Rates of mixing in models of fluid flow

Rob Sturman

Department of Mathematics
University of Leeds

Leeds Fluids Seminar, 29 November 2012

Leeds

Joint work with James Springham, now in Perth
Chaotic mixing

Decay of correlations

Achieving the upper bound

Future directions

Introduction

Chaotic motion leads to exponential behaviour...

- Topological entropy is computable (Thurston-Nielsen classification theorem)
- Lower bound on the complexity.

[P. L. Boyland, H. Aref, & M. A. Stremler, JFM. 403, 277 (2000)]
Introduction

"...but walls seem to slow things down"

“regions of low stretching which slow down mixing and contaminate the whole mixing pattern...”

[Gouillart et al., PRE, 78, 026211 (2008)]

Also:

[Chernykh & Lebedev, JETP, 87(12), 682 (2008)]

[Lebedev & Turitsyn, PRE, 69, 036301, (2004)]
Dynamical systems approach

Dynamical systems modelling fluids

Fluids
- incompressible fluid
- spatial/temporal periodicity
- region of unmixed (stationary) fluid
- ‘chaotic advection’

Dynamical systems
- invertible, area-preserving dynamical system
- Discrete time map, \(f : M \to M \)
- invariant (periodic) set \(f(A) = A \)
- stretching & folding
 - horseshoe (topological)
 - (non)uniform hyperbolicity (smooth ergodic theory)
Mixing

f is (strong) mixing if

$$\lim_{n \to \infty} \mu(f^n(A) \cap B) = \mu(A) \mu(B)$$
Mixing

f is (strong) mixing if

$$\lim_{n \to \infty} \mu(f^n(A) \cap B) = \mu(A)\mu(B)$$

Equivalently in functional form:

$$C_n(\varphi, \psi) = \left| \int (\varphi \circ f^n) \psi \, d\mu - \int \varphi \, d\mu \int \psi \, d\mu \right| \to 0$$

as $n \to \infty$ for scalar observables φ and ψ.

At what rate does C_n decay to zero?
Simple models

Stretching in alternating directions

Egg-beater flows

Blinking vortex

Pulsed source-sink mixers

Partitioned pipe mixer
A simple model of alternating shears giving chaotic dynamics on the 2-torus.

\[F(x, y) = (x + y, y), \quad G(x, y) = (x, y + x) \]

\[H(x, y) = G \circ F = (x + y, x + 2y) \]
Arnold Cat Map

A simple model of alternating shears giving chaotic dynamics on the 2-torus.

\[F(x, y) = (x + y, y), \quad G(x, y) = (x, y + x) \]

\[H(x, y) = G \circ F = (x + y, x + 2y) \]

\[DH = A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \]

is a hyperbolic matrix and the Cat Map is *uniformly hyperbolic*. The Cat Map is strong mixing (not difficult to show).
Define annuli P and Q on the torus \mathbb{T}^2 which intersect in region S.

Linked Twist Maps on the torus

Simple models
Simple models

Linked Twist Maps on the torus

The horizontal annulus P has a horizontal twist map....
Chaotic mixing

Decay of correlations

Achieving the upper bound

Future directions

Simple models

Linked Twist Maps on the torus

\[F(x, y) = (x + f(y), y) \]

for points in \(P \).

\(F \) is the identity outside \(P \).

\(f(y) \) could be linear...
Linked Twist Maps on the torus

...or not, but must be monotonic
After F, apply a vertical twist

$$G(x, y) = (x, y + g(x))$$

to points in Q.

