Chapter 15
Constructive Zermelo-Fraenkel Set Theory,
Power Set, and the Calculus of Constructions

Michael Rathjen

MSC: 03F50, 03F35

15.1 Introduction

If the power set operation is considered as a definite operation, but the universe of
all sets is regarded as an indefinite totality, we are led to systems of set theory having
Power Set as an axiom but only Bounded Separation axioms and intuitionistic
logic for reasoning about the universe at large. The study of subsystems of ZF
formulated in intuitionistic logic with Bounded Separation but containing the Power
Set axiom was apparently initiated by Pozsgay (1971, 1972) and then pursued
more systematically by Tharp (1971), Friedman (1973a), and Wolf (1974). These
systems are actually semi-intuitionistic as they contain the law of excluded middle
for bounded formulae. Pozsgay had conjectured that his system is as strong as
ZF, but Tharp and Friedman proved its consistency in ZF using a modification
of Kleene’s method of realizability. Wolf established the equivalence in strength of
several related systems.

In the classical context, weak subsystems of ZF with Bounded Separation and
Power Set have been studied by Thiele (1968), Friedman (1973b) and more recently
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at great length by Mathias (2001). Mac Lane has singled out and championed a
particular fragment of ZF, especially in his book Form and Function Mac Lane
(1992). Mac Lane Set Theory, christened MAC in Mathias (2001), comprises the
axioms of Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Bounded
Separation, Foundation, and Choice. MAC is naturally related to systems derived
from topos-theoretic notions and, moreover, to type theories.

Type theories a la Martin-Lof embodying weak forms of Power Set (such as
the calculus of constructions with its impredicative type of propositions) have been
studied by Aczel (1986, 2000) and Gambino (1999).

Intuitionistic Zermelo-Fraenkel set theory, IZF, is obtained from CZF, by adding
the full separation axiom scheme and the power set axiom. The strength of CZF
plus full separation, as has been shown by Lubarsky (2006), is the same as that
of second order arithmetic, using a straightforward realizability interpretation in
classical second order arithmetic and the fact that second order Heyting arithmetic
is already embedded in CZF plus full separation. This paper is concerned with
the strength of CZF augmented by the power set axiom, CZFp. It will be shown
that it is of the same strength as Power Kripke—Platek set theory, KP(P), as well
as a certain system of type theory, MLVp, which is a version of the calculus of
constructions with one universe. It is perhaps worth pointing out that KP(P) is not
the theory KP plus power set, Pow. An upper bound for the proof-theoretic strength
of KP + Pow is Zermelo’s set theory, Z, so that it doesn’t even prove the existence
of V,+, whereas KP(P) proves the existence of V, for any ordinal «.

The reduction of CZFp to KP(P) uses a realizability interpretation wherein a
realizer for an existential statement provides a set of witnesses for the existential
quantifier rather than a single witness. Tharp (1971) also used realizability to give an
interpretation of a semi-intuitionistic set theory closely related to Pozsgay’s system.
Tharp’s realizers are codes for 217’ definable partial functions, i.e., functions whose
graphs are X in the powerset operation P(x), which is taken as a primitive. For
the realizability interpretation he needs a X7 -definable search operation on the
set-theoretic universe and in point of fact assumes V' = L. As it turns out, this
realizability interpretation could be formalized in KP(P) + V' = L. However, the
assumption V' = L is not harmless in this context since KP(P) 4+ V = L is a much
stronger theory than KP(P) (cf. Mathias 2001; Rathjen 2012), and therefore one
would like to remove this hypothesis. This paper shows that this can be achieved
by using a notion of realizability with sets of witnesses in the existential quantifier
case, and thereby yields a realizability interpretation of a theory in a theory of equal
proof-theoretic strength.

The reduction of KP(P) to CZFp is based on results from Rathjen (2012)
whose proofs are obtained via techniques from ordinal analysis. They can be used
to show that KP(P) is reducible to CZF with the Negative Power Set Axiom. As
CZF plus the negative powerset can be interpreted in MLVp, utilizing work from
Aczel (2000) and Gambino (1999), and the latter type theory has a types-as-classes
interpretation in CZFp, the circle will be completed. We also get a characterization
of a subtheory of Tharp’s set theory Tharp (1971). The theory in Tharp (1971) has
the following axioms (cf. Sect. 15.2.1): Extensionality, Empty Set, Pairing, Union,
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Powerset, Infinity, Set Induction, Strong Collection,! Excluded Middle for power
bounded formulae? and an axiom Ord-Im which asserts that every set is the image
of an ordinal, i.e., for every set x there exists an ordinal « and a surjective function
fia—x.

In the Theorem below we use several acronyms. RDC stands for the relativized
dependent choices axiom. Given a family of sets (B, ),c4 over a set A we define the
dependent product [ | ., B, and the dependent sum ), , B, as follows:

[ Ba:={f | Fun(f) A dom(f) = A A Vz€ A f(2) € Ba}

a€A

Y Bi:={(a.u)|acAAucB,}

a€A

where Fun( f) signifies that f is a function and dom( f') stands for its domain.

Let X be the smallest class of sets containing @ and all elements of @ which is
closed under dependent products and sums. IT X —AC asserts that every set A in X
is a base, i.e., if (B;)qe4 is family of sets over A such that B, is inhabited for every
a € A then there exists a function f with domain A such that Va € A f(a) € A,
(for more information on this axiom see Aczel 1982, Rathjen 2006a, Rathjen and
Tupailo 20006).

The negative power set axiom, Pow ™ for short, asserts that for every set a there
exists a set ¢ containing all the subsets x of a for which Vu € a(——u € x — u € x)
holds.

The intuitionistic version of KP(P) will be denoted by IKP(P). Both KP(P)
and IKP(P) can be subjected to ordinal analysis which reduces them to theories
Z + {* V; exists’ };epy and IZ + {‘V; exists’},epy, respectively. Here Z stands for
classical Zermelo set theory and IZ for its intuitionistic version. BH refers to an
ordinal representation system for the Bachmann-Howard ordinal (cf. Rathjen and
Weiermann 1993). For T € BH the statement ‘V; exists’ expresses that the powerset
operation can be iterated 7 times.

Theorem 15.1. The following theories are of the same proof-theoretic strength.

(i) CZFp
(ii)) CZFp + RDC + ITX —-AC
(iii)) KP(P)
(iv) IKP(P)
(v) Tharp’s (1971) quasi-intuitionistic set theory but without Ord-Im.
(vi) MLVp
(vii) CZF + Pow ™
(viii) Z + {‘V; exists’};epH
(ix) I1Z + {‘V; exists’};epn

Presenting a proof of Theorem 15.1 is the main goal of this article.

I'Curiously, Tharp calls this scheme Replacement.
2The A} -formulae of Definition 15.1.
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15.2 The Theories CZF and KP(P)

15.2.1 CZF

We briefly summarize the language and axioms of CZF, a variant of Myhill’s CST
(see Myhill 1975). The language of CZF is based on the same first order language
as that of classical Zermelo-Fraenkel Set Theory, whose only non-logical symbol
is €. The logic of CZF is intuitionistic first order logic with equality. Among its
non-logical axioms are Extensionality, Pairing and Union in their usual forms. CZF
has additionally axiom schemata which we will now proceed to summarize.

Infinity: EIxVu[uex <~ (@ =uVv,3vexu=v+ 1)] wherev + 1 =v U {v}.
Set Induction: Vx[Vy € xA(y) — A(x)] — VxA(x)

Bounded Separation: Ya3bVx[x € b < x € a A A(X)]

for all bounded formulae A. A set-theoretic formula is bounded or restricted if it is
constructed from prime formulae using —, A, Vv, 3, =, Vx € y and Ix € y only.

Strong Collection: For all formulae 4,
Va[Vx € adyA(x,y) — Fb[Vxe€adyebA(x,y)AVyebix ea A(x,y)]].
Subset Collection: For all formulae B,

YaVb3icVu [Vx €adyeb B(x,y,u) —>
dd ec[Vx€adyed B(x,y,u) AVy ed Ix eaB(x,y,u)]].

The Powerset Axiom, Pow, is the following:
Vx3dyVz(zSx > z€y).
Remark 15.1. Subset Collection plays no role when we study CZFp since it is a

consequence of Pow and the other axioms of CZF.

To save us work when proving realizability of the axioms of CZF it is useful to
know that the axiom scheme of bounded separation can be deduced from a single
instance (in the presence of strong collection).

Lemma 15.1. Let Binary Intersection be the statement VxVydzx Ny = z If
CZF, denotes CZF without bounded separation and subset collection, then every
instance of bounded separation is provable in CZF, + Binary Intersection.

