The Linked Twist Map Approach to Fluid Mixing
Ergodic Theory in Fluids

R. Sturman
Department of Mathematics
University of Bristol

Presentation at University of Leeds, 2006
Joint work with Steve Wiggins and Julio Ottino
Dynamical systems and fluids

Fluids
- incompressible fluid
- Poincaré section
- region of unmixed (stationary) fluid
- islands forming barriers to mixing
- “chaotic”

Dynamical systems
- invertible, area-preserving dynamical system
- Discrete time map, \(f : M \rightarrow M \)
- invariant (periodic) set \(f(A) = A \)
- KAM theory
- existence of a horseshoe
Fluids
- incompressible fluid
- Poincaré section
- region of unmixed (stationary) fluid
- islands forming barriers to mixing
- “chaotic”

Dynamical systems
- invertible, area-preserving dynamical system
- Discrete time map, \(f : M \to M \)
- invariant (periodic) set \(f(A) = A \)
- KAM theory
- existence of a horseshoe
Dynamical systems and fluids

Fluids
- incompressible fluid
- Poincaré section
- region of unmixed (stationary) fluid
- islands forming barriers to mixing
- “chaotic”

Dynamical systems
- invertible, area-preserving dynamical system
- Discrete time map, $f : M \rightarrow M$
- invariant (periodic) set $f(A) = A$
- KAM theory
- existence of a horseshoe
Dynamical systems and fluids

Fluids
- incompressible fluid
- Poincaré section
- region of unmixed (stationary) fluid
 - islands forming barriers to mixing
 - “chaotic”

Dynamical systems
- invertible, area-preserving dynamical system
- Discrete time map, \(f : M \to M \)
- invariant (periodic) set \(f(A) = A \)
- KAM theory
- existence of a horseshoe
Dynamical systems and fluids

Fluids
- incompressible fluid
- Poincaré section
- region of unmixed (stationary) fluid
- islands forming barriers to mixing
- “chaotic”

Dynamical systems
- invertible, area-preserving dynamical system
- Discrete time map, \(f : M \rightarrow M \)
- invariant (periodic) set \(f(A) = A \)
- KAM theory
- existence of a horseshoe

R. Sturman
LTM Approach to Fluid Mixing
Dynamical systems and fluids

Fluids
- incompressible fluid
- Poincaré section
- region of unmixed (stationary) fluid
- islands forming barriers to mixing
- “chaotic”

Dynamical systems
- invertible, area-preserving dynamical system
- Discrete time map, $f : M \rightarrow M$
- invariant (periodic) set $f(A) = A$
- KAM theory
- existence of a horseshoe
Horseshoes in fluids

from [Chien, Rising, Ottino, JFM 170 355-77 (1986)]
Topological
- topological space
- behaviour of individual trajectories
- dense orbit

Measure-theoretic
- measure space
- need an invariant measure — Lebesgue measure μ
- behaviour of sets of positive (or full) measure
- ergodicity
Dynamical systems, ergodic theory and fluids

Topological
- topological space
- behaviour of individual trajectories
- dense orbit

Measure-theoretic
- measure space
- need an invariant measure — Lebesgue measure μ
- behaviour of sets of positive (or full) measure
- ergodicity
Dynamical systems, ergodic theory and fluids

Topological
- topological space
- behaviour of individual trajectories
- dense orbit

Measure-theoretic
- measure space
- need an invariant measure — Lebesgue measure μ
- behaviour of sets of positive (or full) measure
- ergodicity
Dynamical systems, ergodic theory and fluids

Topological
- topological space
- behaviour of individual trajectories
- dense orbit

Measure-theoretic
- measure space
- need an invariant measure — Lebesgue measure μ
- behaviour of sets of positive (or full) measure
- ergodicity
Topological
- topological space
- behaviour of individual trajectories
- dense orbit

Measure-theoretic
- measure space
- need an invariant measure — Lebesgue measure μ
- behaviour of sets of positive (or full) measure
- ergodicity
Ergodicity

Definition

\[
f \text{ is ergodic if } \mu(A) = 0 \text{ or } 1 \text{ whenever } f(A) = A.
\]

Birkhoff ergodic thm \(\implies\) “time averages = spatial averages”

Central notion is *indecomposability*

\[\text{ergodicity } \implies \text{“no islands of unmixed fluid”}\]
Ergodicity

Definition

\[f \text{ is ergodic if } \mu(A) = 0 \text{ or } 1 \text{ whenever } f(A) = A. \]

Birkhoff ergodic thm \(\Rightarrow\) “time averages = spatial averages”

Central notion is *indecomposability*

ergodicity \(\Rightarrow\) “no islands of unmixed fluid"
Ergodicity

Definition

f is **ergodic** if $\mu(A) = 0$ or 1 whenever $f(A) = A$.

