This question paper consists of 7 printed pages, each of which is identified by the reference MATH271501.

All calculators must carry an approval sticker issued by the School of Mathematics.

©University of Leeds

School of Mathematics

January 2016

MATH271501

Statistical Methods

Time Allowed: 2 hours

Answer all questions in Section A and no more than three questions from Section B.

Each question in Section A carries 2 marks, and each question in Section B carries 20 marks.

Questions A1 to A10 require you to write down a single letter answer.
Questions A11 to A20 require you to write down a short explanation or draw a sketch.

Your answers to Section A questions and Section B questions may be written in the same answer book.
SECTION A

Answer ALL questions in Section A

Questions A1 to A10 require you to write down a single letter answer.

A1. A discrete random variable X only takes values 0 or θ and satisfies

$$
P\{X = x\} = \begin{cases}
\frac{1}{2} & \text{if } X = 0, \\
\frac{1}{2} & \text{if } X = \theta.
\end{cases}
$$

If μ denotes the mean of X, what does the third moment $\mu_3 = \mathbb{E}[(X - \mu)^3]$ equal?

A: 0,
B: $\frac{1}{8}\theta^3$,
C: $\frac{1}{4}\theta^3$,
D: $\frac{1}{2}\theta^3$.

A2. A continuous random variable X has probability density function given by $f_X(x) = \frac{1}{\theta}$ for $0 < x < \theta$.

A random sample x_1, x_2, \ldots, x_n of n observations is taken from this distribution and has sample mean \bar{x} and sample variance s^2. What does the method of moments estimator $\tilde{\theta}$ for θ equal?

A: \bar{x},
B: $2\bar{x}$,
C: s^2,
D: $\max_i x_i$.

A3. The method of moments estimator $\tilde{\theta}$ in question A2 above is an unbiased estimator of θ. If v^2 is the variance of this estimator, what does the mean square error of the estimator equal?

A: v^2,
B: $\theta + v^2$,
C: $2\theta + v^2$,
D: $\theta^2 + v^2$.

A4. In question A3 above, which of the properties below is certainly true about the estimator $\tilde{\theta}$?

A: $\tilde{\theta} = 0$,
B: $\tilde{\theta} = \theta$,
C: $\mathbb{E}[\tilde{\theta}] = \theta$,
D: $\tilde{\theta} \sim \mathcal{N}(\theta, v^2)$ $\forall n$.

A5. A sequence of random variables Y_1, Y_2, \ldots converges in probability to a constant C. What does this mean?

A: For given $\epsilon > 0$ and $\eta > 0$ and $\forall n_0$, $\mathbb{P}\{|Y_n - C| > \epsilon\} < \eta$ $\forall n > n_0$.
B: For given $\epsilon > 0$ and $\eta > 0$, $\exists n_0 : \mathbb{P}\{|Y_n - C| > \epsilon\} < \eta$ $\forall n > 0$.
C: For given $\epsilon > 0$ and $\eta > 0$, $\exists n_0 : \mathbb{P}\{|Y_n - C| > \epsilon\} < \eta$ $\forall n > n_0$.
D: For given $\epsilon > 0$ and $\eta > 0$, $\exists n_0 : \mathbb{P}\{|Y_n - C| > \epsilon\} > \eta$ $\forall n > n_0$.

TURN OVER...
A6. Consider a Bayesian estimation procedure for a parameter θ based upon a sample x. Suppose the likelihood function is $p(x|\theta)$, the prior density function is $\pi(\theta)$ and the posterior density function $\pi(\theta|x)$. Which of the following statements are always true?

(i) $\pi(\theta) \propto p(x|\theta)$.
(ii) $\pi(\theta|x) \propto p(x|\theta)\pi(\theta)$.
(iii) $\pi(\theta|x) < \pi(\theta)$ $\forall \theta$.

A: (i) and (iii) only, B: (ii) and (iii) only, C: (i) and (ii) only, D: (ii) only.

A7. In question A6 above, it is required to construct a Bayesian 95% credibility interval (θ_1, θ_2) for θ. Which of the following properties are true for the interval?

(i) $\pi(\theta_1) = \pi(\theta_2)$.
(ii) $\int_{\theta_1}^{\theta_2} \pi(\theta|x)d\theta = 0.95$.
(iii) $\pi(\theta|x) \geq \pi(\theta_1|x)$ for all $\theta \in (\theta_1, \theta_2)$.

A: (i) and (iii) only, B: (ii) and (iii) only, C: (i) and (ii) only, D: (ii) only.

A8. Suppose that $X = (X_1, X_2)$ has a bivariate normal distribution so that $X \sim N(\mu, \Sigma)$ where

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \frac{1}{2}\sigma_2^2 \\ \frac{1}{2}\sigma_2^2 & \sigma_2^2 \end{pmatrix}.$$

What is the variance of $U = X_2 - 2X_1$?