Proof. Aczel and Rathjen (2001, Proposition 4.8) is a forerunner of this result. It is
proved in the above form in Aczel and Rathjen (2010, Corollary 9.5.7). O
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15.2.2 Kripke—Platek Set Theory

A particularly interesting (classical) subtheory of ZF is Kripke—Platek set theory,
KP. Its standard models are called admissible sets. One of the reasons that this
is an important theory is that a great deal of set theory requires only the axioms
of KP. An even more important reason is that admissible sets have been a major
source of interaction between model theory, recursion theory and set theory (cf.
Barwise 1975). KP arises from ZF by completely omitting the power set axiom
and restricting separation and collection to bounded formulae. These alterations are
suggested by the informal notion of ‘predicative’. To be more precise, the axioms
of KP consist of Extensionality, Pair, Union, Infinity, Bounded Separation

AxVuluex < (uea A Au))]
for all bounded formulae A(u), Bounded Collection
Vx eady B(x,y) — JzVx €ady € zB(x,y)
for all bounded formulae B(x, y), and Set Induction
Vx [(Vy € xC(y)) = C(x)] = VxC(x)

for all formulae C(x).

A transitive set A such that (A, €) is a model of KP is called an admissible
set. Of particular interest are the models of KP formed by segments of Godel’s
constructible hierarchy L. The constructible hierarchy is obtained by iterating the
definable powerset operation through the ordinals

Lo = 0,
Ly = [ JLs : B < A} A limit
Lg+1 = {X : X CLg: X definable over (Lg, €)}.

So any element of L of level « is definable from elements of L with levels < o
and the parameter L,. An ordinal « is admissible if the structure (L, €) is a model
of KP.

Remark 15.2. Our system KP is not quite the same as the theory KP in Mathias’
paper (Mathias 2001, p. 111). There KP does not have an axiom of Infinity and set
induction only holds for X'; formulae, or what amounts to the same, I1; foundation
(A#0 —3dx € AxN A= @for I classes A).
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15.2.3 Power Kripke—Platek Set Theory

We use subset bounded quantifiers 3x € y ... and Vx C y ... as abbreviations
fordx(x €y A ...)and Vx(x € y — ...), respectively.

We call a formula of L¢ AZ)) if all its quantifiers are of the form Q x C y or
Q xey where Q is V or 3 and x and y are distinct variables.

Definition 15.1. The A} formulae are the smallest class of formulae containing
the atomic formulae closed under A, Vv, 3, —, — and the quantifiers

Vx €a,Ix €a, Vx Ca, dx Ca.

Definition 15.2. KP(P) has the same language as ZF. Its axioms are the fol-
lowing: Extensionality, Pairing, Union, Infinity, Powerset, AZ)’-Separation and
A} -Collection.

The transitive models of KP(P) have been termed power admissible sets in
Friedman (1973b).

Remark 15.3. Alternatively, KP(P) can be obtained from KP by adding a function
symbol P for the powerset function as a primitive symbol to the language and the
axiom

Vyly e P(x) &y C x]

and extending the schemes of A, Separation and Collection to the A, formulae of
this new language.

Lemma 15.2. KP(P) is not the same theory as KP + Pow. Indeed, KP + Pow is a
much weaker theory than KP(P) in which one cannot prove the existence of V.

Proof. Note that in the presence of full Separation and Infinity there is no difference
between our system KP and Mathias’s (2001) KP. It follows from Mathias (2001,
Theorem 14) that Z+KP+AC is conservative over Z—+AC for stratifiable sentences.
Z and Z + AC are of the same proof-theoretic strength as the constructible hierarchy
can be simulated in Z; a stronger statement is given in (Mathias, 2001, Theorem 16).
As aresult, Z and Z + KP are of the same strength. As KP 4 Pow is a subtheory
of Z + KP, we have that KP + Pow is not stronger than Z. If KP + Pow could
prove the existence of V., it would prove the consistency of Z. On the other hand
KP(P) prove the existence of V, for every ordinal & and hence proves the existence
of arbitrarily large transitive models of Z. O

Remark 15.4. Our system KP(P) is not quite the same as the theory KP” in
Mathias’ paper (Mathias 2001, 6.10). The difference between KP(P) and KP” is
that in the latter system set induction only holds for ¥ 17) formulae, or what amounts
to the same, 17173 foundation (A # 0 — Ix € A x N A = @ for 1'[17) classes A).
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15.2.4 Extended E-Recursive Functions

We would like to have unlimited application of sets to sets, i.e. we would like
to assign a meaning to the symbol [a ](x) where a and x are sets. In general-
ized recursion theory this is known as E-recursion or set recursion (see, e.g.,
Normann 1978 or Sacks 1990, Chap. X). However, we shall introduce an extended
notion of E-computability, christened E,-computability, rendering the functions
exp(a,b) = “b and P(x) = {u | u C x} computable as well, (where “b denotes
the set of all functions from a to b). Moreover, the constant function with value
w is taken as an initial function in E,-computability. E,-computability is closely
related to power recursion, where the power set operation is regarded to be an
initial function. The latter notion has been studied by Moschovakis (1976) and Moss
(1995).

There is a lot of leeway in setting up E|,-recursion. The particular schemes
we use are especially germane to our situation. Our construction will provide a
specific set-theoretic model for the elementary theory of operations and numbers
EON (see, e.g., Beeson 1985, VI.2, or the theory APP as described in Troelstra and
van Dalen 1988, Chap.9, Sect. 3). We utilize encoding of finite sequences of sets
by the usual pairing function (,) with (x, y) = {{x}, {x, y}}, letting (x) = x and
(X150 s Xy Xnt1) = (X1, ..., Xn), Xn+1). We use functions () and (); to retrieve
the left and right components, respectively, of an ordered pair a = (x,y), i.e.,
(@)o = x and (a)1 = y.

Below we use the notation [x ](y) rather than the more traditional {x}(y) to
avoid any ambiguity with the singleton set {x}.

Definition 15.3. (CZFp, KP(P)) First, we select distinct non-zero natural num-
bers K, s, p, Po, P1, SN PN, dN, 0,, Y, P, Vv, T, 1,12, i3, and g which will provide
indices for special E,-recursive partial (class) functions. Inductively we shall define
aclass [ of triples (e, x, y). Rather than “(e, x, y) € E”, we shall write “[e ](x) ~
¥”, and moreover, if n > 0, we shall use [e ](xy, ..., X,) =~ y to convey that

[e](x1) =~ (e, x1) A [{e,x1)](x2) ~ (e, x1, x2)A. . .A[{e, x1, ..., Xp—1) (X)) = y.

We shall say that [ e ](x) is defined, written [e [(x) |, if [e ](x) >~ y for some y.
Let N := w. E is defined by the following clauses:

[k](x,y) >~ x
[s](x.y.2) = [[x]@]([y]()
[p](x,y) = (x,y)
[Po](x) = (x)o
[P1](x) =~ (%)
[sn](n) ~n+1ifn e N
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[pN](0) =0
[pNn](n+ 1) ~nifneN
[dn](n,m,x,y) ~ xifn,m e Nandn =m
[dn](n,m,x,y) ~ yifn,m € Nandn # m
[0](x) ~0
[@](x) o

[7](x,y) >~ {x.y}

[v](x) > Ux

[71(x.y) = xN (M)

[p1(x,y) =~ {[x](w) | u € y}if [x](u) is defined forall u € y
[ir](x.y.2) {uex|yez
[i2](x,y,2) ~{uex|uey >ucz
[i3](x,y,2) {uex|uey —>z€u}

[£]1(x) = P(x).

Note that [s](x, ¥, z) is not defined unless [x ](2), [y ](z) and [[x ](z) ]([ y 1(z)) are
already defined. The clause for s is thus to be read as a conjunction of the following
clauses: [s](x) =~ (s, x), [{(s,x)](y) =~ (s, x, y) and, if there exist a, b, ¢ such that
[x](z) ~a, [y](2) = b,[a](d) ~ c, then [ (s, x, y)](z) =~ c. Similar restrictions
apply to p.

Lemma 15.3. (CZFp, IKP(P)) E is an inductively defined class and E is func-
tional in that for all e, x, y, y’,

(e.x,y) e E A {e,x,y)eE=y=y

Proof. The inductive definition of E falls under the heading of Aczel and Rathjen
(2001, Theorem 11.4). If [e ](x) ~ y the uniqueness of y follows by induction on
the stages (see Aczel and Rathjen 2001, Lemma 5.2) of that inductive definition. O

Definition 15.4. Application terms are defined inductively as follows:

(i) The constants The constants k, s, p, pPo, P1, SN, PN> AN, (_), @,Y,p,V, ,i1, I
i3, and g singled out in Definition 15.3 are application terms;
(ii) Variables are application terms;
(iii) If s and ¢ are application terms then (st) is an application term.

Definition 15.5. Application terms are easily formalized in CZFp. However, rather
than translating application terms into the set — theoretic language of CZFp, we
define the translation of expressions of the form ¢+ ~ u, where ¢ is an application
term and u is a variable. The translation proceeds along the way that ¢ was built up:
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[c ~u]® is ¢ = uifc isaconstant or a variable;
[(st) ~u]” is IxTy([s 2 x]" At 2 y]" A{x, y,u) € E).

Abbreviations. For application terms s, , #1, . . . , t, we will use:
s(ty,...,t,) asashortcut for ((...(st1)...)t,); (parentheses associated to the left);
sty ...t, asashortcut for s(fy,...,%);

t| as a shortcut for Ix (¢t ~ x)*; (¢ is defined)
(s >~ )" asashortcut for (s v]) — Ix((s @ x)" A (t = x)").