The combined map $H(x, y) = G \circ F$ is the linked twist map.
Or we can define on the plane (3-punctured disk), giving a model of the Aref blinking vortex.
A simple LTM

Linear twists on annuli half the width of the torus.
\[F(x, y) = (x + 2y, y), \quad G(x, y) = (x, y + 2x) \]

\[H(x, y) = G \circ F(x, y) \]

LTMs as defined here are strong mixing (Pesin theory).
Decay of correlations for the Cat Map

Assume w.l.o.g. that $\int \psi d\mu = 0$ and compute

$$C_n(\varphi, \psi) = \int (\varphi \circ H^n) \psi d\mu$$

Expanding (analytic) φ and ψ as Fourier series,

$$\varphi(x) = \sum_{k \in \mathbb{Z}^2} a_k e^{i k \cdot x}, \quad \psi(x) = \sum_{j \in \mathbb{Z}^2} b_j e^{i j \cdot x},$$

Linearity and orthogonality means that

$$C_n(\varphi, \psi) = \int \sum_{k \in \mathbb{Z}^2} a_k e^{i k \cdot A^n x} \sum_{j \in \mathbb{Z}^2} b_j e^{i j \cdot x} dx = \sum_{k \in \mathbb{Z}^2} a_k b_{-k A^n}.$$

Since A is a hyperbolic matrix, the exponential growth of $|kA^n|$ together with the exponential decay of Fourier coefficients yields (super)exponential decay of C_n.
Young Towers (Lai-Sang Young, 1999)

Young Towers give a procedure for computing decay of correlations for more general systems (with some hyperbolicity).

- Locate a set Λ with ‘good hyperbolic properties’ (actually hyperbolic product structure)
- Run the system forwards and check when iterates of Λ intersect Λ (in the right way)
- Measure and record the return times for Λ
- Obtain the statistical behaviour for the return time system
- Pass the findings back to the original system
Construct return time function $R : \Lambda \to \mathbb{Z}^+$ and measure $\mu(x \in \Lambda | R(x) > n)$:

- If $\int R \, d\mu < \infty$, then H is ergodic.
- If $\int R \, d\mu < \infty$ and gcd of R is 1, then H is strong mixing.
- If

$$\mu(R > n) = \begin{cases}
\mathcal{O}(n^{-\alpha}), & \alpha > 1 \text{ polynomial decay } \mathcal{O}(n^{-\alpha+1}) \\
C\theta^n, & \theta < 1 \text{ exponential decay } C\theta'^n \\
\mathcal{O}(n^{-\alpha}), & \alpha > 2 \text{ central limit theorem holds}
\end{cases}$$
Choose Λ to be any rectangle with sides aligned along stable and unstable eigenvectors.

Iterate Λ under the Cat Map until its image intersects Λ.

\[v^+ \]

\[v^- \]

\[\Lambda \]
Young Towers

Cat Map
Young Towers

Cat Map
Young Towers

Cat Map

\[R(x) = n_1 \]

\[R(x) = n_1 \]
Linked Twist Maps

Appears a perfect system to apply Young Towers.
Linked Twist Maps

Appears a perfect system to apply Young Towers. But...

- local stable and unstable manifolds only exist \(\mu \)-almost everywhere...
- ... and \(\Lambda \) is defined as the intersection of such manifolds...
- ... so must contain holes.
- In general for non-uniformly hyperbolic systems, constructing \(\Lambda \) is hard.
A related scheme

Chernov, Zhang, Markarian conditions

Study the return map to S and check:
A related scheme

Chernov, Zhang, Markarian conditions

Study the return map to S and check:

- Smoothness
- Hyperbolicity
- Return map is mixing
- Bounded distortion
- Bounded curvature
- Absolute continuity
- Admissible curves in the singularity set
- One-step growth of unstable manifolds
Chernov, Zhang, Markarian conditions

Study the return map to S and check:

- Smoothness (Structure of the singularity set)
- Hyperbolicity (Easy)
- Return map is mixing (Surprisingly difficult)
- Bounded distortion (Trivial)
- Bounded curvature (Trivial)
- Absolute continuity (Easy)
- Admissible curves in the singularity set (Not too bad)
- One-step growth of unstable manifolds (Hard)
Chernov, Zhang, Markarian conditions

Study the return map to S and check:

