Lecture 4: Local Properties of Group C*-Algebras

Zhong-Jin Ruan

at Leeds, Thursday, 20 May, 2010
Local Property of Banach Spaces

It is known from the Hahn-Banach theorem that given any Banach space V, there exists an index set I such that we have the isometric inclusion

$$V \hookrightarrow \ell_\infty(I).$$

Usually I is an infinite index (even V is finite dimensional).

Question: If V is finite dimensional, can we

“approximately embed” V into a finite dimensional $\ell_\infty(n)$

for some positive integer $n \in \mathbb{N}$?
Finite Representability in $\{\ell_\infty(n)\}$

Theorem: Let E be a f.d. Banach space. For any $\varepsilon > 0$, there exist $n(\varepsilon) \in \mathbb{N}$ and $F \subseteq \ell_\infty(n(\varepsilon))$ such that

$$ E \overset{1+\varepsilon}{\cong} F, $$

i.e., there exists a linear isomorphism $T : E \to F$ such that

$$ \|T\| \|T^{-1}\| < 1 + \varepsilon. $$

Therefore, we say that

- every f.d. Banach space E is **representable** in $\{\ell_\infty(n)\}$;
- every Banach space V is **finitely representable** in $\{\ell_\infty(n)\}$.
Proof: Since E^* is finite dim, the closed unit ball E_1^* is totally bounded. For arbitrary $1 > \varepsilon > 0$, there exists finitely many functionals $f_1, \cdots, f_n \in E_1^*$ such that for every $f \in E_1^*$, there exists some f_j such that

$$\|f - f_j\| < \frac{\varepsilon}{1 + \varepsilon}.$$

Then we obtain a linear contraction

$$T : x \in E \rightarrow (f_1(x), \cdots, f_n(x_n)) \in \ell_1^n.$$

For any $f \in E_1^*$, we let f_j such that $\|f - f_j\| < \frac{\varepsilon}{1 + \varepsilon}$. Then we get

$$\|T(x)\| \geq |f_j(x)| \geq |f(x)| - |f(x) - f_j(x)| \geq |f(x)| - \frac{\varepsilon\|x\|}{1 + \varepsilon}.$$

This shows that

$$\|T(x)\| \geq \|x\| - \frac{\varepsilon\|x\|}{1 + \varepsilon} = \frac{\|x\|}{1 + \varepsilon}.$$

Therefore, $\|T^{-1}\| < 1 + \varepsilon$.
Finite Representatibility of Operator Spaces in \(\{M_n\} \)

An operator space \(V \) is called finitely representable in \(\{M_n\} \) if for every f.d. subspace \(E \) and \(\varepsilon > 0 \), there exist \(n(\varepsilon) \in \mathbb{N} \) and \(F \subseteq M_n(\varepsilon) \) such that

\[
E \overset{1+\varepsilon}{\cong} \text{cb } F,
\]
i.e., there exists a linear isomorphism \(T : E \rightarrow F \) such that

\[
\|T\|_{\text{cb}} \|T^{-1}\|_{\text{cb}} < 1 + \varepsilon.
\]

It is natural to ask whether every finite dim operator space is representable in \(\{M_n\} \), or whether every operator space is finitely representable in \(\{M_n\} \)?

Theorem: Let \(A \subseteq B(H) \) be a C*-algebra. Then \(A \) is finitely representable in \(\{M_n\} \) if and only if there exists two nets of completely contractive maps

\[
S_\alpha : A \rightarrow M_n(\alpha) \text{ and } T_\alpha : M_n(\alpha) \rightarrow B(H)
\]
such that \(\|T_\alpha \circ S_\alpha(x) - x\| \rightarrow 0 \) for all \(x \in A \).
Exact C*-algebras

We recall from Kirchberg that a C*-algebra A is an exact C*-algebra if we have the short exact sequence

$$0 \to K(\ell_2) \otimes A \hookrightarrow B(\ell_2) \otimes A \to Q(\ell_2) \otimes A \to 0,$$

where $Q(H) = B(\ell_2)/K(\ell_2)$.

Theorem [Kirchberg (Pisier) 1995]: A C*-algebra A is exact if and only if there exists two nets of completely positive and contractive maps (complete contractions)

$$S_\alpha : A \to M_{n(\alpha)}$$

and

$$T_\alpha : M_{n(\alpha)} \to B(H)$$

such that $\|T_\alpha \circ S_\alpha (x) - x\| \to 0$ for all $x \in A$.

Therefore, A is finitely representable in $\{M_n\}$ iff A is exact.
Theorem (Pisier 1995): Let \(\ell_1(n) \) be the operator dual of \(\ell_\infty(n) \). If

\[
T : \ell_1(n) \to F \subseteq M_k
\]

is a linear isomorphism, then for \(n \geq 3 \)

\[
\|T\|_{cb}\|T^{-1}\|_{cb} \geq \frac{n}{2\sqrt{n-1}}.
\]

Hence for \(n \geq 3 \),

\[
\ell_1(n) \hookrightarrow C^*(\mathbb{F}_{n-1}) \subseteq B(H_\pi)
\]

are not finitely representable in \(\{M_n\} \).