A closed application term is an application term that does not contain variables. If 7
is a closed application term and ay, . .., a,, b are sets we use the abbreviation

t(ai,...,ay) ~b for Ix;...x,3y (xl =a| AN... ANXp=a, Ny=5>b
A t(xr, .o x,) y]A).
Definition 15.6. Every closed application term gives rise to a partial class function.

A partial n-place (class) function 7" is said to be an E,-recursive partial function if
there exists a closed application term #y such that

dom(Y) = {(ay,...,an) | tr(ai,...,a,) |}

and for all for all sets (ay,...,a,) € dom(7),

tr(al,...,an) >~ T(al,...,a,,).

In the latter case, #r is said to be an index for 1.
If 71, 1> are E,-recursive partial functions, then 17 (a) > 1>(a) iff neither 17 (a)
nor 7> (a) are defined, or 77 (a) and 7>(a) are defined and equal.

The next two results can be proved in the theory APP and thus hold true in any
applicative structure. Thence the particular applicative structure considered here
satisfies the Abstraction Lemma and Recursion Theorem (see e.g. Feferman 1979
or Beeson 1985).

Lemma 15.4 (Abstraction Lemma, cf. Beeson 1985, V1.2.2). For every appli-
cation term t[x] there exists an application term Ax.t[x] with FV(Ax.t[x]) =
{x1,...,x,} SEV(t[x])\{x} such that the following holds:

Vxr...Vx,(Ax.t[x]d AVy Ax.t[x])y >~ t[y]).
Proof. (i) Ax.x is skk;

(ii) Ax.r is ket for ¢ a constant or a variable other than x;
(i) Ax.uvis (s(kx.u))()tx.v). O
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Lemma 15.5 (Recursion Theorem, cf. Beeson 1985, VI.2.7). There exists a
closed application term rec such that for any f, x,

recf | Arecfx >~ f(recf)x.

Proof. Take rec to be A f.tt, where t is AyAx. f(yy)x. O

Corollary 15.1. For any E-recursive partial function Y there exists a closed
application term T y;y such that ty;y |, and for all a,

T(e,a) =~ ty:c(a),

where Ty, >~ e. Moreover, Ts;, can be effectively (e.g. primitive recursively)
constructed from an index for 1.

15.3 Defining Realizability with Sets of Witnesses
for Set Theory

Realizability semantics are a crucial tool in the study of intuitionistic theories
(see Troelstra 1998, Rathjen 2006b). We introduce a form of realizability based
on general set recursive functions where a realizer for an existential statement
provides a set of witnesses for the existential quantifier rather than a single witness.
Realizability based on indices of general set recursive functions was introduced in
Rathjen (2006c) and employed to prove, inter alia, metamathematical properties
for CZF augmented by strong forms of the axiom of choice in Rathjen and
Tupailo (2006, Theorems 8.3 and 8.4). There are points of contact with a notion of
realizability used by Tharp (1971) who employed (indices of) X' definable partial
(class) functions as realizers, though there are important differences, too, as Tharp
works in a classical context and assumes a definable search operation on the universe
which basically amounts to working under the hypothesis V' = L. Moreover, there
are connections with Lifschitz’ realizability (Lifschitz 1979) where a realizer for an
existential arithmetical statement provides a finite co-recursive set of witnesses (see
van Oosten 1990; Chen and Rathjen 2012 for extensions to analysis and set theory).

We adopt the conventions and notations from the previous section. However, we
prefer to write joe and jje rather than (e)y and (e);, respectively, and instead of
[a](b) ~ ¢ we shall writea e b >~ c.

Definition 15.7. Bounded quantifiers will be treated as quantifiers in their own
right, i.e., bounded and unbounded quantifiers are treated as syntactically different
kinds of quantifiers.

We use the expression a # @ to convey that the set a is inhabited, that is
dxx €a.
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We define a relation a I, B between sets ¢ and formulae of set theory.
ae f | B will be an abbreviation for Ix[a @ f >~ x A x I, B].
a |k A iff A holds for atomic formulae A
alFw AABff joallkw A A jalky B
alFw AV, 3AB iffa ## @ A (Vd € a)([jod =0A jid Iy A] v, 3
[jod =1 A nd g B])

alFw =4  iff Ve —c Iy A
albw A— Biff Ve[clbw A - aec by B]

alFw (Vx eb) Aiff (Ve eb)aec -y Alx/c]

allFw @x eb)Aiffa# 0 N (Vd € a)[jod € b N j1d |Fw Alx/ jod]
alFw VXA  iff Ve aec -y Alx/c]
allFwIxA iffa#0 A (Vd €a) 1d by Alx/ jod]

lFw Biff daa Iy B.
In the course of proving that certain formulae are realized, e.g.
(Av,AB) > [(A—>C)—=> ((B—=C) = (C)]

or the rule for introducing an existential quantifier in the antecendent of an
implication, we will be faced with the problem that we have a non-empty set of
realizers where a single realizer is required. The next Lemma shows that we can
effectively pass from a set of realizers to a single realizer.

Lemma 15.6. Let X = xy,...,x, and a = ay,...,a,. To each formula A(X) of
CZF (with all free variables among X) we can effectively assign (a code of) an
E,-recursive partial function x 4 such that

IKP(P) - VaVc #0[(Vd e c)d IFn A(a)) = ya(a,c) IFn A(a)].
Proof. We use induction on the buildup of A.

If A is atomic, let y4(a,c) := 0.
Let A(x) be B(x) A C(x) and yp and y¢ be already defined. Then

xa@ c) = j(xp@ {jox | x € c}). xc(a, {ix | x € c}))

will do the job.
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Let A(x) be B(x) — C(x) and suppose yp and y¢ have already been defined.
Assume that ¢ # @ and (Vd € ¢)d I+ [B(a) — C(a)]. Suppose ¢ I, B(a).
Define the E,-recursive partial function ¢ by

V(c,e) ~{dee|dec}.

Then ¥ (c,e) # 9 and hence, by the inductive assumption, yc(a, ¥ (c,e)) IFp
C(a), so that
Ae.yc(a,v(c,e)) I A(a).

Now let A(x) be of the form Vy B(x, y). Suppose that ¢ # @ and (Vd €
c¢)d &k A(a). Fixing b, we then have (Vd € ¢)d e b I B(a,b), thus,
vd' € v¥(c,b) d’ I+ B(a,b), and therefore, by the inductive assumption,
xg(a,9(c,b)) - B(a,b). As aresult

Ab.xg(a, ¥(c,b)) IFn A(a).

The case of A(x) starting with a bounded universal quantifier is similar to the
previous case.

In all the remaining cases, y 4(a, ¢) := |J ¢ will work owing to the definition of
realizability in these cases. O

Lemma 15.7 (IKP(P)). Realizers for equality laws:

(i) 0lFp x = x.
(i) AuulFyx=y—>y=nx
(i) AuullFy (x=yAy=2 > x=2z
(iv) AuulFy (x=yAye€ez) > x ez
V) AuulFp (x=yAzex) »> z€y.
Vi) AujiulFy (x =y A A(x)) — A(y) for any formula A.

Proof. (1)—(v) are obvious. (vi) follows by a trivial induction on the buildup
of A. O

Lemma 15.8 IKP(P)). Realizers for logical axioms: Below we use the E,-
recursive function sg(a) := {a}.

(IPL1) klFp A — (B — A).

(IPL2) slkFp[A—>(B—>C)]—[(A— B)—(4—C)].

(IPL3) Ae.Ad.j(e,d))Fpuw A— (B —> AAB).

(IPL4) Ae.jolFnw AANB — A.

(IPL5) Ae.jiel-w AANB — B.

(IPL6) Ae.sg(y(0,e)) -y A — AVv,3B.

(IPL7) Ae.sg(y(1,e))) IFw B — AV,3B.

(IPL8) #(a) IFy (AV,3B) — [(A — C) = (B — C) — C)], for some E,,-
recursive partial function €, where a comprises all parameters appearing in the
formula.



15 Constructive Zermelo-Fraenkel Set Theory, Power Set, ... 325

(IPL9) AeAd.0 lFy (A — B) — (A — —B) — —A).
(IPL10) Xe.0lFp A — (=A — B).

(IPL11) Ae.eeb |y VxA(x) — A(b).

(IPL12) Ae.sg(e) Iy A(a) — IxA(x).

Proof. As for IPL1 and IPL2, this justifies the combinators s and k. Combinatory
completeness of these two combinators is equivalent to the fact that these two
laws together with modus ponens generate the full set of theorems of propositional
implicational intuitionistic logic.

Except for IPL8, one easily checks that the proposed realizers indeed realize the
pertaining formulae.

So let’s check IPL8. Av,3B — ((4A — C) — ((B — C) — C)). Suppose
elFwn Av,3B. Thene # @. Letd € e. Then jod = 0 A j1d - A or jod =
1 A jid I+ B. Suppose f -y A — C and g I, B — C. Define an E-
recursive partial function f by

f(d’. f'.&") = [dx](jod". 0. f" o (1d").g" ® (11d")).

