© University of Leeds

School of Mathematics

January 2018

MATH271501

Statistical Methods

Time Allowed: 2 hours

Answer all questions in Section A and all questions from Section B.

Each question in Section A carries 2 marks, and each question in Section B carries 20 marks.

Questions A1 to A10 require you to write down a single letter answer.
Questions A11 to A20 require you to write down a short explanation or draw a sketch.

Your answers to Section A questions and Section B questions may be written in the same answer book.
SECTION A

Answer ALL questions in Section A

Questions A1 to A10 require you to write down a single letter answer.

A1. If a random variable X has an exponential(λ) distribution, then $E[X^r] = r!/\lambda^r$ for $r = 1, 2, 3, \ldots$. If $E[X] = \mu$, what is the value of $\mu^3 = E[(X - \mu)^3]$?

A: 0, B: $-2/\lambda^3$, C: $-1/\lambda^3$, D: $1/\lambda^3$, E: $2/\lambda^3$.

A2. In question A1 above, suppose X_1, X_2, \ldots, X_n are independent exponential(λ) random variables and \bar{X} is their mean. What is the variance of \bar{X}?

A: $2n/\lambda^2$, B: $n\lambda^2$, C: n/λ^2, D: $1/n\lambda^2$, E: λ^2/n.

A3. In question A1 above, suppose that a random sample $x = (x_1, \ldots, x_n)$ is available and has sample mean \bar{x}. What is the method of moments estimate $\tilde{\lambda}$ of λ?

A: $1/\lambda$, B: $n\bar{x}$, C: $1/\bar{x}$, D: \bar{x}, E: $1/n \log(x_1x_2 \ldots x_n)$.

A4. In question A3 above, the method of moments estimator $\tilde{\lambda}$ of λ satisfies $E[\tilde{\lambda}] = n\lambda/n - 1$. What does the bias of $\tilde{\lambda}$ equal?

A: 0, B: $\lambda/n - 1$, C: $n\lambda/n - 1$, D: $2/n - 1$, E: $n/n - 1$.

A5. If $Z \sim N(0, \sigma^2)$, what is the value of $E[Z^3]$?

A: 0, B: σ^2, C: σ^4, D: $3\sigma^4$, E: 1.
A6. Given constants $\epsilon > 0$ and $\eta > 0$, what would you have to show to demonstrate that a sequence of random variables Y_1, Y_2, Y_3, \ldots, converges in probability to zero?

A: $\exists N : P\{|Y_n| < \epsilon\} < \eta, \forall n > N$,
B: $\exists N : P\{|Y_n| < \epsilon\} < \eta, \forall n < N$,
C: $\exists N : P\{|Y_n| > \epsilon\} > \eta, \forall n > N$,
D: $\exists N : P\{|Y_n| > \epsilon\} < \eta, \forall n > N$.

A7. If a random variable X has zero mean and variance $\sigma^2 = 1$, which of the following statements is always true?

A: $P\{|X| \geq k\} \leq \frac{1}{k^2}$,
B: $P\{|X| \geq k\} \geq \frac{1}{k^2}$,
C: $P\{|X| \leq k\} \leq \frac{1}{k^2}$,
D: $P\{|X| \leq k\} \geq \frac{1}{k^2}$.

A8. Suppose that (X,Y) have a bivariate normal distribution with mean μ and variance matrix Σ where

$$\mu = \left(\begin{array}{c} 1 \\ 2 \end{array}\right), \quad \Sigma = \left(\begin{array}{cc} 1 & 0.4 \\ 0.4 & 4 \end{array}\right).$$

What is the value of $\text{corr}(X,Y)$?

A: 0.0, B: 0.1, C: 0.2, D: 0.4, E: 0.5.

A9. In question A8 above, if c is a constant, what is the value of $\text{Var}[Y - cX]$?

A: $4 - 0.8c + c^2$, B: $4 - 0.4c + c^2$, C: $2 - 0.4c + c^2$, D: $2 - 0.8c + c^2$, E: $2 - 0.2c + c^2$.

A10. In question A8 above, what value of c makes X and $Y - cX$ uncorrelated?

A: 0.0, B: 0.1, C: 0.2, D: 0.4, E: 0.5.
Questions A11 to A20 require you to write down a short answer or draw a sketch.

A11. Suppose that random variables \((X, Y)\) have joint probability density function given by \(f_{XY}(x, y) = 3x\) for \(0 < y < x < 1\) (and \(f_{XY}(x, y) = 0\) outside this region). Sketch the \((x, y)\)-region where \(f_{XY}(x, y)\) is non-zero.

A12. In question A11 above, show that the marginal probability density function of \(Y\) is \(f_Y(y) = \frac{3}{2}(1 - y^2)\) for \(0 < y < 1\).

A13. In question A12 above, obtain the cumulative distribution function \(F_Y(y)\) of \(Y\) for \(0 < y < 1\).

A14. A random sample \(x = (x_1, x_2, \ldots, x_n)\) is taken from a distribution with probability density function \(f_X(x; \lambda) = \lambda^2 xe^{-\lambda x}\) for \(x > 0\) where \(\lambda\) is an unknown parameter. Obtain the log-likelihood function \(\log L(\lambda; x)\).

A15. In question A14 above, show that the maximum likelihood estimator of \(\lambda\) is \(\hat{\lambda} = \frac{2}{\bar{x}}\) where \(\bar{x}\) is the sample mean of \((x_1, x_2, \ldots, x_n)\).

A16. In question A14 above, show that the asymptotic variance of \(\hat{\lambda}\) is \(\frac{\lambda^2}{2n}\).

