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Abstract

There are two well-known topos-theoretic models of point-free generalized

spaces: the original Grothendieck toposes (relative to classical sets), and a

relativized version (relative to a chosen elementary topos S with a natural

number object) in which the generalized spaces are the bounded geometric

morphisms from an elementary topos E to S , and they form a 2-category

BTop/S . However, often it is not clear what a preferred choice for the base

S should be.

In this work, we review and further investigate a third model of generalized

spaces, based on the 2-category Con of ‘contexts for Arithmetic Universes

(AUs)’ presented by AU-sketches which originally appeared in Vickers’ work in

[Vic19] and [Vic17].

We show how to use the AU techniques to get simple proofs of conceptually

stronger, base-independent, and predicative (op)fibration results in ETop, the

2-category of elementary toposes equipped with a natural number object, and

arbitrary geometric morphisms. In particular, we relate the strict Chevalley

fibrations, used to define fibrations of AU-contexts, to non-strict Johnstone

fibrations, used to define fibrations of toposes.

Our approach brings to light the close connection of (op)fibration of toposes,

conceived as generalized spaces, with topological properties. For example, ev-

ery local homeomorphism is an opfibration and every entire map (i.e. fibrewise

Stone) is a fibration.
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0Introduction

„ What, then, is the topos-theoretic outlook?

Brie�y, it consists in rejection of the idea that

there is a �xed universe of "constant" sets

within which mathematics can and should be

developed, and the recognition that a notion

of 'variable structure' may be more

conveniently handled within a universe of

'continuously variable' sets than by the

method, traditional since the rise of abstract

set theory, of considering separately a domain

of variation (i.e. a 'topological space') and a

succession of constant structures attached to

the points of its domain.

— Peter Johnstone

From the introduction of Topos Theory

[Joh77]

At the heart of a historical evolution, both in understanding and formalization,

of the notion of spacelies the generalizing move to study spaces not only

by their open parts but also by bundles over that space. This had already

appeared, one could argue, in Riemann's work on Riemann surfaces in the

19th century.

Moving to the 20th century, it was one of Brouwer's critical ideas that checking

equality of two real numbers, represented by their decimal expansions, is

problematic and indeed for constructive reasons one has to work with open

intervals instead since it is possible to verify belonging to open intervals by an

algorithmic process. Equality of two real numbers is the limiting case achieved
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only by in�nite non-constructive means and thus it is illegitimate. This lucid

viewpoint led to further development by H. Weyl in Das Kontinuumand later

by A. Heyting, a student of Brouwer.

The further formalization of this idea led to discovery that open sets of a

topological space, being a special case of what is called a Heyting algebra,

form a model of intuitionistic propositional logic. In this view propositions

are modelled as open parts of a topological space. This is one of the most

signi�cant early examples of mathematical trinitarianism. (See [Shu18] for

recent categori�ed and homotopi�ed analogue.) This discovery should be

regarded in the sequel of an older discovery by Boole and Venn in the 19th

century that a proposition can be seen as “linear manifold” and implication of

propositions as the incidence of linear manifolds ([Car01]).

In the context of algebraic geometry, the generalization from open parts

of a topological space to sheaves (aka bundles) over the space appears in

Grothendieck's work on étale cohomology. It was later shown that this move

corresponds to generalizing propositional geometric logic (internal logic of

locales) to predicate geometric logic (internal logic of Grothendieck toposes)

([MR77], [Vic07]). In type theory (e.g. MLTT even without proof relevance

i.e. without identity types), a similar phenomenon occurs: the paradigm of

“types as propositions” is insuf�cient, and dependent types are modelled by

�brations (a particular kind of bundles).

Toposeswere �rst conceived as kinds of “generalised spaces” which would

provide a foundational frameworks for unifying various cohomology theories,

most notably sheaf cohomology ([AGV72]). It is therefore no surprise that

the �rst de�nition of topos was `topos as a category of sheaves'. For nice

spaces (more precisely `sober' spaces) this topos is as good as the space itself,

from topological point of view. According to its creators the notion of a topos

“arose naturally from the perspective of sheaves in topology, and constitutes

a substantial broadening of the notion of a topological space, encompassing

many concepts that were once not seen as part of topological intuition: : : As

the term `topos' itself is speci�cally intended to suggest, it seems reasonable
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and legitimate to the authors of this seminar to consider the aim of topology

to be the study of toposes.” ([AGV72])

Although the intended models of axiomatic framework of Grothendieck toposes

were all geometrical, workers in category theory made further abstractions

which in retrospect happened to be extremely fruitful. As the historical nar-

rative goes William Lawvere worked on the axiomatic of the category of

categories and he collaborated with M. Tierney on �nding new axioms for

toposes.

Having introduced the sub-object classi�er, Lawvere discovered the notion of

elementary topos and Tierney discovered that a Grothendieck topology is the

same thing as a closure operator on the sub-object classi�er. The idea that

topology can be formulated by the algebraic notion of closure operator was

a new understanding that was achieved by a logical formalization of toposes

which had geometric roots and came from geometric intuitions. Moreover,

once the notion of topos was axiomatized, out of these axioms the new notion

of elementary toposwas born. It was observed their internal logic of elementary

topos is higher order intuitionistic. 1

It was understood that the notion of elementary topos abstracts from the

structure of the category of sets; each elementary topos can be though of as a

universe of set-likeobjects [MR77], and elementary toposes can be assigned

an internal language (Mitchell–Bénabou language) which enables one to

reason about the objects and morphisms of a topos as if they were sets and

functions.

Through study of various models of theory of elementary toposes it became

clear that the abstraction is suf�ciently general that elementary toposes en-

compass not only all Grothendieck toposes (such as the Zariski topos, the

topos of quasi-coherent sheaves, Crystalline topos, petit topos and gros topos,

Nisnevich topos, etc.) but also structured categories from mathematical logic

(e.g. effective toposes in connection with the theory of realizability).

