Kripke-Platek Set Theory and the Anti-Foundation Axiom

M. Rathjen

Abstract. The paper investigates the strength of the Anti-Foundation Axiom, \textbf{AFA}, on the basis of Kripke-Platek set theory without Foundation. It is shown that the addition of \textbf{AFA} considerably increases the proof theoretic strength.

MSC:03F15,03F35
Keywords: Anti-foundation axiom, Kripke-Platek set theory, subsystems of second order arithmetic

1. Introduction

Intrinsically circular phenomena have come to the attention of researchers in differing fields such as mathematical logic, computer science, artificial intelligence, linguistics, cognitive science, and philosophy. Logicians first explored set theories whose universe contains what are called non-wellfounded sets, or hypersets (cf. [6], [2]). But the area was considered rather exotic until these theories were put to use in developing rigorous accounts of circular notions in computer science (cf. [4]). Instead of the Foundation Axiom these set theories adopt the so-called \textit{Anti-Foundation Axiom, AFA}, which gives rise to a rich universe of sets. \textbf{AFA} provides an elegant tool for modeling all sorts of circular phenomena. The application areas range from knowledge representation and theoretical economics to the semantics of natural language and programming languages.

This paper investigates the strength of the Anti-Foundation Axiom, \textbf{AFA}, on the basis of Kripke-Platek set theory without Foundation. This system is dubbed \textbf{KPA}. It is shown that the addition of \textbf{AFA} considerably increases the proof theoretic strength. Indeed, \textbf{KPA} has the same strength as the subsystem of second order arithmetic based on Δ^1_2 Comprehension.

2. The Anti-foundation Axiom

Definition 2.1. A \textit{graph} will consist of a set of \textit{nodes} and a set of \textit{edges}, each edge being an ordered pair (x, y) of nodes. If (x, y) is an edge then we’ll write $x \rightarrow y$ and say that y is a \textit{child} of x.

A \textit{path} is a finite or infinite sequence $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$ of nodes x_0, x_1, x_2, \ldots linked by edges $(x_0, x_1), (x_1, x_2), \ldots$.

A \textit{pointed graph} is a graph together with a distinguished node x_0 called its \textit{point}. A pointed graph is \textit{accessible} if for every node x there is a path $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x$ from the point x_0 to x.

A \textit{decoration} of a graph is an assignment d of a set to each node of the graph in such a way that the elements of the set assigned to a node are the sets assigned to \ldots
the children of that node, i.e.
\[d(a) = \{d(x) : a \to x \}. \]

Definition 2.2. The *Anti-Foundation Axiom*, **AFA**, is the statement that every graph has a unique decoration.

3. **AFA** in Kripke-Platek set theory

Kripke-Platek set theory, **KP**, is a truly remarkable subsystem of Zermelo-Fraenkel set theory. Since its beginnings in the early sixties, it has become a major source of interaction between model theory, recursion theory, set theory, and proof theory (see [3] and [10]).

This section is concerned with the strength of Kripke-Platek set theory without foundation but augmented by **AFA**. The axioms of **KP** comprise the axioms of Extensionality, Pair, Union, and Infinity\(^1\) of **ZF** and the following axioms:

- **Foundation**: \(\exists x \phi(x) \to \exists x[\phi(x) \land (\forall y \in x) \neg \phi(y)] \) for all formulae \(\phi \).
- **\(\Delta_0 \) Separation**: \(\exists x (x = \{y \in a : \psi(y)\}) \) for all \(\Delta_0 \)-formulas \(\psi \) in which \(x \) does not occur free.
- **\(\Delta_0 \) Collection**: \((\forall x \in a) \exists y \theta(x, y) \to \exists z (\forall x \in a)(\exists y \in z) \theta(x, y) \) for all \(\Delta_0 \)-formulas \(\theta \) (in which \(z \) does not occur free).

By a \(\Delta_0 \) formula we mean a formula of set theory in which all the quantifiers appear restricted, that is have one of the forms \((\forall x \in b)\) or \((\exists x \in b)\).

KP arises from **ZF** by completely omitting the Power Set Axiom and restricting separation and collection to absolute predicates (cf. [3]), i.e. \(\Delta_0 \) formulas. These alterations are suggested by the informal notion of ‘predicative’. It is known from [7],[8], and [9] that **KP** proves the same arithmetic sentences as Feferman’s system \(\text{ID}_1 \) of positive, non-iterated inductive definitions (cf. [5]). Its proof-theoretic ordinal is the so-called Bachmann-Howard ordinal \(\theta_{\varepsilon_{\Omega+1}} \).