A17. A Cauchy random variable \(X\) has probability density function \(f_X(x) = \frac{1}{\pi(1 + x^2)}\) for \(-\infty < x < \infty\) and characteristic function \(\phi_X(t) = E[e^{itX}] = e^{-|t|}\). If \(U = a + bX\), what is the characteristic function of \(U\)?

A18. Suppose that \(X_1, X_2, \ldots, X_n\) are mutually independent Cauchy random variables, each with characteristic function \(\phi_X(t) = e^{-|t|}\), as defined in question A17 above. If

\[
\bar{X}_n = \frac{1}{n}(X_1 + X_2 + \cdots + X_n),
\]

show that \(\bar{X}_n\) has characteristic function \(e^{-|t|}\).

A19. What are the implications of the result in question A18 above for the central limit theorem?

A20. Imagine estimating a parameter \(\theta\) using a sample of data \(x\). If you are given a posterior density function \(\pi(\theta|x)\), briefly explain how to construct a Bayesian interval estimate for \(\theta\).
SECTION B

Answer all questions from Section B.

B1.

The random variable X has a beta distribution with parameters $a > 0$ and $b > 0$ and probability density function

$$f_X(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}, \quad 0 < x < 1.$$

Here $B(a,b)$ is the beta function which satisfies

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},$$

and where $\Gamma(z)$ is the gamma function satisfying $\Gamma(z+1) = z\Gamma(z)$ and $\Gamma(1) = 1$.

(a) Show that $E[X] = a/(a + b)$.

(b) Consider the transformation

$$U = \frac{X}{1-X}.$$

Obtain the probability density function of U. What is the range of U?

(c) Consider now the case $a = 1$. Obtain $E[U]$ and suggest a method of moments estimator for the parameter b based upon a random sample of n values u_1, u_2, \ldots, u_n.

(d) Consider again the case $a = 1$, and suppose you now have available a random sample of n values x_1, x_2, \ldots, x_n taken from the distribution of X. Using your answer in part (a) above, what would be your method of moments estimator for the parameter b in this case?

(e) Without making any detailed calculations, outline how you would choose between your competing estimators for the parameter b in parts (c) and (d) above.
B2.

(a) A random variable X has a standard normal distribution with probability density function

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, \quad -\infty < x < +\infty.$$

Show that $U = X^2$ has probability density function $f_U(u)$ which satisfies

$$f_U(u) = \frac{1}{\sqrt{2\pi \sqrt{u}}} e^{-\frac{1}{2}u}.$$

Is this a 1-1 transformation? What is the range of U?

(b) Now consider the random variable Y having a gamma distribution with parameters $\alpha > 0$ and $\lambda > 0$ and with probability density function

$$f_Y(y) = \frac{\lambda^\alpha y^{\alpha-1}e^{-\lambda y}}{\Gamma(\alpha)}, \quad y > 0,$$

and where $\Gamma(\alpha)$ is the gamma function which satisfies $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

(i) Explain why you know that

$$\int_0^\infty y^{\alpha-1}e^{-\lambda y} dy = \frac{\Gamma(\alpha)}{\lambda^\alpha}.$$

(ii) Prove that Y has moment generating function $m_Y(t) = \text{E}[e^{tY}]$ satisfying

$$m_Y(t) = \left(\frac{\lambda}{\lambda-t}\right)^\alpha, \quad t < \lambda.$$

Why is the requirement $t < \lambda$ imposed?

(c) By comparing the probability density function of U in part (a) above with that of a gamma distribution, or otherwise, deduce that the moment generating function of U is $m_U(t) = (1 - 2t)^{-\frac{1}{2}}$.

Obtain the mean and variance of U.

(d) If X_1 and X_2 are independent standard normal random variables, obtain the moment generating function of

$$V = X_1^2 + X_2^2.$$
B3.

(a) A random variable Y is said to have an inverse gamma distribution with parameters $k > 0$ and $\lambda > 0$ if it has probability density function

$$f_Y(y) = \frac{\lambda^k y^{-k-1} e^{-\lambda/y}}{\Gamma(k)}, \quad y > 0.$$

Here $\Gamma(k)$ is the usual gamma function and satisfies $\Gamma(k) = (k - 1)\Gamma(k - 1)$.

Show that the mean of this inverse gamma distribution is $\frac{\lambda}{k-1}$ for $k > 1$.

(b) Let $x = (x_1, x_2, \ldots, x_n)$ be a random sample of n values from a normal distribution with zero mean and variance θ, and having common probability density function

$$f_X(x; \theta) = \frac{1}{\sqrt{(2\pi\theta)}} \exp\left(-\frac{x^2}{2\theta}\right), \quad -\infty < x < \infty.$$

(i) Write down the likelihood function for x.

(ii) As a prior distribution for θ an inverse gamma distribution with parameters k and λ is chosen. Show that the posterior density function $\pi(\theta|x)$ satisfies

$$\pi(\theta|x) \propto \theta^{-k-1 - \frac{1}{2}n} \exp\left\{-\frac{1}{\theta}\left(\lambda + \frac{1}{2} \sum_{i=1}^{n} x_i^2\right)\right\}, \quad \theta > 0.$$

What is the posterior distribution of θ? What is the mean of this posterior distribution?

(iii) If you use the mean of the posterior density function to estimate θ, what happens to your estimate for large n? Comment briefly on your result.

(iv) Consider again this case with n large in question (b)(iii) above. Without doing any explicit calculations, explain what distribution you expect your estimator $\hat{\theta}$ for θ to have. Give a reason for your answer. What is the mean of this distribution of $\hat{\theta}$?

(It is not necessary to specify the variance of this distribution.)

(v) Without doing any calculations, suggest one other way to estimate θ given the posterior density function.