1Only in retrospect by re�ecting on the history of the subject and tracing back the original
ideas of Brouwer, Weyl, and Grothendieck this can be seen natural!
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However, elementary toposes set to depart from the main intuition of `conti-

nuity as geometricity' of toposes. If we take the notion of elementary topos

as a kind of structured category (i.e. a cartesian closed category with power

object) then the a structure-preserving morphism of elementary toposes is not

geometric morphisms, but rather what is known as a `logical morphism'. This

obstructs the essence of toposes as generalized spaces.

One of the main ideas of toposes asgeneralized point-freespaces is that toposes

have natural inherent topologies and toposical constructions are performed

in continuous fashion. The discontinuities arise precisely from replacing

the space by its set of points. Note that by `point-free' we do not mean

ignoring points, but rather to give them a re�ned meaning. It means that

the points are de�ned as models of a geometric theory, not as elements of

a set. Therefore the constraints of geometricity takes the centre stage of

dealing with spaces through the mediation of their point. A great number of

classical spatial construction, based onelements-of-a-setview of points, via

arbitrary transformations of sets of points are deemed illegitimate in our way

of conceiving points of spaces.

For example, some type theoretic constructions such as function types and

� -types, corresponding respectively to the categorical notions of exponentials

and dependent products, are intrinsically discontinuous if understood as con-

structions on sets (discrete spaces). The technical issue in the internal logic

of toposes is that these constructions are not geometric, that is they are not

preserved by inverse image functors of geometric morphisms (See §2.1). When

performed �brewise on dependent discrete spaces they are unfortunately not

preserved by substitution which is a real drawback particularly when it comes

to formulating principles such as induction.

Topos theory also provide arelative and local foundation for mathematics. In

relative topos theory we see a presenting structure in an elementary toposE as

a bounded geometric morphismp: F ! E, where F is the topos of sheaves

over E for the space presented by the structure. Indeed, for suchp, one obtains

a canonical E-indexed topos F whose underlying topos isF and the indexed

category is given byF(I ) := F =p� I , for each object I in E. Therefor, p makes
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F into an E-topos. This is crucial in Johnstone's approach in development of

relative topos theory ([Joh02a]).

Moreover, �xing any elementary topos S , geometric theories give rise to spaces

relative to S .2 The way it works is that one associates to every geometric

�rst order theory T the classifying3 topos S [T] whose category of points is

the category of S -models of T. There is a generic(unique up to canonical

isomorphism) model of T in S [T] which is universal: any model M of T in

an S -topos E is classi�ed, up to a unique equivalence, by a unique geometric

morphism gM : E ! S [T] over S .

The reader familiar with universal algebra may recognize the similarity to the

construction of free algebra (which also yields the presentation of algebras

by generators and relations). A well-known example is the Lindebaum-Tarski

algebra (in this case a frame) L T of a propositional geometric theory T. A

frame morphisms L T ! A is exactly a model of T in A, and therefore the

point of locale [T] corresponding to L T are models ofT. Conversely, any locale

X is the classifying locale of some propositional geometric theory. The same

is true for any Grothendieck topos E over S : there is a geometric theory T

which classi�es E, that is E ' S [T] over S . We usually call such a theory, the

“theory of points of E". This is in line, for instance, with taking the geometric

propositional theory of completely prime �lters of a locale as the theory of

its points. Indeed, any propositional geometric theory presents a locale by

generators and relations. Other examples are theory of groups, theory of rings,

theory of local rings, theory of torsors, etc.

This spells out the meaning of word `generalized' when we view toposes as

generalized spaces, that the theory of their points is �rst order geometric as

opposed to merely propositional (i.e. no sorts, and therefore, no variables,

terms or quanti�ers, no function symbols, and the predicate symbols are all

2If we take S to be the Boolean topos of sets, then we recover classical mathematics in which
the axiom of choice and the law of excluded middle are valid. However, for non-Boolean
toposes, such as toposes of sheaves, the situation is more interesting: the internal logic of
generic topos is intuitionistic. In this light one can see classical mathematics as the limiting
case of intuitionistic mathematics, and the law of excluded middle as a unifying principle.

3It classi�es models of T in all S -toposes by the geometric morphisms landing inS [T].
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nullary). What in set theory appears as various proper classes (e.g. of sets, or

of groups) become here generalized spaces (object classi�er topos, the group

classi�er topos), and as such universes of various kinds appear.

A crucial fact is that two theories T and T0 are S -equivalent4 precisely when

the categories of their models are equivalent in that their classifying toposes

S [T] and S [T0] are equivalent. For example, consider the geometric theory

Tnat consisting of only one sortN, a nullary function symbol z: N (i.e. a constant

symbol) and a unary function symbol s: N ! N subject to the following

(geometric) axioms:
z = s(n) ` n: N ?

s(m) = s(n) ` m;n: N m = n

> ` n: N

_

n2 N

n = sn (z)

where sn (z) stands for the term s(: : : (s(z)) : : :) with n occurrences ofs.

Relative to any base elementary toposS , equipped with the natural number

object (nno) N , the theory above and the empty theory are equivalent: In any

model of T in any S -topos p: E ! S , the sort N is interpreted as an object

that is isomorphic to the nno p� N in E, by a unique isomorphism under which

the constant z corresponds to the natural number 0, and the function symbol s

corresponds to the successor operation ofp� N .

This indeed shows that the notion of equivalence of theories depend on the kind

of in�nite structures the base topos supports, and therefore, the equivalence

of theories is `relative' to the base topos.5

Therefore, Grothendieck toposes (i.e.Set-valued sheaf toposes over sites) and

relative toposes (i.e. the 2-categoryBTop=S of bounded toposes over a �xed

baseS with nno) offer two models of point-free generalized spaces. BTop=S

is studied in [Joh02a, §B.4].