Definition 3.1. By **KP**\(^-\) we shall denote Kripke-Platek set theory without Foundation. On account of the lack of Foundation, the axiom of Infinity is formalized with a constant \(\omega \) for the least limit ordinal via the following axioms:

\[(\omega_1) \quad 0 \in \omega \land (\forall y (y \in \omega \to y + 1 \in \omega)), \]
\[(\omega_2) \quad \forall x (0 \in x \land (\forall y (y \in x \to y + 1 \in x) \to \omega \subseteq x)), \]

where \(y + 1 \) is \(y \cup \{y\} \), and \(0 \) is the empty set, defined in the obvious way.

Unfortunately, the above two axioms don’t seem to suffice for proving the existence of the usual primitive recursive functions on \(\omega \). Therefore we shall add a third axiom,

\[(\omega_3) \quad \text{the functions of addition and multiplication on } \omega \text{ exist.} \]

\(^1\)This contrasts with Barwise [3] where Infinity is not included in **KP**.
Suppose (3.1) were false. Let

Proof. Let

by letting

then there exists

definition of

Lemma 3.3. (KPA) If \(\prec \) is well-founded, i.e.

\[
(3.1) \quad (\forall x \in a_\prec) \ x \not\in x.
\]

Proof. Suppose (3.1) were false. Let \(n \in \omega \) be \(\prec \)-minimal with \(d_\prec(n) \in d_\prec(n) \). Then, due to the equation

\[
d_\prec(n) = \{d_\prec(m) : n \rightarrow m\} = \{d_\prec(m) : m \prec n\},
\]

there exists \(m_0 \prec n \) such that \(d_\prec(m_0) = d_\prec(n) \in d_\prec(n) \), yielding \(d_\prec(m_0) \in d_\prec(m_0) \).

This, however, contradicts the choice of \(n \).

Lemma 3.4. (KPA) If \(\prec \) is not well-founded, then there exists \(x \in a_\prec \) such that \(x \in x \).

Proof. Suppose \(\prec \) is not well-founded. Then there exists a non-empty set \(x \subseteq \omega \) such that \((\forall n \in x)(\exists k \in x) (k \prec n) \). Let’s call a finite sequence \((n_0, \ldots, n_k) \) of elements of \(x \) bad if \(n_0 \succ n_1 \succ n_2 \succ \ldots \succ n_k \) and for all \(i < k \), \(n_{i+1} \) is the smallest number \(j \in x \) such that \(j \prec n_i \). All primitive recursive functions on \(\omega \) are available in KPA. They include in particular pairing and projection functions, which allow the canonical coding of finite sequences. Therefore finite bad sequences can be coded as elements of \(\omega \) and the set \(B \) of finite bad sequences exists by \(\Delta_0 \) Separation. Using induction on \(\omega \) one shows that \(B \) contains arbitrarily long sequences. Thus one can select an infinite descending sequence

\[
n_0 \succ n_1 \succ n_2 \succ n_3 \succ \ldots
\]

by letting \(n_i \) be the \(i \)-th element of a bad sequence of length \(i + 1 \).

Put \(Z := \{k \in \omega : (\exists i \in \omega) n_i \prec k\} \). Define a graph \(G^* \) by letting

\[
\text{nodes}(G^*) := \omega \setminus Z \cup \{b\},
\]

where \(b := \{d_\prec(l) : l \in Z\} \), and

\[
x \ast \rightarrow y = \begin{cases}
\text{if } x, y \in \omega \setminus Z \text{ and } y \prec x \\
\text{if } y \in \omega \setminus Z \text{ and } x = b \\
\text{if } x = y = b.
\end{cases}
\]
Note that $b \notin \omega$ since otherwise there would exist $i < j$ with $d_\prec(n_i) = d_\prec(n_j) \in d_\prec(n_i) \in b \in \omega$.

Let d^* be a decoration of G^*.

Define a function f with domain ω via
\[
 f(n) = \begin{cases}
 d^*(n) & \text{if } n \notin Z \\
 d^*(b) & \text{otherwise.}
\end{cases}
\]

Claim f is a decoration of G_\prec.