A: σ^2, B: $2\sigma^2$, C: $3\sigma^2$, D: $4\sigma^2$.

A9. In question A8 above, what does $\text{cov}(X_1 + X_2, U)$ equal?

A: $-\frac{3}{2}\sigma^2$, B: $-\frac{1}{2}\sigma^2$, C: 0, D: $+\frac{1}{2}\sigma^2$, E: $+\frac{3}{2}\sigma^2$.

A10. In question A8 above, which of the following statements are true?

(i) X_2 and U are independent.
(ii) X_2 and U are uncorrelated.
(iii) X_2 and U have a bivariate normal distribution.

A: (i) and (iii) only, B: (i), (ii) and (iii), C: (i) and (ii) only, D: (ii) only.
Questions A11 to A20 require you to write down a short answer or draw a sketch.

A11. A random variable X has an exponential distribution with parameter $\theta > 0$ and probability density function $f_X(x) = \theta e^{-\theta x}$ for $x > 0$. Show that the cumulative distribution function $F_X(x)$ of X is $F_X(x) = 1 - e^{-\theta x}$ for $x > 0$.

A12. For the random variable X in question A11 above, show that the mean of X is $E[X] = 1/\theta$.

A13. Suppose that X and Y are independent exponential random variables, each with parameter θ, as in question A11 above. Write down the joint probability density function $f_{XY}(x, y)$ for (X, Y). What is the range of X and Y?

A14. If $u = x + y$ and $v = y$, explain why the region $x > 0$ and $y > 0$ in the x-y plane maps to the region $u > 0$ and $0 < v < u$ in the u-v plane. Sketch this region in the u-v plane.

A15. If X and Y are independent exponential random variables, each with parameter θ, and if $U = X + Y$ and $V = Y$, show that (U, V) have joint probability density function $f_{UV}(u, v) = \theta^2 e^{-\theta u}$.

A16. For (U, V) having joint probability density function $f_{UV}(u, v) = \theta^2 e^{-\theta u}$ as in question A15 above, obtain the marginal probability density function $f_U(u)$ of U. What is the range of u where $f_U(u)$ is non-zero?

A17. A random sample x_1, x_2, \ldots, x_n of size n is taken from an exponential distribution with parameter θ as defined in question A11 above. Write down the likelihood and the log-likelihood functions for θ.

A18. Obtain the maximum likelihood estimate for θ based on the random sample in question A17 above.

A19. For a non-negative continuous random variable X, having probability density function $f_X(x)$, prove the Markov inequality

$$P\{X \geq a\} \leq \frac{E[X]}{a},$$

where $a > 0$ is a constant.

(Hint: Consider the definition of $E[X]$ and split the range of integration at a suitable point.)

A20. Verify directly that if X has an exponential distribution with parameter θ, then it does indeed satisfy the Markov inequality in question A19 above. (You can use the fact that $e^c > c$ for all values $c > 0$.)
SECTION B

Answer no more than THREE questions from Section B.

B1.

(a) A random variable W has a gamma (α, λ) distribution with probability density function

$$f_W(w) = \frac{\lambda^\alpha w^{\alpha-1}e^{-\lambda w}}{\Gamma(\alpha)}, \quad w > 0,$$

where $\Gamma(\alpha)$ is the usual gamma function satisfying $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Obtain the mean of W.

(b) Suppose $X \sim N(0, 1)$ and independently $Y \sim \chi^2_k$ with probability density functions respectively

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-0.5x^2}, \quad -\infty < x < +\infty,$$

and

$$f_Y(y) = \frac{\left(\frac{1}{2}\right)^{\frac{k}{2}} y^{\frac{k}{2}-1}e^{-\frac{1}{2}y}}{\Gamma\left(\frac{1}{2}k\right)}, \quad y > 0.$$

(i) Using the transformation $U = \frac{X}{\sqrt{Y/k}}$ and $V = Y$ show that the joint probability density function of (U, V) satisfies

$$f_{UV}(u, v) = \frac{\left(\frac{1}{2}\right)^{\frac{k}{2}} u^{\frac{k}{2}(k-1)}e^{-\frac{1}{2}v(1+u^2/k)}}{\sqrt{2\pi} \sqrt{k} \Gamma\left(\frac{1}{2}k\right)}.$$

What are the ranges of U and V?

(ii) By making the substitution $c = \frac{1}{2} \left(1 + u^2/k\right)$, or otherwise, show that the probability density function $f_U(u)$ of U satisfies

$$f_U(u) = \frac{\Gamma\left(\frac{1}{2}(k+1)\right)}{\Gamma\left(\frac{1}{2}k\right) \sqrt{k\pi}} \cdot \frac{1}{(1 + u^2/k)^{\frac{1}{2}(k+1)}}.$$

(iii) Consider now the case $k = 1$. What is the probability density function of U in this case? What is the name of this distribution? Briefly describe the key properties of this distribution.
Suppose a random variable \(X \) has a geometric distribution with probability function
\[
P\{X = x\} = \theta^x(1 - \theta), \quad x = 0, 1, 2, 3, \ldots
\]
where \(0 < \theta < 1 \).