4Or to put it differently, as far as S is concerned.
5Whereas this observation seems to go against the formal/de�nability account of structural

properties, it does yield support to the invariance account of structural properties, �rst
proposed by Felix Klein.
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A third model is put forward in [Vic19] and [Vic17] is contexts for Arithmetic

Universes. They form a (strict) 2-category Con.

In what sense are `contexts for Arithmetic Universes' models of generalized

point-free spaces? Well, the structures of AUs parallel (relativized) Giraud's

characterization of relative Grothendieck toposes, except that AUs have only

�nitary fragment of geometric logic, and instead of in�nitary disjunctions being

supplied extrinsically by a base topos (e.g. the strucuture of small-indexed

coproducts), we have sort constructors for parametrized list object that allow

some6 in�nities to be expressed intrinsically. The goal is to see to what extent

AUs can replace Grothendieck toposes as models of spaces. In this approach,

geometric theories are replaced by AU-contexts, kind of thought of astypesof

type theoryof AUs, presented by sketches ([Vic19]), and geometric morphisms

are replaced by AU-functors, corresponding to the inverse image functors. AU-

contexts provide a base-independent model for generalized point-free spaces

in the sense that they form a 2-categoryConwhich gets embedded into GTop,

the 2-category of all relative toposes over all bases, via their classifying AUs.

We emphasize that throughout this dissertation all elementary toposes are

assumed to have nno, and we rely on it in a crucial way. Without nno, we

would not be able to construct the object classi�er topos, a key player in

making the model of AU-context of point-free generalized spaces work. Note

that existence of nno is sometimes referred to as “axiom of in�nity” for toposes

analgous to the same axiom in ZF set theory ([Bla89]).

In Chapter 4, we show how to use the arithmetic universe (AU) techniques

of [Vic17] to get simple proofs the stronger, base-independent (op)�bration

results in ETop, the 2-category of elementary toposes with nno, and arbitrary

geometric morphisms.

More precisely, for an extension mapU : T1 ! T0 in Con, and a model M of

T0 in S , an elementary topos with nno, there is a geometric theory T1=M,

6But not all! Nonetheless, we have enough in�nities to develop point-free continuum for the
purposes of calculus and real analysis.
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of models of T1 whose T0-reduct is M , and so we get a classifying topos

p: S [T1=M] ! S ([Vic17]). The main result of [HV19] then states

if U is an (op)�bration in Con, using the Chevalley criterion,

then p is an (op)�bration is ETop, using the Johnstone criterion.

The main novelties of our approach from other previous work are manifold:

�rst, avoiding the use of impredicative structures of toposes (because of

the subobject classi�er 
 and the power-objects) which makes our methods

compatible with arithmetic universes.

Secondly, achieving the results for all toposes uniformly and independent of

their base. This guarantees that the results are valid for all toposes over all

bases including non-Boolean bases and thus they are full constructive. This

approach promises a way to develop a rich theory of �brations and op�brations

of toposes over various elementary toposes which are not classical such as the

effective topos.

Third, the �brations of contexts are much easier to work with since they enjoy

certain strictness property at the level of models and also are all �nitary in

terms of their construction. All existing 2-limits and colimits in Conare strict

whereas they are weak (i.e. they are bicategorical limits) in BTop=S and

GTop.

Above all, we argue that our approach is conceptually stronger than [Joh02a]:

if we are to prove a geometric morphism p: E ! S in ETop is a �bration

(resp. op�bration) we have to show the existence of a lifting structure for every

geometric morphism from A to S , and for every geometric transformation

between any such two geometric morphisms. However, ifp arises from a

�bration of AU-contexts U : T1 ! T0 (as in Theorem 4.2.2) we only need to

check the (strict) lifting structure along the generic codomain (resp. domain)

map T !
0 ! T0. Crucially, this lifting structure is strict which in practice
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makes the problem of veri�cation of tracking coherence data (of the involved

pullbacks) much easier.

The results presented in this thesis should be seen in a bigger context of the

programme of adapting classical reasoning to constructive reasoning, while at

the same time reducing a priory impredicative principles in certain systems to

predicative ones (See [Mai05a], [Mai10a], [MV12]).

0.1 The outline of the thesis

We end this introduction by giving a road map of chapters.

The �rst chapter is a self-contained and suf�ciently general introduction to

the well-established theory of 2-categories and bicategories. Although it is

written in an expository manner, certain points were emphasized as they serve

a foundation for the later developments for the next chapters. It serves to

provide the concepts and structures needed in the rest of the thesis. However,

for our expert reader the only essential parts to the story of the thesis are §1.6,

and the Construction of `display sub-2-category' in §1.4.

One of the underlying principles of this chapter is that categorical notions and

constructions are best expressed in the language of 2-categories; this principle

is known as formal category theory.

However, there is another principle which is dominant in the later chapters,

particularly in Chapters 3 and 4: in many situations, the correct way to

organize a collection of mathematical objects is not as objects of a category

but as points of a generalized space. Notions from category theory can be

transferred to objects of a more general kind, and in particular generalized

spaces, by collecting the generalized spaces into 2-categories.

These two principles are actually not in con�ict for the abstraction involved

in the de�nition of 2-category is general enough so that the “formal study of

0.1 The outline of the thesis 9



categories" can be applied to structures other than pure categories, for instance

toposes (as generalized spaces). This idea is a vital part of the main results.

Another important motif in writing this chapter has been the observation

that the two models of generalized spaces, namely the 2-categoryConof AU-

contexts (Chapter 3) and the 2-categoryGTop of Grothendieck toposes (§1.6)

exhibit different 2-dimensional properties: the former is strict and the latter

has interesting bicategorical properties (§1.6). For us, the delineation of the

2-categorical and bicategorical features has been crucial in discussing various

notions of 2-limits in §1.9.

In Chapter2, following the principle of formal category theory, we review

two distinct styles to study Grothendieck (op)�brations in 2-categories and

bicategories. We call them respectivelyChevalley-styleand Johnstone-style.