Then

fle(nd') if jod' =0

g e(nd’) if jod" =1

As a result, f(d, f,g) IFw C and hence AfAgf(d, f,g) Fn (A - C) —

(B - C) — C). Thus, ®(e,Ad.AfAg.f(d, f,g)) # @ and for all p €
P(e, Ad.AfAgf(d, [, g)) we have

fd'.f.g) =

plFe ((A—>C)— ((B—>C)— C).
Let E(a) ;= (A - C) - ((B —» C) — (), where a comprises all parameters

appearing in the formula on the right hand side. The upshot is that by Lemma 15.6
we can conclude

xe@ @(e. Ad.AfAg.f(d. [.8))) IFn E(a).
And consequently we have
t(a) = Ae.xe(a, @(e,Ad.AfAg.f(d, f,8))) IFn AVv,IB — E(a). O

Theorem 15.2. Let D(uy,...,u,;) be a formula of Le all of whose free variables
are among uy, ..., u;. If

CZF + Pow - D(uy,...,u,),

then one can effectively construct an index of an E,-recursive function g such that

IKP(P) - Vay,...,a, g(ay,...,a;) IFy D(ay,...,a,).
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Proof. We use a standard Hilbert-type systems for intuitionistic predicate logic.
The proof proceeds by induction on the derivation. For the logical axioms and the
equality axioms we have already produced appropriate E,-recursive functions in
Lemmata 15.7 and 15.8. It remains to deal with logical inferences and set-theoretic
axioms. We start with the rules.

The only rule from propositional logic is modus ponens. Suppose that we have
E,-recursive functions gy and g; such that for all a, go(a) I, A(a) — B(a)
and gi(a) IFn A(a). Then g(a) I B(a) holds with the E -recursive function
g(a):=go(a)egi(a).

For the V quantifier we have the rule: from B(u) — A(x,u) infer B(u) — Vx
A(x,u) if x is not free in B(u). Inductively we have an E,-recursive function b
such that for all b, a,

h(b,a) Ik, B(a) —> A(b,a).

Suppose d I, B(a). Then h(b,a) e d I, A(b,a) holds for all b, whence
Ax.(h(x,a)ed) Iy, VxA(x,a). As aresult,
Ad.Ax.(h(x,a)ed) -y, B(a) —> VxA(x,a).

For the 3 quantifier we have the rule: from A(x,u) — B(u) infer 3x A(x,u) —
B(u) if x is not free in B(u). Inductively we then have an E-recursive function g
such that for all b, a,

g(b,a) -y A(b,a) — B(a).

Suppose e I, AxA(x,a). Then e # @ and forall d € e, j1d I A(jod,a). Con-
sequently, (Vd € e) g(jod,a) e jid |-y B(a). We then have ®@(e, Ad.g(jod,a) e
J1d) # @ and
(Vy € @(e,Ad.g(jod,a) e j1d) y I, B(a).
Using Lemma 15.6 we arrive at yg(a, ®(e, Ad.g(jod,a)e j1d)) I B(a); whence
Ae.xp(a, @(e,Ad.g(jod,a) e j1d)) Iy IxA(x,a) — B(a).

Next we show that every axiom of CZF + Pow is realized by an E-recursive
function. We treat the axioms one after the other.

(Extensionality): Since e I, Vx(x € a < x € b) implies a = b, and hence
0 Iy a = b, it follows that

A0k [VX(x €a < x€b) > a=0>].
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(Pair): There is an E,-recursive function £ such that
ta.b,c) == {y0.a)[c=a} U {j(1.b) | c = bj.
We have Yu € {a,b} L(a,b,u) I, (v = aVv,3u = b) and hence, letting ¢ :=

{a,b},
Aud(a,b,u) lFy VX € c(x =uv,3Ix =b).

We also have ;(0,0) I+, (@ € ¢ A b € ¢), so that
JAul(a,b,u), j(0,0)) Fy Vx €c(x =aVv,Ix =b) A (a€c A b €c).
Thus we arrive at

59(J (p(a.b), j (Aut(a, b, u), 7(0,0))) IFn
dy[Vxey(x=aVv,Ix =b) A (acy Abey).

(Union): Let £y be the E,-recursive function defined by
Ly(a,u) ={J(x,7(0,0) | x€a A u€ x}.

For u € | Ja we then have £y (a,u) Iy 3x € a u € x, and therefore
Auby(u.a) o (Yue| Ja)@x ea)u e x.

Obviously Au.Av.0 Iy (Vx € a)(Vy € x) y € |Ja. Therefore we have

5g(/(U a, JjAuly(u,a), Au.rv.0))) Iy
w[(Vuew)(@x ca)uex A (Vxea)(Vy ex)y ewl.

(Empty Set): Obviously sg(j (4, Av.0)) Iy 3x (Vu € x)u # u.

(Binary Intersection): Letc :=a Nb. As
Av.j(0,0) -, Vx €c(x €a A x €b)
and Au.0 Iy, Vx(x €a A x € b — x € ¢) hold, we conclude that

sg(y(a@anb, j(Av.j(0,0),Au.0))) I, Ay [Vx ey(x €a A x €b) A

Vx(x€a ANxeb—xey).

(Powerset): It suffices to find a realizer for the formula

Ay Vx(x Ca— x €y)]
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since realizability of the power set axiom follows then with the help of Ag
Separation. One easily verifies that e Iy, Yu(u € b — u € a) implies b C a
and consequently b € P(a). Therefore we have

Aurv.0lFy Vx[x Ca — x € P(a)],

thus sg(j (P(a), Au.Av.0)) Ik, 3y Vx[x Ca — x € y].

(Set Induction): Suppose e I, Vx[Vy(y € x — A(y)) — A(x)]. Then, for
all a,
eoaly [Vy(y €a — A(y)) — A(a)].

Suppose we have an index e* such that forall b € a, e* o b I, A(b). Asv Iy
b € a entails b € a, we get

Auve* eulby Vy(y € a — A(y)),
and hence
(eoa)e (Audv.e® eu) -y A(a). (15.1)
By the recursion theorem we can effectively cook up an index q such that
(qee)ea ~ (eea)e (Aulv.(qee) e u).

In view of the above it follows by set induction that for all a, (q e ¢) ® a | and
(qee)ealy A(a). As aresult we have Aw.(qee) ew Iy, Vx A(x), yielding

Aedw.(qee)ew iy, VX[Vy(y € x — A(y)) — A(x)] = Vx A(x).

(Strong Collection): Suppose
ey Yu(u € a — 3y B(u, y)). (15.2)
Then we have, forallb € a, (e e b) 0 I, Iy B(b, y), and so (¢ e b) @ 0 # @ and
(Vd € (eeb)e0) j1d Iy B(b, jod). (15.3)

Let
C*:={jod |(3Bx €a)[ld € (cex)e0]}.

C* is a set in our background theory, using Replacement or Strong Collection.
Now assume ¢’ I+, b € a. Then b € a and hence, by the above, (¢ e b) ¢ 0 # 0
and
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(Vd € (eeb)e0) j(0, j1d) IFy [Jod € C* A B(b, jod)]. (15.4)
There is an E,-recursive function £, defined by
tr(e.b) > {y(jod. j (0. d)) | d € (e @b) ¢ 0}.
From (15.4) we can infer that £,(e, b) I, 3y [y € C* A B(b, y)] and hence
Audvils(e,u) -y Vx(x €a— Ay[y € C* A B(x, »))). (15.5)
Now assume ¢ € C*. Then there exists b € a and d € (e e b) e 0 such that
¢ = Jod. Moreover, by (15.3), whenever b € a,d € (e e b) @ 0 and jod = c, then
J1d = B(b, c). Letting £3 be the E-recursive function defined by
Li(a,c,e) ~{j(b,j(0,1d)) | bea A Id € (eeb)e0 jod = c},
we then have
l3(a,c,e) kg Ax(x € a A B(x,c¢)), (15.6)
thus

Auvli(a,u,e) -y Yy[y € C* — 3Ax(x € a A B(x,y))]. (15.7)

Finally observe that there is an E,-recursive function [ such that

((a,e) :=={jod | d € J(eox)e0)} = {jod | @x € a)|d € (cox) 0 0]} = C*.

X€a

Thus in view of (15.5) and (15.7) we arrive at

sg(7(I(a, e), j(Au.Av.br(e, u), Au.Av.l3(a, u, e))))
Fw Z[Vx(x €a — 3y [y € z A B(x,y)])
AVyly ez—3x(x €a A B(x,y))]].
As aresult, Aw.Ag.sg(J (I(w, q), j(Au.Av.La(q, u), Au.rv.Ls(w,u,q)))) is a realizer

for each instance of Strong Collection.

(Infinity): By Aczel and Rathjen (2010, Lemma 9.2.2) it suffices to find a realizer
for the formula

BVx(x ez < [x=0vVv,3dy e zx = y U {y}]).
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Here x = @ is an abbreviation for Vy(y e x > y # y)and (3y € ) x = y U {y}
is an abbreviation for

dy(y e zA[Vwiwex > [weyVv,Aw=yD)A[Vwwey -wex)Ay € x]]).
We have
Al WO, Yy(y €@ — y # y). (15.8)

Forn 4+ 1 € w we have

bsm+ ) IFy Vwwen+1—> (wenv,iw=n)) (15.9)
for the E,-recursive function

La(u) := Aw.2v'{7(0,0) | w € [pn](w)} U {7(1,0) | w = [pn](w)}.