(a) (i) Show that \(X \) has moment generating function \(m_X(t) = \mathbb{E}[e^{tX}] \) given by
\[
m_X(t) = \frac{1 - \theta}{1 - \theta e^t}.
\]
(You may note that \(\sum_{x=0}^{\infty} u^x = \frac{1}{1 - u} \) for \(|u| < 1 \).)

(ii) What is the range of \(t \) for which this moment generating function is defined?

(iii) Obtain the mean of \(X \). Show that the variance of \(X \) is \(\text{Var}[X] = \theta(1 - \theta) \).

(b) Suppose that \(X_1, X_2, \ldots, X_n \) are independent geometric random variables as defined above. Let
\[
S_n = \sum_{i=1}^{n} X_i \quad \text{and} \quad \bar{X}_n = \frac{S_n}{n}
\]

(i) If \(n \to \infty \) and \(\theta \to 0 \) such that \(n\theta = \lambda \) is a constant, show that the moment generating function of \(S_n \) tends towards \(\exp(\lambda(e^t - 1)) \) which is the moment generating function of a Poisson(\(\lambda \)) random variable. What do you conclude about the distribution of \(S_n \) for large \(n \) in this case?
(You may use the result that \(\log(1 - v) = -v - \frac{1}{2}v^2 - \frac{1}{3}v^3 - \cdots \) if \(|v| < 1 \).)

(ii) Now suppose that \(\theta \) is fixed and \(n \to \infty \). Explain why \(Z_n = \bar{X}_n - \mu \sigma/\sqrt{n} \) is asymptotically a normal distribution, where \(\mu = \mathbb{E}[X] \) and \(\sigma^2 = \text{Var}[X] \). (There is no need to give a detailed explicit proof but do outline the key steps in your proof.)

B3.

(a) Outline the key properties of maximum likelihood estimators.

(b) Suppose \(X_1, X_2, \ldots, X_n \) are independent \(N(\mu, \sigma^2) \) random variables with common probability density function
\[
f_X(x) = \frac{1}{\sqrt{2\pi} \sigma} \cdot \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right), \quad -\infty < x < +\infty.
\]

(i) Obtain the maximum likelihood estimates \(\hat{\mu} \) and \(\hat{\sigma} \) for \(\mu \) and \(\sigma \).

(ii) Show that for large \(n \), \(\text{Var}[\hat{\mu}] = \sigma^2/n \), \(\text{Var}[\hat{\sigma}] = \sigma^2/(2n) \) and \(\text{cov}(\hat{\mu}, \hat{\sigma}) = 0 \).

(iii) The normal density curve has points of inflexion at \(\theta = \mu + \sigma \) and \(\phi = \mu - \sigma \). What are the maximum likelihood estimates \(\hat{\theta} \) and \(\hat{\phi} \) for \(\theta \) and \(\phi \)? Obtain \(\text{Var}[\hat{\theta}] \), \(\text{Var}[\hat{\phi}] \) and \(\text{corr}(\hat{\theta}, \hat{\phi}) \).
B4.

(a) A random variable X has a beta (a, b) distribution with probability density function

$$f_X(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a, b)}, \quad 0 < x < 1,$$

where $a > 0$ and $b > 0$, and where $B(a, b)$ is a beta function satisfying

$$B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

where $\Gamma(\alpha)$ is a gamma function satisfying $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$ and $\Gamma(1) = 1$.

(i) Explain briefly why the beta distribution is a useful distribution to model proportions.

(ii) Obtain the mean of X.

(iii) Show that if $a > 1$ and $b > 1$, then the mode of X is

$$x = \frac{a-1}{a+b-2}$$

(b) The negative binomial distribution is a frequently used model in ecological capture-recapture studies and satisfies

$$P\{N = n\} = \binom{n-1}{m-1} \theta^m (1-\theta)^{n-m}, \quad n = m, m+1, m+2, \ldots,$$

where m is a fixed positive integer and N represents the number of “trials” to obtain m “successes” where θ is the probability of a “success”.

As a prior density for θ a beta (a, b) distribution is used.

(i) For given m and n, obtain the posterior distribution for θ.

(ii) Obtain two different point estimators for θ by using the posterior distribution you found in question (b-i) above.

(iii) What does the posterior mode equal if the prior density for θ is a uniform $(0, 1)$ distribution? Why does this give an intuitively sensible estimator for θ in this case?

(iv) How does your answer to question (b)(iii) change if you are given k independent observations n_1, n_2, \ldots, n_k?

END OF QUESTIONS