Using the construction of display sub-2-category from Chapter 1 we give

a cogent and novel reformulation of Johnstone-style �brations in terms of

�brational objects. The utility of this reformulation is that it repackages lots

of coherence data in the de�nition of Johnstone-style �brations, arising from

bipullbacks involved in that de�nition, into the universal property of cartesian

morphisms of a certain �bration of bicategories.

For the reader already familiar with the theory of Grothendieck �brations, we

suggest to skip most parts except §2.4, §2.5, §2.6. In Chapter 3, we present the

third model of generalized spaces, that is the 2-categoryConof AU-contexts

(§3.3) and study its features. We quickly review the main aspects of the theory

of AU-contexts, our AU analogue of geometric theories in which the need for

in�nitary disjunctions in many situations has been satis�ed by a type-theoretic

style of sort constructions that include list objects (and an nno). The contexts

are “sketches for arithmetic universes” [Vic19], and we review the principal

syntactic constructions on them that are used for continuous maps and 2-

morphisms. We also introduce the notion of �bration of contexts (§3.4) and in

the next chapter we prove that they beget �brations of toposes.
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As an original contribution, we shall use this reformulation in obtaining �-

brations and op�brations in the 2-category ETop of elementary toposes from

Chevalley-style �brations of AU-contexts in Chapter 4.

Finally, in Chapter 5 we shall consider some further examples, potential appli-

cations, and few conjectures concerning new avenues for future research. We

shall state these conjectures and give a sketch of a potential proof. We warn

that the discussion will be more impressionistic than scienti�c. One such appli-

cation concernsbag toposes. Bag spaces originally appeared as “bagdomains”,

was in [Vic92] in the context of directed complete posets (dcpos). In a series

of papers ([Joh92], [Joh93], [Joh94]) Johnstone gave a characterization of a

bag topos7 B ag(E) as a 2-categorical partial product of E and the op�bration

S [O� ] ! S [O] of object classi�er, among other things. Indeed, to take a

proper account of specialization (already essential in the dcpo case) it relies on

the fact that sets (discrete spaces) are op�brations. Some colimits of toposes

(e.g. coproducts, lifting, scones) can be then be constructed from bag toposes.

We state few conjectures which put a research path forward to construct partial

products of AUs from bag context.

7Given a spaceE, B ag(E) is the space whose points are bags of points (i.e. set-indexed
families of points) of E. To use type theoretic notations, it would roughly be expressed
as � I :U � i :I E, where U is a universe of discrete spaces. In this sense it is an analogue
of powerdomain. When E has one point B ag(E) is equivalent to the object classi�er.
Furthermore, Johnstone's 2-categorical generalization made it possible to vary the type of
the indexing object; initially, it was considered a set, but it could very well be a a category,
or a spectral space.

0.1 The outline of the thesis 11





12-Categorical preliminaries

In this chapter we give a concise and self-contained review of the theory of 2-

categories and bicategories which constitutes a scaffolding of the next chapters.

In particular, §1.2 explains the passage from 2-categories to bicategories which

involves a certain weakening of unit and composition structures.

Elementary toposes and Grothendieck toposes (over a �xed base or otherwise),

which are the main objects of our interest, actually form 2-categories but

a mixed 2-categorical and bicategorical approach is most suitable to them.

The need for such an approach is discussed in §1.6 at a greater length: one

such need is that the existing limits and colimits of diagrams of toposes are

bicategorical. In §1.9, we give a comprehensive and self-contained review of 2-

categorical and bicategorical limits (aka weak limits) with a special focus on the

delineation between the two. Most signi�cant for us is the well-known class of

PIE limits; the 2-category Conof AU-contexts1 (the most signi�cant 2-category

for us in Chapter 3) has PIE limits. In §1.4, we introduce the construction of

`display sub-2-category' which shall be essential in later developments in our

new characterization of Johnstone �brations in terms of �brational objects of

the codomain 2-functorin §2.6.

We begin in §1.0 introducing the ideas behind the de�nition of 2-category

by explaining the link to formal category theory. In §1.8 (and also in §A.7)

we shall give a �avour of the view of 2-categories as a framework for formal

category theory in action. Few basic concepts of category theory and facts

about them are done intrinsically to 2-categories. These section are not meant

to serve as an encyclopedia, but rather as a keyhole perspective as an opening

to the vast playground of formal category theory within 2-categories.

1AU is short for Arithmetic Universe.
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The main references that have been consulted for writing this chapter are

[Bén67], [Gra74], [Str72], [BKP89], [Kel89], [GPS95], [PR91], [Joh02a],

[Lac10a], [Lac10b], and [Gur11]. There are handful others to which we shall

refer in the relevant individual sections.

1.0 Introduction

Before getting into the business of de�ning 2-categories, bicategories and their

morphisms in the next sections, we would like to engage the reader with a

broader picture of higher category theory which as its building block includes

2-categories and bicategories but it paints much more. Although this thesis

does not need higher categories other than 2-categories and bicategories, a

short discussion of higher categories in below sheds light on 2-categories and

bicategories themselves.

Higher category theory can be seen under two different lights: �rst as a

generalization of homotopy types of spaces, and second, as a higher analogue

of the notion of category. In the �rst case, the inspiring force has been the

homotopy hypothesis, originally due to Grothendieck (e.g. in Pursuing Stacks)

which roughly asserts that (weak) higher groupoids should classify homotopy

types. The weak higher structures in fact has been the hardest part in providing

a fully algebraic de�nition of higher groupoids which model homotopy types

of spaces. Higher categories generalize higher groupoids in that the paths (or

better known as morphisms) between objects and higher paths between paths

have a direction and are not necessarily invertible. If we regard morphisms

as physical processes of some kind, it is quite natural to not require their

invertibility; after all some processes lose information and are not revertible.

That is essentially why categories are more commonly found than groupoids

in mathematics, and in applications to sciences.

Another way to arrive at higher categories from categories is the idea ofproof

relevance. To make this clear, we give an example here. In a certain category

(i.e. a model of �rst order theory of categories), we can reason about equality

of morphism. For instance, we have the following rules:
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• f = g, g = l ` f;g;l f = l .