We also have j(Aw' . AV.0,0) -, YW(wen —-wen+1) A ne€n—+ 1. Thus

s+ D IFpnew A[Vwwen+1— (wenv,Iw=n))

AVwwen —->wen+1) Anen+1]]. (15.10)

with £5(n + 1) := (0, j(s(n + 1), (AW .AV".0,0))). From (15.10) we conclude
that

len+ 1) Iy @y ew)n+1=yU{y}), (15.11)

where £¢(m) := sg(j ([pn](m), £5(m))). Now from (15.8) and (15.11) we conclude
that for every m € w:

s5g([dn](0, m, 7 (0, Au' . AV'.0), 1 (1, Ls(m)) by m =@V, 3Ty e wm = y U {y}.

Ife by @ € w then a € w, and hence with {7(w) := Au.sg([dn]
(0,u, 7(0,Au/.AV.0), 7 (1, €6(n)))),

L7(@) IFy (VX ew)[x =0Vv,3y e wx = y U {y}]. (15.12)

Conversely, ife I+, Vy(y € a — y # y), thenreally Vy € ay # y, and hence
a = @,sothata € w. Also, if ¢’ Ik, Iy € w a = y U {y} then by unraveling
this definition it turns out that ¢ € w holds. As aresult, if d I [a = 0 V,33y €
wa =y U{y}] then there exists f € d such that jof = 0and j; f IFn a =@ or
Jof =1land j, f Ik 3y € wa = y U {y}. In either case we have a € w, and so

AxAel Ik, Vx(x =0vVv,3dy e wx =y U {y}] > x e w). (15.13)
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Combining (15.12) and (15.13), we have

sg(j(w, Av.j(Ad.(€7(w) e v), Le.0))) IFyp FzVX(x €7 <
[x=0vVv3dyezx=yU{y}. (15.14)
O

We would like to show that KP(P) also realizes every theorem of Tharp’s quasi-
intuitionistic set theory without Ord-Im. This requires a special Lemma about
realizability of bounded formulae.

Definition 15.8. To each AZ)D formula D(xy,...,x,) of Lc all of whose free
variables are among X = Xxp,...,X,, we assign a total E,-recursive function £p
of arity r as follows:

1. p(x) = {0} if D(x) is atomic.
2. tp(x) = {{{0.2)} [z € ta(x) A AX)} U {{(1.2)} | z € Ep(x) A B(x)}if D(x)
is of the form A(x) v, 3 B(x).

L tp(x) = {{z,w) | z € t4(X) A w e tp(x)}if D(x)is of the form A(x) A B(x).

. tp(x) = {Av. (X, t5(x))} if D(x) is of the form A(x) — B(X).

5.8p(x) = {{z,v)} | z€ xi Avetsx2) A A(X, z)} if D(x) is of the form
Az € x; A(x,2).

6. tp(x) = {Az.xa(x,z,84(X,2))} if D(z) is of the form Vz € x; A(X, z).

7. tp(x) = {{{z, (Ay.0,v))} | z € P(x;) A v € ty(x,2) A A(X,2)} if D(x) is of the
form 3z C x; A(X,z2).

8. tp(x) = {Ay.Az.xa(X,z,£4(X,2))} if D(z) is of the form Vz C x; A(X,z).

B~ W

In the above, we tacitly used the fact that for every AZ)’ formula A(X, u) there is an
E,-recursive function f4 such that f4(x,a) = {u € a | A(x,u)}. This is proved in
Rathjen (2012, Lemma 2.20).

For Ap-formulae realizability and truth coincide as the following Proposition
shows.

Proposition 15.1. Let D(x) be a AZ)) formula whose free variables are among x =
X1, ..., X;. Then the following are provable in IKP(P):

(1) D(x) = tp(x) #@0 A Yu e tp(x) ulFy D(X).
(ii)) (Fee Iy D(x)) — D(x).
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Proof. We show (i) and (ii) simultaneously by induction on the complexity of D.

1. For atomic D this is obvious.

2. Let D(x) be of the form A(x) Vv, 3 B(x). First suppose that D(x) holds. Then the
induction hypothesis entails that A(x) and £4(x) # @ or B(x) and £5(x) # 0. In
every case we have £p (x) # 0.

If u € £p(x) then either u = {(0,z)} and A(x) for some z € £4(x) oru =
{(1,z)} and B(x) for some z € £ (x). In the first case the inductive assumption
yields z I A(x) and hence u I, D(x). In the second case the inductive
assumption yields z I+, B(x) and hence also u Iy, D(x). This shows (i).

As to (ii), suppose that e |-, D(x). Then there exists u € e such that u =
(0,d) ANd IFp AX) oru = (1,d) A d Iy B(x) for some d. The induction
hypothesis yields A(x) or B(x), thus D(x).

3. Let D(x) be of the form A(x) A B(x). Then (i) and (ii) are immediate by the
induction hypothesis.

4. Let D(x) be of the form A(x) — B(x). By definition, ¢p(x) = {Av.yp(x,
tz(x))} # @. As to (i), assume that D(x) holds and e I, A(x). Then the
induction hypothesis (ii) applied to A(x) yields that A(x) holds, which implies
that B(x) holds. The induction hypothesis (i) for the latter formula yields that
tp(x) # 0 and Vu € tp(x) u I, B(x). An application of Lemma 15.6
thus yields yp(x,€tp(x)) IFn B(X). As a result, Av.yp(x, tp(x)) IFpn D(X)
confirming (i).

For (ii), suppose e Iy (A(X) — B(x)) and A(x) holds. By the induction
hypothesis (i) for the latter formula, £4(x) # @ and Vu € €4(x) u Iy, A(X).
Thus, picking ug € £4(x) we have e o uy I, B(x), and hence the induction
hypothesis (ii) for the latter formula yields that B(x) holds.

5. Let D(x) be of the form 3z € x; A(X, z). To verify (i), suppose 3z € x; A(X,z)
holds. Then there is z € x; such that A(x, z). The induction hypothesis (i) for the
latter formula yields that £4(x, z) # @, and hence £p (x) # 0. Now suppose u €
£p(x). Then u = {(z,v)} for some z € x; and v € £4(X, 7). As A(X, z) holds the
induction hypothesis (i) yields that v I, A(X, z), whence u I, 3z € x; A(X, 7).

For (ii), assume e Iy, 3z € x; A(X,z). Then e # @. Picking d € e we have
Jod € x; and j1d |k A(X, jod), thus A(X, jod) by the induction hypothesis
(ii), thence 3z € x; A(X, z) holds.

6. Let D(x) be of the form Vz € x; A(X, z). To verify (i), suppose Vz € x; A(X,z)
is true. By definition, £p(x) = {Az.xa(X,2,84(x,2))} # 0. 1f z0 € x; we
have A(X,zp), so that inductively €4(X,z0) # @ and Vd € €£4(X,z0) d I
A(X, z0). Whence, by Lemma 15.6, y4(X, 20, £4(X, 20)) IFw A(Z, 20). As a result,
Az xa(x,z,84(X,2)) Fw D(X).

As for (ii), suppose e Iy Vz € x; A(X,7). Thus e o z I, A(X,7) for all
Z € x;, so that inductively Vz € x; A(x, z) holds.

7. Let D(x) be of the form 3z € x; A(X, z). To verify (i), suppose Iz C x; A(X,z)
holds. Then there is z € P(x;) such that A(X, z). The induction hypothesis (i) for
the latter formula yields that £4(x, z) # @, and hence £p (x) # . Now suppose
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u € tp(x). Thenu = {(z, (1y.0,v))} forsomez C x; and v € £4(X, z). As A(X, 2)
holds the induction hypothesis (i) yields that v Iy, A(X,z). Also A1y.0 I z €
Xi. Whence u Ik, 32(z S x; A A(X,2)).

For (ii), assume e |y, 3z[z € x; A A(X,z)]. Then e # @. Picking d € e
we have jid IFn [jod < xi A A(X, jod)]. This entails jod < x; and
J1(nd) Fw A(X, jod). Thus A(X, jod) by the induction hypothesis (ii), thence
3z C x; A(X,z) holds.

8. Let D(x) be of the form Vz € x; A(x,z). To verify (i), suppose Vz €
x; A(x,z) is true. By definition, tp(x) = {Ay.Az.xa(x,z.€4(x,2))} # 0. If
vy IFw 20 € x;, then zg € x; holds and we have A(X, zp), so that inductively
€4(x,20) # @ and Vd € t4(x,20) d Ik A(X,z0). Whence, by Lemma 15.6,
x4(X,20,84(X,20)) IFw A(Z,20). Asaresult, Ay.Az. x4(X, 2, £4(X, 2)) IFy D(X).