If $m \notin Z$ and $m \rightarrow l$ then $l \notin Z$ and $l \prec m$. Therefore one gets

\[
 f(m) = d^*(m) = \{d^*(l) : m \rightarrow l\} \quad (d^* \text{ is a decoration})
\]
\[
 = \{f(l) : l \prec m\}.
\]

If $m \in Z$ then there exists $n \in Z$ such that $n \prec m$, and hence
\[
 \{d^*(b)\} = \{f(n) : n \in Z \land n \prec m\}.
\]

As a result,

\[
 f(m) = d^*(b) = \{d^*(x) : b \rightarrow x\} \quad (d^* \text{ is a decoration})
\]
\[
 = \{d^*(n) : n \in \omega \setminus Z\} \cup \{d^*(b)\}
\]
\[
 = \{f(n) : n \in \omega \setminus Z \land n \prec m\} \cup \{f(n) : n \in Z \land n \prec m\}
\]
\[
 = \{f(n) : n \prec m\}.
\]

The claim now follows from (3.2) and (3.3). Since decorations are unique, $f = d_\prec$.

As $Z \neq \emptyset$, there are $m, n \in Z$ with $n \prec m$ and thus $f(m) = d^*(b) = f(n) \in f(m)$.

It follows that there exists x in the range of d_\prec such that $x \in x$. \square

Proposition 3.5. $(\text{KPA}) \prec$ is well-founded if and only if there exists a decoration f of G_\prec such that
\[
 (\forall n \in \omega)(f(n) \not\in f(n)).
\]

Proof. This is an immediate consequence of Lemma 3.3 and Lemma 3.4. \square

Corollary 3.6. The notion of being a well-ordering on ω is Δ_1 in KPA.

Proof. Immediate by Proposition 3.5. \square
interpreted as ranging over subsets of ω. For the interpretation we need to recall a
fact about Π^1_1 normal forms.

Lemma 3.7. Let $\phi(u, \vec{v}, \vec{X})$ be a Π^1_1 formula of second order arithmetic with all
free variables exhibited. Then there is an arithmetical formula $\vartheta(x, y, u, \vec{v}, \vec{X})$ such
that with $x \prec \vec{v}, \vec{X} u y$ abbreviating $\vartheta(x, y, u, \vec{v}, \vec{X})$ the theory ACA_0 proves
$$\forall \vec{v}, \vec{X} \forall u [\phi(u, \vec{v}, \vec{X}) \iff \text{WO}(\prec_{\vec{v}, \vec{X}} u)]$$
where $\text{WO}(\prec_{\vec{v}, \vec{X}} u)$ expresses that the relation $\prec_{\vec{v}, \vec{X}} u$ is a well-ordering on the natural
numbers.

Theorem 3.8. On account of the above interpretation, the language of second
order arithmetic can be viewed as a sublanguage of KPA.

(i) $\Delta^1_2\text{-CA}_0$ is a subtheory of KPA.

(ii) $\Delta^1_2\text{-CA}$ is a subtheory of $\text{KPA} + \text{IND}_\omega$.

Proof. It is straightforward to show that ACA_0 is a subtheory of KPA. Thus
it remains to show that (the translation of) Δ^1_2 Comprehension is provable in
KPA. Owing to Corollary 3.6 and Lemma 3.7, every Π^1_2 formula is equivalent to a
set-theoretic Π_1-formula and every Σ^1_2 formula is equivalent to a set-theoretic Σ_1-
formula in KPA; hence Δ^1_2 Comprehension follows from Δ_1 Separation in KPA.

Theorem 3.9.

(i) KPA can be interpreted in $\Delta^1_2\text{-CA}_0$.

(ii) $\text{KPA} + \text{IND}_\omega$ can be interpreted in $\Delta^1_2\text{-CA}$.

Proof. The interpretation we have in mind is derived from the one that was used
for interpreting set theory with AFA in standard set theory with Foundation. Sets
are interpreted as equivalence classes on graphs on the natural numbers, whereby
two graphs are equivalent if they are bisimulable. The notion of bisimulation is
Σ^1_1. As a result, a set-theoretic Π_1 formula gets translated into a Π^1_1 formula and
a set-theoretic Σ_1 formula gets translated into a Σ^1_2 formula. Under this interpre-
tation, Δ_1 Separation is provable using Δ^1_2 Comprehension and Δ_0 Collection is a
consequence of the Σ^1_2 Axiom of Choice which is provable in $\Delta^1_2\text{-CA}_0$ (cf. [11]).

Corollary 3.10.

(i) KPA and $\Delta^1_2\text{-CA}_0$ have the same proof-theoretic strength.

(ii) $\text{KPA} + \text{IND}_\omega$ and $\Delta^1_2\text{-CA}$ have the same proof-theoretic strength.

Proof. This follows from Theorem 3.8 and Theorem 3.9.

REFERENCES

[1] P. Aczel: The Type Theoretic Interpretation of Constructive Set Theory, in: MacIntyre, A.,

School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

E-mail address: rathjen@amsta.leeds.ac.uk