• f = g, dom(h) = cod(g) ` f;g;h h � f = h � g

• h = k, dom(f ) = cod(h) ` f;h;k f � h = f � k

From these we can deduce

f = g; h = k; dom(h) = cod( f ) ` f;g;h;k h � f = k � g

We can go beyond themere fact of equality of two morphisms, and also

keep track of process of proving equality of morphisms. For instance two

morphisms f and g can be proved to be equal by knowing that f = f 2 � h,

h = f 1 � f 0, g = k � f 0, and k = f 2 � f 1. The proof of equality of f and g uses

the associativity law of category where all this morphisms are situated. If we

update our knowledge by getting extra data that f 0 is an identity morphism,

then we get a different proof using the unit law of the category and the last

rule above. The main idea of proof relevance applied to this situation is that

we should go beyond the strucuture of categories to be able to speak about

different proof of equality of morphisms. An equality proof f = g can be

regarded as a (bidirectional and invertible) morphism from f to g. The proof-

relevance view leads one to go beyond groupoid and to the realm of higher

groupoids, and in fact this move is at the core of conception ofh-level of types

in homotopy type theory (HoTT).

However, to be more general, we might not want to impose the condition that

the proofs of equality of morphisms are either bidirectional or invertible. In

fact, we might even think of these morphisms as reduction processes than

proofs. So, if morphisms are conceived of as general processes, then the

reduction processes might be regarded as processes between processes. In

the parlance of higher 2-category theory they are called2-morphisms. We can

think of 2-categories as categori�cation of categories. The 2-categories can

be weak in that the unit and associativity laws of morphisms hold only up

to invertible 2-morphisms (aka iso-2-morphisms). Following Bénabou, they

are referred to as bicategories in the literature of higher category theory. We
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shall reserve the term 2-category for strict 2-categories where the unit and

associativity laws of morphisms hold strictly.

Of course, there is nothing that stops us here: similarly, we might be interested

in keeping track of reduction (or equality) of certain 2-morphisms from other

ones. Pursuing this idea to its end, we get 3-categories which additionally

possess 3-morphisms between 2-morphisms.

Repeating the process leads to the concept ofn-categories and as a “colimit" of

this process we obtain1 -categories which consist ofk-morphisms for every

k = 0; 1; 2; : : :. However, the simplicity of this picture is deceiving and the

details have been omitted. In general, it not straight-forward to replace the

“structural equalities" which are part of the theory of categories by higher

morphisms.

In this chapter we shall give an expository account of 2-category and bicategory

theory. By no means, our account will be comprehensive. For the most part,

we shall include what is essential for the plan of thesis. As such, we emphasize

on the issues of strictness, pseudoness, and laxness, and the corresponding

notions of representability to which they give rise. Accordingly, we review

construction of weighted limits and colimits with several important examples;

they are primarily viewed as 2-dimensional generalizations of ordinary limits

and colimits of category theory.

In §1.3, it is argued that strict 2-functors are the most well-behaved morphisms

of 2-categories when it comes to existence of various limits and colimits.

However, it is sometimes useful to have pseudo functors between various

2-categories of toposes. Also, the essential tool of relative topos theory is that

of indexed categories which are essentially pseudo functors to the 2-category

Cat of locally small categories. As such we shall be concerned with pseudo

functors in this chapter.

In §A.6 we review the well-known facts that every bicategory is biequivalent

to a 2-category, and that every pseudo functor is pseudo naturally equivalent

to a strict 2-functor. What's more, many 2-categories of toposes are indeed
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strict in that they are strictly unital and associative. So, a natural question is

that why do we need to talk about bicategories in this chapter?

The reason is, and this is particularly crucial for us, that many phenomena,

such as limits and colimits, in various 2-categories of toposes are bicategorical.

The analogue of categorical limits and colimits for bicategories is given by

the notion of weighted limits and colimits. They are only determined up to

equivalence, but in the 2-categoryCat there is a canonical choice.

We ocassionally make use of the theory of enriched categories, especially in

the cases where enriched de�nitions and constructions are more cogent and

concise than the elementary description in terms of objects, morphisms, and 2-

morphisms. Although, the important point to bear in mind is that all enriched

notion used in this chapter with regard to bicategories can be carried out in

elementary terms. This means we are not bothered by size issues (e.g. that the

2-category of categories is notCat-enriched).

A word on notations: throughout the rest of this paper and particularly in

this chapter, we organize categories and 2-categories themselves into various

categories and 2-categories (of larger size) based on different notions of

morphism between them which will be de�ned in §1.3. The table 1.1 can be

used as a notation guide.

We have notexplicitly imposed size constraints on categories as objects ofCat.

Note that in absence of any smallness conditions, categories, functors, and

natural transformations do not form a 2-category (de�ned as a Cat-category)

since for categoriesC and D, the functor category [C; D] is not necessarily

small, e.g. takeC = 1 and D = Set. Indeed, we have a meta 2-categoryCAT of

(possibly large) categories, functors, and natural transformations. The genuine

2-category Cat in the table above is in fact the 2-category consisting of small

categories, and by `small' here we mean internal to an elementary base topos

S , e.g. Set. We apply the same standard for all other terms in the table above.