As for (ii), suppose e Iy, Vz € x; A(X,z). Thuseez Iy [z € x; — A(X,2)]
forall z. If 7 C x;, then Ay.0 I, z € x;, so that (¢ e7) e (1y.0) I, A(x,z), and
therefore, by the inductive assumption, A(x, z) holds. As aresult, Vz € x; A(X, z)
holds. O

Theorem 15.3. Let T~ denote Tharp’s (1971) quasi-intuitionistic set theory with-
out Ord-Im. Let D(uy,...,u,) be a formula of Le all of whose free variables are
among uy, ..., u,. If

T FD(uy,...,u),

then one can effectively construct an index of an E,-recursive function g such that
KP(P) F Vay,...,a,g(ay,...,a;) Fw D(ay,...,a;).

Proof. Note that with the exception of excluded middle for power bounded
formulae, the axioms of 7~ are axioms of CZFp, too. Let D(u) be AZ)). Define

op(a) :={(0,u) |uctp(a} U {{L,u)|uect.pa),

with €p,t_p defined as in Definition 15.8. Note that 0p is E-recursive. By
Proposition 15.1(i) and classical logic we have that 0p(a) # @. Moreover, if
(i,u) € dp(a) then either i = O and u I, D(a) ori = 1 and u I, —D(a).
Thus 0p(a) I+ D(a) v,3—D(a).

In view of the previous Theorem 15.2 we thus found realizers for all theo-
rems of 7. O

Lemma 15.4. CZFp is a subtheory of T .

Proof. The only axioms of CZFp that do not already belong to 7~ are the instances
of Bounded Separation. Let A(x) be bounded. We shall reason in 7 . Using
excluded middle for bounded formulae, Pairing and Emptyset, we have

Vueadz[(A(uw) Az ={u}) v, (—mA(u) Az =0)].



334 M. Rathjen

Thus, by Strong Collection, there exists a set b such that

Vueadzeb[(Au) Az ={u}) v,3 (—A(u) Az =0)]
AVzebIuea(Aw) Az={u}) v,I (—Aw) Az=0)]. (15.15)

By Union, | Jb is a set, and by (15.15), | Jb = {u € a | A(w)}. O

15.4 A Type Theory Pertaining to CZFp

Let ML, be Martin-Lo6f’s type theory with a single universe U but without any
W -types (cf. Martin-Lof 1984). The type U of small types reflects the basic forms
of type. These are Ny (empty type), N (type of naturals), ([Tx : A)F(x), (¥x :
A)F(x), A+ B and I(A, b, c) where A and B are types, F is a family of types over
Aand b, c : A.

ML,V is the extension of ML; with Aczel’s type of iterative sets V (cf. Aczel
1978). V is inductively specified by the rule

A:U x: A= F:V
sup(x : A)F:V

It is this type V with the above introduction rule and a corresponding elimination
rule (or rule of transfinite recursion on V) that has been used in Aczel (1978) to
give an interpretation of constructive set theory (for more details see Aczel 1982;
Rathjen 1994).

Remark 15.5. V can be viewed as a single W -type on top of U. V should certainly
not be construed as an additional universe on top of U. As it turns out, adding
V amounts to the same as adding an elimination rule to U which renders U an
inductively defined type. V can then be explicitly defined from U in extensional
ML, augmented by the principle of transfinite recursion on U as has been shown by
Palmgren in (1993).

We extend the syntax of MLV with a type constant P and several other constants
pertaining to it. The rules for P render it an impredicatively IT-closed type universe
inside U. The rules governing P are given by the schemes

. . a:P a:P by :Tp(a) by : Tp(a)
Op : P P:U Tp(a) : U bi = b, : Tp(a)
A:U x: A= B :P A:U x: A= B =B, : P
(rx : A)B : P (rx : A)B; = (mx: A)B, : P
A:U x:A=B:P
Te(Op) = No

Sip TG - AB) o (Tx - ATpB) ™
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The formulation of the rules for the type P, embodies the principle that elements
of P are only codes for types, hence the need for a decoding function Tp and the
m-binder. Op represents the false proposition and thus Tp(Op) should be the empty
type.

With these rules the type P behaves like the impredicative type of propositions
of the calculus of constructions, with the additional property that all propositions
in P are proof-irrelevant. The equivalence in the rule (x) was already introduced in
Coquand (1990). This type theory will be denoted by MLV5p.

15.5 Reducing MLVp to CZFp

Here we build on the types-as-classes interpretation from Rathjen (2006c) and
Rathjen and Tupailo (2006, Definition 6.7) that uses classes of indices of generalized
set recursive functions to interpret large I7-types. Rathjen and Tupailo (2006,
Theorem 6.8) shows that this provides a translation of MLV into CZF. In this
interpretation the type U is emulated by the inductively defined class Y* introduced
in Rathjen and Tupailo (2006, Definition 2.8). A larger class Y** is obtained by
adding a fifth clause to the definition of Y* which just says that the powerset of
{0} and every set x C {0} is in Y**. To deal with MLVp, U will be interpreted as
Y** and the type V will then be interpreted as the class V(Y**) which is defined
in the same vein as V(Y™*) in Rathjen and Tupailo (2006, Definition 3.1). The type
P will be interpreted by P({0}), the powerset of {0}. For sets A and a function
F:A—P{0})letn(A, F):={y € {0} | Vx € A F(x) = {0}}. This is the way
we interpret the r-binder. Tp will be interpreted as the identity function while s4 p
is the unique 1-1 correspondence between the sets (A, F) and IT,e4 F(x).

Theorem 15.4. The types-as-classes translation provides an interpretation of MLVp

in CZF p.
Proof. For details see Rathjen and Tupailo (2006, Theorem 6.8) and Rathjen (1994,
Theorem 4.11). ]

15.6 Reducing CZF + Pow  to MLVp

Recall that the negative power set axiom, Pow ", asserts that for every set a there
exists a set ¢ containing all the subsets x of a for which Vu € a(——u € x — u € x)
holds. The latter set will be denoted by P~ (a).

Lemma 15.10. The theory obtained from CZF by adding the axiom ‘P~"({0}) is
a set’ is equivalent to CZF + Pow ™



336 M. Rathjen

Proof. Gambino (1999, Lemma 4.3.2). O

Theorem 15.5. The theory CZF+Pow " can be justified in the type theory MLVp.

Proof. For the axioms of CZF this is due to Aczel (1978). The validity of the
negative power set axiom in a type theory with P was shown by Gambino (1999,
Lemma 4.3.7). O

15.7 Completing the Circle: The Proof of Theorem 15.1

The main thing we know so far is that CZFp is proof-theoretically no stronger than
KP(P) (Theorem 15.2). As for the proof-theoretic equivalence of ((i) and (ii) in
Theorem 15.1, we need to show that CZFp + RDC + II X —AC is no stronger than
CZF . We shall draw on the formulae-as-classes interpretation of Rathjen (2006c)
to achieve this.

Theorem 15.6. CZFp+RDCHI1X—AC has a formulae-as-classes interpretation
in CZFp.

Proof. The interpretation of CZF + RDC + II X —AC into CZF of Rathjen (2006c,
Theorem 4.13) can be lifted to the theories with Pow added on both sides if one uses
the stronger notion of computability introduced in Definition 15.3. One just needs
to show that the power set axiom is validated in this interpretation if one has it in the
background theory and uses the stronger notion of computability. This is not very
difficult. O

To get back from KP(P) to CZFp we shall rely on Rathjen (2012). Let
OT (@) = (BH, <) be the primitive recursive ordinal representation system for
the Bachmann-Howard ordinal given in Rathjen and Weiermann (1993, Lemma
1.3); here OT(¥) is a primitive recursive set of naturals equipped with a primitive
recursive well-ordering < and

BH = {¢ € OT(H) | @ < £2}.

For t € BH let

=
’

P (15.16)

V<7

v =P ). (15.17)

v<T

Let V. exists’ be the statement

AF [F function A dom(f) ={veBH|v <1} AVv<71 F(v) = UP(F(S))].

E<v
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Lemma 15.11. For every (meta) t € BH, CZF proves the scheme of transfinite
induction up to t, i.e.,

Vv <t[(Vu < ve(r)) = ()] — Vv < t9(v)

for all formulae ¢(v).

Proof. This is a consequence of Rathjen (2005, Lemma 4.3, Theorem 4.13). O

Lemma 15.12. Let t € BH. The following are provable in CZF + Pow " for all
B=<a=xrt:
1) V] exists’.
i) Vy77 =40.
(iii) If o is a limit, then V™ = Ugoo Vi
(v) Voq =V, " U P (V).
W Vim eV,
(vi) V7 is transitive.
(vi) uexeV, " >3 <aue VS_H'

Proof. (i) Follows by transfinite recursion on o using Lemma 15.11 and
Replacement.

(i) Holds because V"~ = Ug -0 VE_'_' = 0.
(i) V" = Upea P75 = Uga Urae P70 = U V7™ when
18 a limit.

@iv) :

ven= U P
E=<a+1

=P v JPT)
E<a
=PV, UV,

(v) :Suppose B < «. It suffices to show that Vg e ’P_'_'(Vﬂﬁﬁ). But this is clearly
the case since Vﬁ_'_' - Vﬁ_'_' and (trivially)

VyeVg (mmyeVy —>yely).