- Smoothness (Structure of the singularity set)
- Hyperbolicity (Easy)
- Return map is mixing (Surprisingly difficult)
- Bounded distortion (Trivial)
- Bounded curvature (Trivial)
- Absolute continuity (Easy)
- Admissible curves in the singularity set (Not too bad)
- One-step growth of unstable manifolds (Hard)

This gives exponential decay for the return map. To get polynomial decay for the original map, we need
Chernov, Zhang, Markarian conditions

Study the return map to S and check:

- Smoothness (Structure of the singularity set)
- Hyperbolicity (Easy)
- Return map is mixing (Surprisingly difficult)
- Bounded distortion (Trivial)
- Bounded curvature (Trivial)
- Absolute continuity (Easy)
- Admissible curves in the singularity set (Not too bad)
- One-step growth of unstable manifolds (Hard)

This gives exponential decay for the return map. To get polynomial decay for the original map, we need

- infrequently returning points (Nightmare)
A related scheme

Decay of correlations for linear LTMs

Theorem (Springham & Sturman, ETDS, (2012))

For α-*Hölder observables and for a linear LTM* H,

$$C_n = \mathcal{O}(1/n)$$
A related scheme

Decay of correlations for linear LTMs

Theorem (Springham & Sturman, ETDS, (2012))

For α-Hölder observables and for a linear LTM H,

$$C_n = O\left(\frac{1}{n}\right)$$

- This is an upper bound on the worst behaviour
- Compare with the topological result of a lower bound on the best behaviour
- As it’s an upper bound we haven’t yet shown polynomial decay rates actually happen. C_n could still decay exponentially fast.
For LTMs we can compute explicitly the contribution to the decay integral of a particular region near the boundary.

Consider all points which take \(n \) iterates to enter the overlap \(S \). These form wedge-shaped regions \(B_n \). We will concentrate on \(W_n \).
A simple computation

\[I_n = \int_{W_n} (\varphi \circ H^n) \psi d\mu \]

\[= \frac{4}{3} \int_{\frac{1}{2}}^{1} \int_{0}^{(1-y)/2n} \varphi(x, y + 2nx) \psi(x, y) dx dy \]
A simple computation

\[I_n = \int_{W_n} (\varphi \circ H^n) \psi \, d\mu \]

\[= \frac{4}{3} \int_{1/2}^{1} \int_{0}^{(1-y)/2n} \varphi(x, y + 2nx) \psi(x, y) \, dx \, dy \]

Consider the related double integral

\[J_n = \frac{4}{3} \int_{1/2}^{1} \int_{0}^{(1-y)/2n} \varphi(0, y + 2nx) \psi(0, y) \, dx \, dy. \]
A simple computation

\[I_n = \int_{W_n} (\varphi \circ H^n) \psi \, d\mu \]

\[= \frac{4}{3} \int_{1/2}^{1} \int_{0}^{(1-y)/2n} \varphi(x, y + 2nx) \psi(x, y) \, dx \, dy \]

Consider the related double integral

\[J_n = \frac{4}{3} \int_{1/2}^{1} \int_{0}^{(1-y)/2n} \varphi(0, y + 2nx) \psi(0, y) \, dx \, dy. \]

Substitute \(t = y + 2nx \):

\[J_n = \frac{2}{3n} \int_{1/2}^{1} \psi(0, y) \int_{y}^{1} \varphi(0, t) \, dt \, dy \sim K/n \]
Consider the related double integral

\[J_n = \frac{4}{3} \int_{\frac{1}{2}}^{1} \int_{0}^{(1-y)/2n} \varphi(0, y + 2nx) \psi(0, y) dx dy. \]

Substitute \(t = y + 2nx \):

\[J_n = \frac{2}{3n} \int_{\frac{1}{2}}^{1} \psi(0, y) \int_{y}^{1} \varphi(0, t) dt dy \sim K/n \]

Finally show \(\lim_{n \to \infty} n \left| I_n - J_n \right| = 0 \), that is, the contribution made to the correlation function by points near the boundary is asymptotically the same as the contribution made by points at the boundary.
Now we have

$$C_n \sim \frac{K}{n} + \int_{\mathbb{R} \setminus B_n} (\varphi \circ H^n)\psi d\mu.$$

Certainly the contribution from the remaining integral is no slower than $O(1/n)$ (from earlier).