So \(C^*(\mathbb{F}_{n-1}) \) and \(B(H_\pi) \) are examples of non-exact C*-algebras.
Examples of Exact C^*-algebras

• For C^*-algebras, we have

$$\text{Nuclearity} \Rightarrow \text{CBAP} \Rightarrow \text{Strong OAP} \Rightarrow \text{Exactness}$$

• For any discrete group G, we have

$$\text{Nuclearity} \Rightarrow \text{Weakly Amenable} \Rightarrow \text{AP} \Rightarrow \text{Exact, i.e. } C^*_\lambda(G') \text{ is exact}$$

• Groups like $G = \mathbb{F}_n, \mathbb{Z}^2 \rtimes SL(2, \mathbb{Z}), G = SL(3, \mathbb{Z})$ are exact.
Some Interesting Theorems

It is easy to see that if A is an exact C*-algebra, then any C*-subalgebra or subspace of A is also exact. Therefore, every C*-subalgebra of nuclear C*-algebra is exact.

Theorem [Kirchberg and Phillips 2000]: If A is a separable exact C*-algebra, then A is *-isomorphic to a C*-subalgebra of O_2.

How about group C*-algebras?
Now let G be a discrete group. Then

$$\mathcal{UC}(G) = \overline{\text{span}\{f\lambda_s : f \in \ell_\infty(G), s \in G\}} \subseteq B(\ell_2(G))$$

is a unital C*-algebra, which is called uniform algebra, or uniform Roe algebra. In fact, $\mathcal{UC}(G) = \ell_\infty(G) \rtimes G$.

The following theorem was first observed by Guentner and Kaminker, but was finally proved by Ozawa.

Theorem [Ozawa]: Let G be a discrete group. Then TFAE:

1. G is exact;

2. for any finite subset $E \subseteq G$ and $\varepsilon > 0$, there exists a subset $F \subseteq G$ and a positive definite kernel $u : G \times G \to \mathbb{C}$ such that

 $$|u(s, t) - 1| < \varepsilon \ \text{if} \ \ st^{-1} \in E \ \text{and} \ u(s, t) = 0 \ \text{if} \ \ st^{-1} \notin F.$$

3. $\mathcal{UC}(G) = \ell_\infty(G) \rtimes C^*_\lambda(G)$ is nuclear.
Finite Representability in $\{\ell_1^n\}$

In Banach space theory it is known that a Banach space V is finitely representable in $\{\ell_1^n\}$ if and only

$$V \hookrightarrow L_1(\mu)$$

is isometric to a closed subspace of some $L_1(\mu)$ space.
Finite Representability in \(\{T_n\} \)

An operator space \(V \) is finitely representable in \(\{T_n\} \) if for any f.d. subspace \(E \) and \(\varepsilon > 0 \), there exist \(n(\varepsilon) \in \mathbb{N} \) and \(F \subseteq T_n(\varepsilon) \) such that

\[
E \overset{1+\varepsilon}{\simeq}_{cb} F,
\]

i.e., there exists a linear isomorphism \(T : E \to F \) such that

\[
\|T\|_{cb} \|T^{-1}\|_{cb} < 1 + \varepsilon.
\]

- If \(A \) is a nuclear C*-algebra, then \(A^* \) and \(A^{***} \) are finitely representable in \(\{T_n\} \). For example

\[
C(X)^*, \quad T(\ell_2), \quad B(\ell_2)^*.
\]

- \(C_\lambda^*(\mathbb{F}_2)^* \) is finitely representable in \(\{T_n\} \).
Question: Is the predual M_* of a von Neumann algebra is finitely representable in $\{T_n\}$?

Theorem [E-J-R 2000]: Let M be a von Neumann algebra. Then M_* is finitely representable in $\{T_n\}$ if and only if M has the QWEP, i.e. M is a quotient of a C*-algebra with Lance’s weak expectation property.

A C*-algebra has the WEP if for the universal representation $\pi : A \to B(H)$, there exists a completely positive and contraction $P : B(H) \to A^{**}$ such that $P \circ \pi = id_A$.

A. Connes’ conjecture 1976: Every finite von Neumann algebra with separable predual is *-isomorphic to a von Neumann subalgebra of the ultrapower of the hyperfinite II_1 factor

$$M \hookrightarrow \prod_{U} R_0.$$

E. Kirchberg’s conjecture 1993: Every C^*-algebra has QWEP.
Residually Finite Groups

Let G be a discrete group. We say that G is residually finite if for any finitely many distinct elements s_1, \ldots, s_n in G there exists a group homomorphism θ from G into a finite group H such that $\theta(s_1), \ldots, \theta(s_n)$ are distinct in H.

Theorem [Kirchberg 1993, Wassermann 1994]: If a discrete group G is residually finite, then G has property (F) and thus $L(G)$ has the QWEP.
More Examples

For the following groups G, $C^*_\lambda(G)$ are exact C*-algebras, i.e. finitely representable in $\{M_n\}$, and $A(G) = L(G)_*$ and $B_\lambda(G) = (C^*_\lambda(G))^*$ are finitely representable in $\{T_n\}$.

- For $n \geq 2$, $G = SL(n, \mathbb{Z})$ is residually finite since for any distinct $s_1, \cdots s_n$ in G, we can find a sufficiently large prime numbers p such that the homomorphism

$$\theta_p : SL(n, \mathbb{Z}) \to SL(n, \mathbb{Z}_p)$$

with distinct image $\theta_p(s_1), \cdots, \theta_p(s_n)$ in finite group $SL(n, \mathbb{Z}_p)$.

- $G = \mathbb{Z}^2 \rtimes SL(2, \mathbb{Z})$ is residually. We can consider

$$\theta_p : \mathbb{Z}^2 \rtimes SL(2, \mathbb{Z}) \to \mathbb{Z}_p^2 \rtimes SL(2, \mathbb{Z}_p).$$