In few places, we will allow ourselves to use the cartesian closed structure of

Cat, and we will be explicit about that. However, CAT does not admit such a

structure.
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Symbol Meaning

Cat Category of categories and functors

BiCatstr Category of bicategories and strict 2-functors

BiCat Category of bicategories and pseudo functors

BiCatlax Category of bicategories and lax functors

Cat 2-Category of categories, functors and natural
transformations

2 Cat 2-Category of 2-categories, strict 2-functors, and strict2-natural
transformations

2 Catpsd 2-Category of2-categories, pseudo functors, and strict2-natural
transformations

2 Catlax Sesquicategory of 2-categories, strict 2-functors, and lax natural
transformations

Icon 2-Category of 2-categories, lax functors, and icons

2 Cat 3-Category of 2-categories, strict 2-functors, strict 2-natural
transformations, and modi�cations

Gray Tricategory of 2-categories, strict 2-functors, pseudo natural
transformations, and modi�cations

2 Catpsd 3-Category of 2-categories, pseudo-functors, pseudo natural
transformations, and modi�cations

Hom Tricategory of bicategories, pseudo functors, pseudo natural
transformations, and modi�cations

Fig. 1.1.: A notation guide to various (weak) n-categories of (weak) k-categories

We shall usejj (� )jj
1

to denote the truncation of a 2-category to its underlying

category by forgetting all 2-morphisms (See 1.4.3). For instancejj2 Catstr jj
1

is the category of (small) strict 2-categories and strict 2-functors between

them, and jj2 Catpsdjj 1
is the category of strict 2-categories and pseudo functors

between them. For a relationship of various categories of (small) bicategories

see 1.7.

A closer look at the table above shows several interesting irregularities:
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• There is no 2-category or even a bicategory having bicategories as its

objects. This is not accidental and the reason for it appears in Remark

1.3.6.

• Passing from2 Catstr to 2 Catlax we do not get a 2-category but a weaker

strucuture of `sesquicategory' ([Ehr63], [Str96]). Like a 2-category, a

sesquicategory has objects, morphisms, and 2-morphisms. Like a 2-

category, it possesses a strictly associative and unital composition of

morphisms, a strictly associative and unital vertical composition of 2-

morphisms, and whiskering of 2-morphisms with 1-morphisms on both

sides. Unlike a 2-category, this whiskering does not satisfy theexchange

law (See Appendix A.4).

• Passing from2 Catlax to Icon we do get a 2-category again, but we are

forced to consider not all `lax natural transformations', but special kinds

of them called `icons'. We shall see more icons in §1.3.

1.1 What is a 2-category?

Whereas category theory provides a framework to organize collection of math-

ematical objects into categories and study them within those category, purely

in terms of objects, morphisms, and their compositions, 2-category theory

gives us a framework to study categories themselves in a formal manner.

Along this idea, the �rst essential observation is that whatever de�nition of

2-categories we propose, one thing is clear: categories, functors, and natural

transformations should form the archetypal example of such a de�nition.

The theory of 2-categories has three sorts: a sort for objects, a sort for 1-

morphisms, and �nally a sort for 2-morphisms. It also has partial operators for

various compositions of 1-morphisms and 2-morphisms together with unit and

associativity axioms which ensure these compositions are coherent. In order

to formally study categories, we should abstract away from their de�nitions

as categories and treat them purely as objects of the 2-category of categories
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with certain essential properties which have to be distilled into laws or axioms

to ensure that a certain 2-category behaves in those essential ways likeCat.

This view is memorably summarized by Gray in [Gra74] which states that

The purpose of category theory is to try to describe certain general

aspects of the structure of mathematics. Since category theory is

also part of mathematics, this categorical type of description should

apply to it as well as to other parts of mathematics.

As it is the case with the study of categories, we do not study a 2-category in

isolation, but rather we put the real importance on morphisms of 2-categories,

that is the ways in which a certain 2-category relates to other2-categories.

To give a concrete example consider the theorem concerning the uniqueness

of adjoints up to a unique isomorphism. A standard categorical proof of this

fact goes as follows: supposeR : A ! X is a functor which has a left adjoint.

We want to show that any two left adjoints of R are (naturally) isomorphic.

AssumeL; L 0: X ! A are both left adjoints of R. Then

A(LX; A ) �= X(X; RA ) �= A(L0X; A )

and these bijections are natural inX 2 X and A 2 A. By Yoneda lemma,L and

L0 are naturally isomorphic. A 2-categorical proof should be expressed only

by objects (categories), 1-morphisms (functors), and 2-morphisms (natural

transformations). As such, we should not really be using objects of categories

like above. Recall that an adjunction of categories can be purely expressed in

terms of unit, counit, and two equations (known as the triangle equations); for

any object X of X, the left hand side diagram commutes and for any objectA

of A the right hand side diagram commutes.

L(X ) LRL (X )

L(X )

L (� X )

1
� LX and

R(A)

RLR (A) R(A)

� R ( A )
1

R(� A )

(1.1)
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One can express these equations without reference to the objects ofX and A

and only by equations involving natural transformations.

X X

A A

L LR

�

�

=

X

A

L L and

A A

X X

R RL
�

�
=

A

X

R R

(1.2)

Therefore, for left adjoints (L; �; � ) and (L0; � 0; � 0) of functor R : A ! X, one

readily checks that the natural transformations (�L 0) � (L� 0), from L to L0, and

(� 0L) � (L0� ), from L0 to L, are inverses of each other and therefore,L and L0,

are isomorphic.

In fact, as we shall see the adjoint situationf a u in 2-categories are in a sense

one of the most general form of expressing universal properties of morphisms:

liftings, extensions, cartesian properties, �brations, etc. can be expressed in

terms of adjoint pairs.

Consider the example of a category equipped with terminal object. In standard

category theory, a categoryC is equipped with a terminal object 1 is expressed

by the universal property of the limit over the empty diagram. How do express

this purely 2-categorically? We observe the structure of a terminal objectT

of C is equivalent to a (fully faithful) right adjoint T of the unique functor

! : C ! 1 (where 1 is the terminal category.) In the above discussion we

showed how the structure of adjunction is inherently 2-categorical. Therefore,

in any 2-category K with a terminal object 1 (which is in here representably

de�ned by the equivalence K(X; 1) ' 1, for every object X in K), we de�ne an

object equipped with a terminal pointto be a right adjoint t of !X : X ! 1. The

left equation in (1.2) gives no new information and the right equation simply

says that� � t = id t .

