}_{\ell^2_N}) \sim N^{\frac{1}{2}}$$
\textit{p-summing operators}

\section*{Definition}
Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called \textit{p-summing} if the amplification $\text{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \hat{\otimes} E$ to $\ell^p(F)$. The operator norm of $\text{id}_{\ell^p \otimes T} : \ell^p \hat{\otimes} E \to \ell^p(F)$ is called the \textit{p-summing norm} of T and denoted by $\pi_p(T)$.

\begin{theorem}[Y. Gordon, 1969]
\[\pi_p(\text{id}_{\ell^2_N}) \sim N^{\frac{1}{2}} \]
for all $p \in [1, \infty)$.
\end{theorem}
A Lemma

Amenability of \(\mathcal{K}(E) \)

Amenability of \(\mathcal{B}(E) \)

A positive example \(\mathcal{B}(\ell^p \oplus \ell^q) \) with \(p \neq q \)

\(\mathcal{B}(\ell^p) \)
A Lemma

Lemma

Let $p \in (1, \infty)$. Then there is $C > 0$ such that

$$\sum_{n=1}^{\infty} \| S e_n \|_{\ell^2} \| T e_n^* \|_{\ell^2} N \| S \| \| T \|_N \leq C N \| S \| \| T \|$$

for $S \in B(\ell^p, \ell^2 N)$, $T \in B(\ell^p', \ell^2 N)$.
A Lemma

Let $p \in (1, \infty)$.

Lemma
Lemma

Let $p \in (1, \infty)$. Then there is $C > 0$
Lemma

Let $p \in (1, \infty)$. Then there is $C > 0$ such that

$$\sum_{n=1}^{\infty} \left\| S e_n \right\|_{\ell^2_N} \left\| T e_n^* \right\|_{\ell^2_N} \leq C N \| S \| \| T \|$$

($N \in \mathbb{N}$, $S \in \mathcal{B}(\ell^p, \ell^2_N)$, $T \in \mathcal{B}(\ell^{p'}, \ell^2_N)$).
Proof of the Lemma

Proof.

Identify algebraically $\mathcal{B}(\ell^p, \ell^2 \mathbb{N}) = \ell^p \hat{\otimes} \ell^2 \mathbb{N} = \ell^p \hat{\otimes} \ell^2 \mathbb{N} = \ell^p(\ell^2 \mathbb{N})$, and $\mathcal{B}(\ell^p', \ell^2 \mathbb{N}) = \ell^p \hat{\otimes} \ell^2 \mathbb{N} = \ell^p \otimes \ell^2 \mathbb{N} = \ell^p(\ell^2 \mathbb{N})$.

Note that $\sum_{n=1}^{\infty} \|S e_n\|_{\ell^2 \mathbb{N}} \|T e_n^*\|_{\ell^2 \mathbb{N}} \leq \|S\|_{\ell^p'(\ell^2 \mathbb{N})} \|T\|_{\ell^p(\ell^2 \mathbb{N})}$, by H"older,

$\leq \pi_{\ell^p'}(\text{id}_{\ell^2 \mathbb{N}}) \pi_{\ell^p}((\text{id}_{\ell^2 \mathbb{N}}) \|S\| \|T\| \leq C_N \|S\| \|T\|$, by Gordon.
Proof of the Lemma

Proof.

Identify algebraically $B(\ell_p,\ell_2^N) = \ell_p^\prime \otimes \ell_2^N = \ell_p^\prime \otimes (\ell_2^N)$, and $B(\ell_p^\prime,\ell_2^N) = \ell_p \otimes \ell_2^N = \ell_p (\ell_2^N)$. Note that

$$\sum_{n=1}^{\infty} \|S e_n\|_{\ell_2^N} \|T e_n^*\|_{\ell_2^N} \leq \|S\|_{\ell_p^\prime (\ell_2^N)} \|T\|_{\ell_p (\ell_2^N)} \leq \pi_{p^\prime} (id_{\ell_2^N}) \pi_p (id_{\ell_2^N}) \|S\| \|T\| \leq C N \|S\| \|T\|,$$

by H"older,

$$\leq \pi_{p^\prime} (id_{\ell_2^N}) \pi_p (id_{\ell_2^N}) \|S\| \|T\|,$$

by Gordon.
Proof of the Lemma

Proof.

Identify
Proof of the Lemma

Proof.

Identify

\[\mathcal{B}(\ell^p, \ell^2_N) = \ell^p' \otimes \ell^2_N \]
Proof of the Lemma

Proof.