Birkhoff ergodic thm \implies “time averages = spatial averages”

Central notion is **indecomposability**

ergodicity \implies “no islands of unmixed fluid"
Ergodicity

Definition

\[f \text{ is ergodic if } \mu(A) = 0 \text{ or } 1 \text{ whenever } f(A) = A. \]

Birkhoff ergodic thm \(\implies \) "time averages = spatial averages"

Central notion is *indecomposability*

ergodicity \(\implies \) "no islands of unmixed fluid"
Mixing

\[\lim_{n \to \infty} \frac{\mu(f^n(A) \cap B)}{\mu(B)} = \mu(A) \]

Intuitive definition is that upon iteration, sets become asymptotically independent of each other.
The Bernoulli property

Bernoulli means “statistically indistinguishable from coin tosses”

The Ergodic Hierarchy
Bernoulli \implies Mixing \implies Ergodicity

... plus lots more!
The Bernoulli property

Bernoulli means “statistically indistinguishable from coin tosses”

The Ergodic Hierarchy
Bernoulli \implies Mixing \implies Ergodicity

... plus lots more!
Define annuli P and Q on the torus \mathbb{T}^2 which intersect in region S.

R. Sturman

LTM Approach to Fluid Mixing
Linked Twist Maps on the torus

The horizontal annulus P has a horizontal twist map....
Linked Twist Maps on the torus

\[F(x, y) = (x + f(y), y) \]

for points in \(P \)

\(f(y) \) could be linear...
Linked Twist Maps on the torus

...or not, but must be monotonic
After F, apply a vertical twist

$$G(x, y) = (x, y + g(x))$$

to points in Q. Again g must be monotonic.

The combined map $H(x, y) = G \circ F$ is the linked twist map.
Mixing properties of LTMs on the torus

Domain is two intersecting annuli with two distinct regions of intersection.
The action of a twist map is to take a line...
Linked Twist Maps on the plane

... and twist it around the annulus.

R. Sturman
LTM Approach to Fluid Mixing
An egg-beater can be viewed as either linked twist map on the plane, or on the torus. from [Ottino, J, *Sci. Am.*, **260**, 56–67 (1989)]
The Blinking Vortex

Streamlines in the first half of the advection cycle

Streamlines in the second half of the advection cycle
The Blinking Vortex

Streamlines in the first half of the advection cycle

Streamlines in the second half of the advection cycle
The Blinking Vortex

Streamlines in the first half of the advection cycle

Streamlines in the second half of the advection cycle

Streamlines in the second half of the advection cycle
The Blinking Vortex

Streamlines in the first half of the advection cycle

Streamlines in the second half of the advection cycle
The Partitioned Pipe Mixer

Cross-sectional streamlines
The Rotated Arc Mixer

Microfluidics — electroosmotic flow

Fill hybridization chamber with "target" solution of mRNA
Attach "probes" (DNA strands) to silicon surface in hybridization chamber
Introduce syringes to form a source-sink pair
Streamlines from source to sink
DNA Hybridization

Second set of streamlines
DNA Hybridization

R. Sturman

LTM Approach to Fluid Mixing
DNA Hybridization

\[f(y) = ry(1 - y) \]
\[g(x) = rx(1 - x) \]
DNA Hybridization

Short pumping time \rightarrow Long pumping time

from [J.M. Hertzsch, R. Sturman & S. Wiggins, 2006]
DNA Hybridization

R. Sturman

LTM Approach to Fluid Mixing
Off-centre sources and sinks
Off-centre sources and sinks
from [J.M. Hertzsch, R. Sturman & S. Wiggins, 2006]
Future Directions

- Monotonicity
- Transversality
- Speed of mixing
- Diffusion
Future Directions

- Monotonicity
- Transversality
- Speed of mixing
- Diffusion
Future Directions

- Monotonicity
- Transversality
- Speed of mixing
- Diffusion
Future Directions

- Monotonicity
- Transversality
- Speed of mixing
- Diffusion
Duct flows

- Schematic view of a duct flow with concatenated mixing elements
- Red and blue blobs of fluid mix well under a small number of applications
- Changing only the position of the centres of rotation can have a marked effect on the quality of mixing
Duct flows

- Schematic view of a duct flow with concatenated mixing elements
- Red and blue blobs of fluid mix well under a small number of applications
- Changing only the position of the centres of rotation can have a marked effect on the quality of mixing
Duct flows

Schematic view of a duct flow with concatenated mixing elements

Red and blue blobs of fluid mix well under a small number of applications

Changing only the position of the centres of rotation can have a marked effect on the quality of mixing