(vi) and (vii): Letu € x € V. Thenu € x € 73_'_'(V§_H) for some £ < «. Hence
u € V.7 for some ¢ <a,sothatu € V7~ by (v).

|
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Theorem 15.7. (i) The following theories are proof-theoretically equivalent:

1. KP(P)
2. 7+ {‘V; exists’};epn.

(i) The following theories are proof-theoretically equivalent:

1. IKP(P)
2. 1Z + {‘V; exists’}.epn.

Proof. This is shown in Rathjen (2012). O

15.7.1 Reducing 7. + {‘V, Exists’},epn to CZF 4+ Pow™ "

The next step is to employ a double negation interpretation to reduce Z +
{*V; exists’},;epy to an intuitionistic theory. Here we don’t follow Friedman’s
approach in Friedman (1973c). Instead we use two new relations =, and €4 to
interpret = and €, respectively. Moreover, these relations are designed to be stable
under double negation. This Ansatz was inspired by a double negation interpretation
of Zermelo set theory in V7 due to Gambino (see Gambino 1999, Proposition
2.3.21). In it he uses Aczel’s a-relations, which combine the idea of bisumulation
with stability of doubly negated formulae, to interpret set-theoretic equality (for
details see Gambino 1999, Definition 2.2.14). Our interpretation, however, does
not employ a-relations since our background theory has only Bounded Separation.
Instead it uses an equivalence relation defined by transfinite recursion on the ordinal
representations of BH.

Theorem 15.8. For every p € BH, the theory Z + V™" exists’ has an interpreta-
tion in CZF + Pow ™

The proof of 15.8 will occupy the remainder of this subsection. Given p € BH one
can effectively find p* € BH such that p < p* and p* is a limit ordinal bigger than
. In view of Theorem 15.7 we also know that CZF + Pow ™ proves ‘Vp:“ exists ‘.
We would like to use the set Vp_'*_' to provide a model for the theory Z + V), exists’.
The idea is, of course, to use some kind of double negation interpretation. But as is
well known, the extensionality axiom creates a problem when one uses the usual
Godel-Gentzen translation. To overcome this problem we define an equivalence
relation =, on V.~ which will be used to interpret set-theoretic equality and
thereby also membership.

Definition 15.9. Letx,y € Vp?f. By transfinite recursion on & < p* define

X =qyiffx,y e V;7 AVuex—-—IveyIp<au=pv

AVvey—-—JuexIp<au=gv
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X =co y iff ==Ja < p*x =4y

X €y iff =—Ia<p*Iuecyx=4u.

Lemma 15.13. Letx,y € VT anda < B < p*. Then we have

(@)
(i)
(iii)

X=qy—>X=p).
X, VEV T AX=gy—>Xx=4).
= Is a symmetric and transitive relation. =, is a reflexive relation on V.

Proof. (i) Suppose x =, y. Then x,y € V7, thus x,y € Vﬂ_‘_‘ by

(i)

(iii)

Lemma 15.12(v). Clearly we have 3v € y3§ < 0 u =¢ v — Jv € y I <
B u =¢ v, thus

——veyd<au=v—>——Ivey¥ <PBu=v,
and hence
Vuex——veyIH <au=v—>Vuex—-——ITveyIE <Bu=v.

Likewise, Vv € y—=—Ju € xI < u = v - Vv € y——Ju € x3¢ <
Bu=¢v.Asaresult, x =g y.

: We use induction on «. Suppose that x,y € V" andx =g y. If u € x
andv € y,thenu € x € Pﬁﬁ(VE;_') andv € y € ’P_'_'(VET_') for some
&0,& < a. Hence u € VE;ﬁ and v € Vgﬁ. Due to the linearity of < and in
view of Lemma 15.12(v), there exists o9 < o such that u,v € Va;'_'. As a
result, if u € x and 3v € y 3§ < B u =; v, then the induction hypothesis yields
veydl <au=¢;v.Thusu € x and =—3Iv € y3I{ < Bu =; v imply
——3v € y I < a u =; v. Consequently,

Vuex——IveyI <Bu=v
—VYuex——IveyIl <au=¢v. (15.18)

Likewise one proves

Vvey—-—dxceudl <Bu=;v
—Vvey-—JuexI <au=;v. (15.19)

Hence, since we assumed that x =g y we get x =, y from (15.18) and
(15.19).

Follows by induction on «. As for transitivity, suppose x, y,z € V, 7, x =4 ¥,
and y =, z. Assume thatu € x,v € y,w € zand u =¢ v and v =¢ w hold
for some &, &; < «. Then, using (i) and the linearity of <, we find £ < « such
that u =¢ v and v =¢ w, so that, by the induction hypothesis, we get u =¢ w.
Asaresult, letting Abeucx Avey A T <au =gy,
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A— (GwezI <av=,w—3IwezIE <au=¢w)
A— (mIwezd <av=,w—>—-—IwezI <au=¢w)
A——-—dwezI <au=¢w (sincey =, 2)
uex > (veyIp <au=g,v—o>——IwezI <au=zw)
uex > (——veydf <au=gv———IwezI <au=¢w)
uex »-—IwezIk <ou=gw (sincex =, y)
and hence Yu € x——3w € z3¢ < au =¢ w. Likewise one shows that

Vwez—-—Juex3I <au=¢w Thusx =, z.
Symmetry and reflexivity are established similarly. O

Corollary 15.2. Let x,y € Vp?.f. Then:
X =00y <> YUeV,"(u€oX <> U€x)).

Proof. “—": Suppose o, B < p*, v € x,u =, v,w € y, and v =g w. Letting

y = max(a, §), we obtain u =, v and v =, w by Lemma 15.13(i), and hence

u =, w by Lemma 15.13(iii). Thus, letting B stand for the conjunction of & < p*,
v € x, and u =, v, we have the following implications:

B A3 <p'IWeyv=pnw >F<p"Weyu=,w
B A—-=3f <p*IWeyv=pnw >—-=Ty <p*IWeyu=yw

BAI=<p"x=py >ucxy
BA—-—Inp<p'x=yy >ucxny
BAX=Y>UEx)
Ja < p*WEXU=4V A X =00V —> UEx Y
——Je <P IEX U=V A X =0y > UEKxY

UEso X N X =) D UEx ).
In the above, we used several times that C — ——C and
(A——==C) - (—A—>—-=0)

are intuitionistically valid propositions.

“<": Assume that Yu € V.7 (u €co X <> U €o y). Choose @ < p* such that
x,y €V, 7.Letu € x. Thenu € VE_'_' for some ¢ < a by Lemma 15.11(vii). By
Lemma 15.13(iii), we have u =¢ u, which implies u €4, x, and hence u €, y by
our standing assumption. We also have
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I<prIweyu=,w—>In<aIweyu=,w,
and hence
——dp<p*Iweyu=w > -—Iy<aIweyu=,w,

using Lemma 15.13(ii). Thence, as u €« y, we can conclude that =——3n < o Aw €
y u =, w. As aresult,

Vuex——dn<adweyu=,w

Likewise, we can conclude that Vv € y =—3n <« Ju € x v =, u, so that x =, y,
and consequently x =4 y. O

Corollary 15.3. Let x,y,z € Vp?.ﬁ. Then:
X =00 Y NX€ExwI—>) €.

Proof. Suppose x =, y, x =g u, and u € z for some &, B < p*. Pick § < p* such
that x, y,z € V5. By Lemma 15.13 we have x =5 y, x =5 u, and thus y =5 u,
which entails y € z. As a result of the foregoing we have

Jo<p*x =y AT <p*uczx=u—y€xz

X =0 ) ANX€ExZI—=>Y €02,
exploiting (again) that y €, z is a twice negated formula. O

Next we will show in CZF + Pow ™ that the structure (Vp?f, Eoos =00) Models
the double negation translation of all the axioms of Z + ‘V, exists’ when the
elementhood and equality symbols are interpreted as €, and =, respectively.

Definition 15.10 (N -translation). Let the map (.)¥ from the language of set
theory into itself be defined as follows:
xey)N i=xeny

=" i=x=uy

(AA BN := AN A BY
(Av,3B)N 1= —(=4AY A =BY)
(A— B)Y := 4¥ - BN

(—A)N = -4V
(VxA)N = vx 4V
(AxA)N = =vx -4V .
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Note that the formulae x €5, y and x = y are already doubly negated, so that
there is no need to put double negations in front of them.

Lemma 15.14. CZF +Pow™ " = (V17 €co, =o0) |F (Extensionality)" .

Proof. Observe that (Extensionality)N is
VX,Vy[x =0V < YuU€xp X < UEKx V).

So the claimed assertion is a consequence of Corollary 15.2. O

Corollary 15.4. CZF + Pow — (VpT, €00 =0c0) E VXVY[A(X) A X =y —>
A(y)].

Proof. This follows from Lemma 15.14 and Corollary 15.3 by formula induction
on A(x). O
Lemma 15.15. CZF + Pow ™ F (V17 €co, =c0) = (Pairing)".

Proof. Leta,b € Vp?f. Pick o < p* suchthata,b € V™ and let
ci={x eV, 7| (x =0 aV,Ix =« b)}.