[Sturman & Springham, PRE, (2012)]

So we see polynomial decay at rate $1/n$.
Now we have

\[C_n \sim \frac{K}{n} + \int_{R \setminus B_n} (\varphi \circ H^n) \psi \, d\mu. \]

Certainly the contribution from the remaining integral is no slower than \(O(1/n) \) (from earlier).

[Sturman & Springham, PRE, (2012)]

So we see polynomial decay at rate \(1/n \) providing:
Now we have

\[C_n \sim \frac{K}{n} + \int_{R \setminus B_n} (\varphi \circ H^n) \psi \, d\mu. \]

Certainly the contribution from the remaining integral is no slower than \(\mathcal{O}(1/n) \) (from earlier).

[Sturman & Springham, PRE, (2012)]

So we see polynomial decay at rate \(1/n \) providing:

1. \(K \neq 0 \), i.e., the contributions from the wedges do not cancel each other out (do not choose non-generic symmetric observables)
Now we have

\[C_n \sim \frac{K}{n} + \int_{R \setminus B_n} (\varphi \circ H^n) \psi \, d\mu. \]

Certainly the contribution from the remaining integral is no slower than \(O(1/n) \) (from earlier).

[Sturman & Springham, PRE, (2012)]

So we see polynomial decay at rate \(1/n \) providing:

1. \(K \neq 0 \), i.e., the contributions from the wedges do not cancel each other out (do not choose non-generic symmetric observables)

2. The decay rate of the remaining integral is not exactly \(-K/n \) to leading order.
More general boundary behaviour

In a neighbourhood of the boundaries, replace linear twists with

\[\tilde{F}(x, y) = (x + 2y^p, y) \quad \text{and} \quad \tilde{G}(x, y) = (x, y + 2x^p). \]

Then

Lemma

\[\int_{B_n} (\varphi \circ \tilde{H}^n) \psi \, d\mu \sim \frac{K}{n^{1/p}} \]

and so

Conjecture

\[\int_{LTM} (\varphi \circ \tilde{H}^n) \psi \, d\mu \sim \frac{K'}{n^{1/p}} \]
Numerics — linear case
Different boundary conditions

Numerics — linear case
Chaotic mixing

Decay of correlations

Achieving the upper bound

Future directions

Different boundary conditions

Numerics — quadratic case

$$\tilde{f}(y) = 1 - \frac{\cos^{-1}(4y - 1)}{\pi}$$

$$\tilde{g}(x) = 1 - \frac{\cos^{-1}(4x - 1)}{\pi}$$
Numerics — quadratic case
Different boundary conditions

Numerics — maximum width of striations

Red: linear, $O(1/n)$
Blue: quadratic, $O(1/n^2)$
Green: exponential decay of Cat Map
Rigorous extensions

- Planar linked twist maps

- Introduce curvature to the Young Tower argument

- Combine with topological ideas to get a more detailed picture of mixing
Non-rigorous ideas

- Young Tower method is practically tractable
 - Don’t work in Fourier space
 - Don’t need to think about observables
 - Can measure return times
 - Can ignore (maybe) fine details of the mathematics
- Residence-time distributions
- Compute return times for more realistic models
- Consequences of presence of islands
- Connection with lobe dynamics
Can the non-rigorous ideas be turned into a practical scheme for understanding data?

Fundamental ingredients:

- Periodicity (but what is the consequence of random forcing?)
- ‘Good’ hyperbolic region (product structure?)
- Trajectories which repeatedly return to the hyperbolic region ‘in the right way’ (dynamic renewal?)
- Method of recording return times
- Atmospheric or oceanographic?
Singularity set for H_S