Identify algebraically

\[\mathcal{B}(\ell^p, \ell^2_N) = \ell^p' \otimes \ell^2_N = \ell^p' \otimes \ell^2_N \]
Proof of the Lemma

Proof.

Identify algebraically

\[\mathcal{B}(\ell^p, \ell^2_N) = \ell^p \otimes \ell^2_N = \ell^p' \otimes \ell^2_N = \ell^p' (\ell^2_N), \]
Proof of the Lemma

Proof.

Identify **algebraically**

\[\mathcal{B}(\ell^p, \ell^2_N) = \ell^p' \otimes \ell^2_N = \ell^p' \otimes \ell^2_N = \ell^p' (\ell^2_N), \quad \text{and} \]

\[\sum_{n=1}^{\infty} \|S_e_n\|_{\ell^2_N} \|T_e^* n\|_{\ell^2_N} \leq \|S\| \|T\|_{\ell^p'(\ell^2_N)}, \quad \text{by H"older,} \]

\[\leq \pi_{p'} \left(id_{\ell^2_N} \right) \pi_p \left(id_{\ell^2_N} \right) \|S\| \|T\|, \quad \text{by Gordon.} \]
Proof of the Lemma

Proof.

Identify algebraically

\[\mathcal{B}(\ell^p, \ell^2_N) = \ell^p \hat{\otimes} \ell^2_N = \ell^p \otimes \ell^2_N = \ell^p(\ell^2_N), \quad \text{and} \]

\[\mathcal{B}(\ell^p', \ell^2_N) = \ell^{p'} \hat{\otimes} \ell^2_N = \ell^p \otimes \ell^2_N = \ell^p(\ell^2_N). \]
Proof of the Lemma

Proof.

Identify algebraically

$$\mathcal{B}(\ell^p, \ell^2_N) = \ell^p' \otimes \ell^2_N = \ell^p' \otimes \ell^2_N = \ell^p' (\ell^2_N), \quad \text{and}$$

$$\mathcal{B}(\ell^{p'}, \ell^2_N) = \ell^{p'} \hat{\otimes} \ell^2_N = \ell^{p'} \otimes \ell^2_N = \ell^{p'} (\ell^2_N).$$

Note that
Proof of the Lemma

Proof.

Identify algebraically

\[\mathcal{B}(\ell^p, \ell^2_N) = \ell^p' \otimes \ell^2_N = \ell^p' \otimes \ell^2_N = \ell^p' (\ell^2_N), \quad \text{and} \]
\[\mathcal{B}(\ell^p', \ell^2_N) = \ell^p \otimes \ell^2_N = \ell^p \otimes \ell^2_N = \ell^p (\ell^2_N). \]

Note that

\[\sum_{n=1}^{\infty} \| S e_n \|_{\ell^2_N} \| T e_n^* \|_{\ell^2_N} \leq \| S \|_{\ell^p' (\ell^2_N)} \| T \|_{\ell^p (\ell^2_N)}, \quad \text{by H"older}, \]
Proof of the Lemma

Identify algebraically

\[\mathcal{B}(\ell^p, \ell^2_N) = \ell^p' \otimes \ell^2_N = \ell^p' \otimes \ell^2_N = \ell^p' (\ell^2_N), \quad \text{and} \]
\[\mathcal{B}(\ell^p', \ell^2_N) = \ell^p \otimes \ell^2_N = \ell^p \otimes \ell^2_N = \ell^p (\ell^2_N). \]

Note that

\[
\sum_{n=1}^{\infty} \| Se_n \|_{\ell^2_N} \| Te_n^* \|_{\ell^2_N} \leq \| S \|_{\ell^p'(\ell^2_N)} \| T \|_{\ell^p(\ell^2_N)}, \quad \text{by Hölder,}
\]
\[
\leq \pi_{p'}(\text{id}_{\ell^2_N}) \pi_p(\text{id}_{\ell^2_N}) \| S \| \| T \|.
\]
Amenability of operator algebras on Banach spaces, II
Volker Runde

Amenability of $\mathcal{K}(E)$
Amenability of $\mathcal{B}(E)$
A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$
$\mathcal{B}(\ell^p)$

Proof of the Lemma

Proof.