Note thatc € V7. If u € V" and =—u € ¢, then =—(——(u = a V,Ju =
b)), hence =—(u =o aV,u = b), so that u € c. This shows that ¢ €
PV, 7). thusc € V1.
Now suppose 7z =qo X and x € ¢. Then =—(x =4 a V,Ix = b), and thus, by
Corollary 15.4, =—(z =00 @ V.37 = b). Hence, as z =g x implies z =« X,
B<p*AxecAz=px > "(z=waV,Iz=xb)
P<p'Ixecz=px > (2=waV,3z=x b)
——A <p*Ixecz=px > (2= aV,Iz=u b)
Z€00 € —> (2 =0 aV,3z=c b).
Conversely, z =« a V,3z =« b implies z €x, ¢ by Corollary 15.4 since a € ¢
and b €4 c¢. Thus =—(z =« a V,37 = b) implies z €x ¢ since the latter
formula starts with a negation. O
Lemma 15.16. CZF +Pow™ " I (V1™ €00, =c0) (Union)N.

Proof. Leta € Vp_,;_‘. Pick @ < p* such thata € V™ and let
ci={veV, 7 |-—Izeaveymz}.

Note thatc € V7. If v € V™ and =—v € ¢, then =—(——3z € a v € 2), hence
——3z € a v €x z, so that v € c. This shows that c € P™7(V,"7), thusc € V7.
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For x € Vp?f we have:

B<p" AVECAX=pV—>X=0VA-—IZEAVEYZ
B=<p " AveEcAXx=pV—>X=oVAmEVI (2€0a AV Ex?T)
B=<p"AvecAnx=pgv—>—==3y eV () €xod A X Ecxy)
(by Corollary 15.4)
——Jy <p*Iuecx=pu—>—-=3y eV"(y €xnd A X Exo ¥)

X €oc—> Iy eV (yExd A X Ex Y).
Conversely, let x, y,z € Vp_*‘_‘ and 8,6 < p*. Then:

yearuey ->ueV,  Aieaucyz

yearuey >ucV,  A-—Tz€auesz
YEAANUEY > UEKC

YEAANUEY ANX =gUu— X Exc (byCorollary 15.4)
yean—-—3p <p*Weyx=pu > xexc
YEAANXExY —> X ExC

YEAANZ=5Y A X ExZI—> X ExcC (byCorollary 15.4)
38 <p* Iy €az=5sy A X€ExZI— XEuxC
——38 <p*3y' €az=5y A X€ExZI— XExC
2€0d A X ExoZ—> X Exo €

——37 € VpT(z’ €0l AN XExpZ)—>XExC.

From the above we conclude that (Vp?k_', €00s =00) = (Union)". |

Lemma 15.17. CZF + Pow ™ b (V17 €c0. =) = (full Separation)™ .

Proof. Leta € Vp?f and let A(v) be a formula with parameters from V™ and
at most the free variable v. Let A*(v) arise from A(v) by first applying the N-
translation and subsequently restricting all unbounded quantifiers to Vp?f. Pick o <
p* suchthata € V" and let

c = {)C € Va_ﬁ | X €0 A N (Vp:_‘s E007200) ': A*()C)}

¢ is a set by bounded Separation in our background theory. Obviously ¢ € V.
Suppose u € V"~ and ——u € ¢. Then ——u € a and =—A*(u), thus u € a and

A*(u) since both formulae are negative. As a result, ¢ € V7.
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Now let x € V2™ and B < p*. Then:

UEC —>UEwa A A¥(u)
UECAX=gU—>XExa A A*(x) (by Corollary 15.4)
I <p*Iecx =pu—x€xan A% (x)
=3 < p*uecx =gu—x €xa A A*(x) (succedent is negative)

X €0 € = X €Eco a N A*(X).

uca AN A*(u) >ucc
uca N A*(u) > u € C
uea Ax=pguA A*(x) > x €x ¢ (by Corollary 15.4)
B <p*Iucax=pun A*(x) > x €x

X E€spa N AT (X) > x Ex C.
As a result of the above we have
(Vi €0 =c0) E TVX[X €0z © (x €xc a A AV (X))]. O

Lemma 15.18. CZF +Pow ™~ = (V™ €co, =co) |F (Set Induction)V.

Proof. Let A(v) be a formula with parameters from V™~ and at most the free
variable v. Let A*(v) arise from A(v) by first applying the N -translation and
subsequently restricting all unbounded quantifiers to Vp_,;_'. Assume that

Vze VITIVy € ViIm(y €00 2 = A%(1)) = A*(@)]. (15.20)

Leta € V" where o < p*. The aim is to show that A*(a) holds. To this end
we proceed by induction on «. If u € a then u € VS_'_' for some £ < « by
Lemma 15.12(vii), thus A*(u) holds by the inductive assumption. For x € Vp_‘*_‘
we thus have

x=puAuca— A%(x) (by Corollary 15.4)
B =<p*uecax=pu—>A"(x)
X €00 a —> A*(x) (A*(x) being negative) .

In view of our assumption (15.20) we thus have A*(a). O
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Lemma 15.19. CZF + Pow (Vp_,;_', €o0s =00) = (Power Set)V.

Proof. Forx,y € Vp_*'_' define x C y as Vu € Vp_*'_' (U €Eo X > U Exo V).

- *
Leta € V] for some o < p*. Let

c:={x eV, |x Cooa}.

Then ¢ C V77 and we have

_

weV, i A—mwec—>—"—wClxa
= = Vu eV (U €oo W = U Ecc a)
> Vue Vi == (u€ow—> U Exc a)
—>VueVp_'*_'(—-—-u€oow—>—-—-ueooa)
—>Vu€Vp_'*_'(u€oow—>ueooa)
- wClxa
—wec.

This shows that ¢ € V7.
Now suppose y S a. Let

yii={veV, T |vew ¥}
Then y* Coo y. Letu € y. Then u € a and hence

B<p" Au=gvAvea—>veEygy
B<p" Au=gvAvea—>veEyy*
B=<p" Au=gvAvea—>ucyy”
B<p*Iveau=pv—->ucey*
——3f<p"Ivecau=pv—>ucey”
UE€oo ¥ = U Eco V™.

So y Ceo ¥*, which together with y* C, y yields y =« ¥*, and hence y €4, c.
As a result,

Y S0l =Y €ExC. (15.21)
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Conversely, suppose y € c¢. Then we have

B=<p*ANy=pzAz€Ec—>2Cxa

B=<p*Ay=pgzAz€c—>yCxa

B <p*Izecy=pz—>yCxa

——3I <p*IJzecy=pz—>y Cxa
VE€xwC—>YClxd. (15.22)
Equations 15.21 and 15.22 imply that the Powerset axiom holds in (Vp:“, €o00r =00)-
O

Lemma 15.20. CZF + Pow ™~ I (V17 €co, =) (Infinity)" .

Proof. By recursion on n € o define

=0
4+ ={ueV, 7| -—(ucen™Vv,3u=qn")}

={uecV, |m—Inecwu=xn*}.

. . . . * _= _=
By induction on 7 one readily verifies that n* € V,777. Also w* € V7. Moreover,

it is by now routine (though tedious) to verify that the following statement holds in
(V3. €o0r =o0):

Vi[x ew* & ——(——Juuecxv,3——3Iy[y € o™ A Vv
(VExx < mm(veyv,dv=y))]]. (15.23)

It is a consequence of (15.23) that the N -translation of the Infinity axiom holds in
(V + 5 €o00r =00)- O

Lemma 15.21. CZF + Pow "~ I (V.7 €co, =c0) = (V) exists)".

Proof. The elements of the ordinal representation system O7 (¢) = (OT() N £2,
<) are elements of w. In the proof of Lemma 15.20 we defined the internalization
n* e V,i1 of n € w in the structure (V:“, €0 =00)- We will now define the
internalization H () of the ordered pair (a V™) for each a < p. Recall that we
chose p to be of the form w® for some py > 1, so thatforalla < p, o« + @ < p.

For x € Vp?f we use X €oo OP(a*, V™) to abbreviate the following formula:

= [WeV (Ve x © v=a®) V,IVve VT

(VEw X & == (V=g a*V,Tv =4 |Z78)] ¢
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For o < p define

H(e) :=={x € V7,1, | X € OP(a*,V;7)}
Vi={zeV, 7 | ~—3a <pz=c H(@)}.

—_—

One readily checks that H(a) € V5, s and V" € V 1i- It remains to show that
V¥ is the set witnessing that (Vp_*'_', €00, =c0) E (V, exists)" holds. This is so by
design of Vp* but it is rather tedious to check in detail. O

15.7.2 Proof of Theorem 15.1

We use < and = for the relations of being proof-theoretically reducible and proof-
theoretically equivalent, respectively. We have CZFp» + RDC + IIX —AC <
CZFp < IKP(P) using Theorem 15.6 and Theorem 15.2. By Lemma 15.4 and
Theorem 15.3 we get CZFp < T~ < KP(P). CZF + Pow — < MLVp < CZFp
holds by Theorems 15.5 and 15.4. Theorems 15.8 and 15.7 yield KP(P) < Z +
{V; exists’};egy < CZF + Pow™ . Moreover, IKP(P) = IZ + {‘V, exists’},;epn
holds by Theorem 15.7. The upshot of these results is thus that all theories of
Theorem 15.1 are proof-theoretically equivalent. O
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