So we conclude that in a 2-category with a terminal object1, an object equipped

with a terminal point consists of (X; t : 1 ! X; � : 1X ) t� !X ) satisfying

� � t = id t . In K = Cat this is exactly a category equipped with a terminal object.

In K = BTop this is a pointed topos. Of course the dual structure gives the
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notion of an object equipped with an initial object: it is a left adjoint i a !X ,

and therefore, it can be described by the triple (X; i : 1 ! X; � : i � !X ) 1X )

satisfying � � i = id i

The main lesson of this and many other similar observations is that by writing

the constructions of category theory in the language of 2-categories, not only do

we get useful generalization to other, sometimes vastly different, 2-categories

than Cat, but also we understand the essence of the very same categorical

constructions in a deeper and more categorical way.

In the presentation of this chapter, we shall rely on a modicum of enriched

category theory. For an extensive treatment of enrichment see [Kel82]. The

idea is that an enriched category is a category in which the hom-functors take

their values in some monoidal category(V; 
 ; I ) instead of (Set; � ; f ?g), and

composition is formulated by the monoidal structure of V. A concise account

of all which we shall assume about enriched category theory can be found in

[Lur09, Appendix A.1.4]. Although in this thesis we only need enrichment in

the monoidal category of (small) categories, the use of enrichment in general

goes much further beyond than that. To give but one example,graph-enriched

categories (whereby hom-sets are graphs instead of sets) are extensively studies

in the theory of rewriting. The objects are types, the vertices of hom-graphs

are terms, and the edges of hom-graphs are term-rewrites which describe the

process of computation ([SM17], [BW19]).

DEFINITION 1.1.1. A 2-category is aCat-enriched category, whereCat is the carte-

sian closed monoidal category of small categories and functors. A2-functor be-

tween 2-categories is aCat-enriched functor.

If K is a 2-category andx and y are two objects of K (i.e. elements of the

underlying class of objects of K), then we depict an object f of the hom-

category K(x; y) by a 1-cell f : x ! y, and a morphism � of the hom-category

K(x; y) by a 2-cell

x y
f 0

f

� :
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However, we call f a 1-morphism and � a 2-morphism instead of calling

them 1-cell and 2-cell respectively, as is customary in some of the literature of

higher category theory. We follow the principle of not naming concepts based

on a certain model in which those objects are represented especially when there

are other models whereby those same concepts get different names: For 2-

categories, other thanpasting diagramspictured by cells of various dimensions,

there are string diagramswhich are planar dual to cellular pasting diagrams.

Objects are depicted as regions, 1-morphisms as lines/wires separating regions,

and 2-morphisms as nodes (or boxes) separating (or connecting) lines (or

wires). For more on string diagrams we refer the reader to the appendix A.5.

1.2 From 2-categories to bicategories

It happens that the structure of 2-categories andCat-enriched categories and

particularly 2-functors is too strict and fails to deal with many interesting

practical cases. For example, algebras, bimodules, and bimodule morphisms

form a bicategory, not a 2-category, because tensor product is associative and

unital only up to a non-trivial isomorphism.

Notice that this situation is the categori�ed version of strict monoidal categories

and monoidal categories. Even though strict monoidal categories are easier to

work with they often are too strict and non-interesting in practice; for instance

the monoidal category Vec f in
C of complex �nite dimensional vector spaces over

the �eld of complex numbers C is a monoidal category which is not strict

monoidal. Nonetheless, by the coherence theorem of Mac Lane we know

that every monoidal category is equivalent to a strict monoidal category. (For

formulation and proof see [ML98] and [JS91].) A similar coherence theorem

exists for 2-categories and bicategories.
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The notion of bicategory is a weakening of notion of 2-category; we haveweak

unital and associativity of 1-morphisms. To see this more clearly, supposeK is

a 2-category. By de�nition, the diagram

K(x; y; z; w) K(x; z; w)

K(x; y; w) K(x; w)

1� cx;y;z

cy;z;w � 1 cx;z;w

cx;y;w

(1.3)

commutes2, and this precisely expresses the associativity law of composition of

1-morphisms and horizontal composition of 2-morphisms. It means that for any

1-morphisms f : x ! y, g: y ! z, and h: z ! w, we have(h � g) � f = h � (g� f )

and, furthermore, for any 2-morphisms � ,  , and � of the form

x y
f

f 0

� y z
g

g0

 z w
h

h0

�

we have � � ( � � ) = ( � �  ) � � . The structure of a bicategory requires that the

strict equality in the associativity law of 1-morphisms above to be weakened to

an (speci�ed) iso-2-morphism natural in arguments f; g; h . This can be done

by requiring that diagram (1.3) commutes up to a natural isomorphism � x;y;z;w

for all objects x; y; z; w. Therefore, we have� (f; g; h) : (h � g) � f �= h � (g � f )

and also, the diagram below of iso-2-morphisms commutes.

(h � g) � f h � (g � f )

(h0 � g0) � f 0 h0 � (g � f 0)

� (f;g;h )

( �� )��  �(� �� )

� (f 0;g0;h0)

(1.4)

Similarly, one weakens the unital law so that for any 1-morphism f : x ! y

there exists an iso-2-morphism� x;y (f ) : f � 1x
�= f and � x;y (f ) : 1y � f �= f ,

naturally in x; y; f . In the literature the 2-morphism � is referred to as the

“associator”, � as the “right unitor”, and � as the “left unitor”. They are required

to satisfy the familiar coherence conditions. For a full list of coherence laws of

bicategories see Appendix §A.1. For external references we refer the reader

2We use the shorthand notationK(x1; x2; : : : ; xn ) for K(xn � 1; xn ) � : : : � K(x0; x1).
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to [Bén67] and [Lei98]. A historical discussion of bicategories appears at the

�nal section of this chapter.

A good exercise, which helps one to parse the list of coherence axioms of a

bicategory, is to show that the notion of bicategory is a categori�cation of the

notion of monoidal category, i.e. a bicategory with one object is the same thing

as a monoidal category, and moreover, for every objectA in a bicategory K,

the endomorphism categoryEndK(A) = K(A; A) is a monoidal category. The

following are the paradigmatic instances of bicategories which we use again

and again to justify certain bicategorical formalizations of various categorical

concepts.