Identify algebraically

$$\mathcal{B}(\ell^p, \ell^2_N) = \ell^p' \otimes \ell^2_N = \ell^p' \otimes \ell^2_N = \ell^p' (\ell^2_N),$$

and

$$\mathcal{B}(\ell^p', \ell^2_N) = \ell^p \otimes \ell^2_N = \ell^p \otimes \ell^2_N = \ell^p (\ell^2_N).$$

Note that

$$\sum_{n=1}^{\infty} \|S e_n\|_{\ell^2_N} \|T e_n^*\|_{\ell^2_N} \leq \|S\|_{\ell^p' (\ell^2_N)} \|T\|_{\ell^p (\ell^2_N)},$$

by Hölder,

$$\leq \pi_{p'}(\text{id}_{\ell^2_N}) \pi_p(\text{id}_{\ell^2_N}) \|S\| \|T\|$$

$$\leq C \mathcal{N} \|S\| \|T\|$$
Proof of the Lemma

Proof.

Identify algebraically

$$\mathcal{B}(\ell^p, \ell^2_N) = \ell^p' \otimes \ell^2_N = \ell^p' \otimes \ell^2_N = \ell^p' (\ell^2_N), \quad \text{and}$$

$$\mathcal{B}(\ell^p', \ell^2_N) = \ell^p \otimes \ell^2_N = \ell^p \otimes \ell^2_N = \ell^p (\ell^2_N).$$

Note that

$$\sum_{n=1}^{\infty} \|S e_n\|_{\ell^2_N} \|T e_n^*\|_{\ell^2_N} \leq \|S\|_{\ell^p'(\ell^2_N)} \|T\|_{\ell^p(\ell^2_N)}, \quad \text{by Hölder},$$

$$\leq \pi_{p'}(\text{id}_{\ell^2_N}) \pi_{p}(\text{id}_{\ell^2_N}) \|S\| \|T\|\|, \quad \text{by Gordon.}$$
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an L^p-space with $\dim E = \infty$.
Non-amenability of $B(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(K(\ell^p))$ is not amenable.
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

If $B(\ell^p(E))$ is amenable, then so is $\ell^\infty(B(\ell^p(E)))$ as is $\ell^\infty(K(\ell^p(E)))$. Impossible!
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\text{dim } E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space.
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^\infty(\mathcal{B}(\ell^p(E)))$, as is $\ell^\infty(\mathcal{K}(\ell^p))$. Impossible!
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable,
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^\infty(\mathcal{B}(\ell^p(E)))$.

Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^\infty(\mathcal{B}(\ell^p(E)))$ as is $\ell^\infty(\mathcal{K}(\ell^p(E)))$.
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^\infty(\mathcal{B}(\ell^p(E)))$ as is $\ell^\infty(\mathcal{K}(\ell^p(E)))$. Impossible!
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^\infty(\mathcal{B}(\ell^p(E)))$ as is $\ell^\infty(\mathcal{K}(\ell^p(E)))$. Impossible!
Non-amenability of $B(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an L^p-space with $\dim E = \infty$. Then $\ell^\infty(K(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an L^p-space. Then $B(\ell^p(E))$ is not amenable.

Proof.

If $B(\ell^p(E))$ is amenable, then so is $\ell^\infty(B(\ell^p(E)))$ as is $\ell^\infty(K(\ell^p(E)))$. Impossible!

Corollary
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^\infty(\mathcal{B}(\ell^p(E)))$ as is $\ell^\infty(\mathcal{K}(\ell^p(E)))$. Impossible!

Corollary

Let $p \in (1, \infty)$.
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (VR, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^\infty(\mathcal{B}(\ell^p(E)))$ as is $\ell^\infty(\mathcal{K}(\ell^p(E)))$. Impossible!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $p \in (1, \infty)$. Then $\mathcal{B}(\ell^p)$</td>
</tr>
</tbody>
</table>
Non-amenability of $\mathcal{B}(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^\infty(\mathcal{B}(\ell^p(E)))$ as is $\ell^\infty(\mathcal{K}(\ell^p(E)))$. Impossible!

Corollary

Let $p \in (1, \infty)$. Then $\mathcal{B}(\ell^p)$ and $\mathcal{B}(L^p[0, 1])$
Non-amenability of $B(\ell^p)$ for $p \in (1, \infty)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p-space with $\dim E = \infty$. Then $\ell^\infty(K(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p-space. Then $B(\ell^p(E))$ is not amenable.

Proof.

If $B(\ell^p(E))$ is amenable, then so is $\ell^\infty(B(\ell^p(E)))$ as is $\ell^\infty(K(\ell^p(E)))$. Impossible!

Corollary

Let $p \in (1, \infty)$. Then $B(\ell^p)$ and $B(L^p[0, 1])$ are not amenable.