EXAMPLE 1.2.1. For a monoidal category(V; 
 ; I; �; �; � ) there is an associated

bicategory� V which has only one object� and� V(� ; � ) := V. The identity mor-

phism is given by the unit� I�! � , and the composition of� X�! � Y�! � is given by

� X 
 Y���! � . The 2-morphisms are morphisms ofV, the vertical composition is given

by their categorical composition and their horizontal composition is given by tensor-

ing. The bicategory� V is referred to asdelooping(and sometimes suspension) ofV.

In this way, bicategories naturally generalize monoidal categories.

EXAMPLE1.2.2. From any topological spaceX we can extract a bicategory, indeed

a bigroupoid� � 2X . An object is a pointx of X , a 1-morphisms is a pathp: x ! y

in X (i.e. a mapp: I ! X whereI is the unit interval with its standard Euclidean

topology.) and a 2-morphism is a homotopy class of paths (i.e. a class� = [ h] where

h: I � I ! X is continuous withh(0; 0) = h(0; 1) andh(1; 0) = h(1; 1). The equiv-

alence class above is de�ned with respect to the homotopy relation:h0 � h1 iff there

exists a homotopyH : I � I � I ! X with H (� ; � ; 0) = h0 andH (� ; � ; 1) = h1 ).

Paths can be composed, however, as we do not quotient by the relation of homotopy,

such composition is not associative. Associativity is only up to isomorphism: for

paths�; �;  we have � (� � � ) ' ( � � ) � � by continuous re-parametrization.

We note that 1-morphisms in� � 2X are equivalences (weakly invertible) and all

2-morphisms are (strictly) invertible. Any bicategory in which all 1-morphisms are

equivalences and all 2-morphisms are invertible is called a bigroupoid. A bigroupoid

is strongif 1-morphisms are strictly invertible. Bigroupoids are groupoid-enriched

(akatrack categories). [Rob16] shows that� � 2X is indeed a topological bicategory.
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EXAMPLE 1.2.3. There is a bicategoryTop� 2 of topological spaces. Here the ob-

jects are topological space, 1-morphisms are continuous maps, and 2-morphisms are

equivalence classes of homotopies. In a similar way, one constructs the bicategory

of pointed-topological spaces.

Some 2-categorical de�nitions go through bicategories without much change.

For example the de�nition of an adjoint pair de�ned in §1.1 in 2-categories

can be de�ned in bicategories. An adjoint pair of morphism f a u: y ! x in a

bicategory B is de�ned by the following triangle equations (of 2-morphisms)

f f 1x f (uf ) (fu )f 1yf

f

� � 1
f f � � � � 1 � � f

idf

� f

u 1xu (uf )u u(fu ) u(1y)

u

� � 1
u � � u � u � �

idu
� u

1.3 Morphisms of bicategories

For any particular mathematical structure, there is a category whose objects are

instances of that structure, and whose morphisms are the structure preserving

maps (aka homomorphisms) from one instance to the other. Examples are the

category M on of monoids, the categoryGrp of groups, the categoryCRing of

commutative rings, the category DistL at of distributive lattices, the category

M an of smooth manifolds, etc.

Similarly for the structure of category (with a cartesian �rst order theory

consisting of two sorts), we have the category of categories and functors which

is the underlying category of a 2-category, namely the 2-category of categories,

functors, and natural transformations. If the mathematical structure we begin

with is itself 2-dimensional, such as the structure of bicategory, then again we

can make the category of instances of that structure and structurepreserving

maps. However we should take care in what we mean by preservation here.

Since the notion of structural identity between 1-morphisms of a bicategory is

iso-2-morphism rather than strict equality it is unreasonable to ask for a mor-
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phism of bicategories to preserve compositions of 1-morphisms up to equality.

In our paradigmatic examples 1.2.1 and 1.2.2, neither a monoidal functor

nor a continuous map of spaces preserve the composition of 1-morphisms in

bicategories� V and � � 2(X ) up to equality. In both cases the compositions are

preserved up to a canonical iso-2-morphism. This is the main intuition behind

the concept of pseudo functor. The details of its de�nition is deferred to the

appendix.

In this section, we shall also look at the contrast with strict and lax morphism

of bicategories. However, for good reason which we will mention, pseudo

functors are the structure preserving morphisms of bicategories. It turns out

that bicategories and pseudo functors form a tricategory whose 2-morphisms

and 3-morphisms are respectivelypseudo natural transformationsand modi�-

cations.

Still we would like to have strict and particularly lax functors around. For any

structure, weaker notion of morphisms of structures than homomorphisms are

occasionally useful. For instance, any two elementary toposes can be glued

together along a cartesian functor to obtain another topos. Similarly, any two

2-categories of algebras of monads can be glued together along lax functors to

obtain a 2-category of algebras.

It is useful to continue our analogy between bicategories and monoidal cate-

gories. There are various notions of morphisms between monoidal categories:

strict monoidal functors, pseudo monoidal functors, and lax monoidal functors.

similarly, between bicategories, there arestrict 2-functors, pseudo functors, and

lax functors.

A pseudo-functor of bicategories is a weaker notion than strict 2-functors

of bicategories in the sense that a pseudo-functor preserves composition of

morphisms only up to a chosen iso-2-morphism. A pseudo-functorF : B ! C

of bicategories assigns to any identity morphism 1x : x ! x in B an iso-

2-morphism �x : 1F x
�= F (1x ) and to every pair of composable morphisms

f : x ! y and g: y ! z in B , an iso-2-morphism � f;g : F (g) � f (f ) �= F (gf ).

These assignments are natural and they cohere with bicategorical structures of
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B and C. See §A.3 for a complete de�nition of pseudo-functors including a

full list of coherence conditions. We shall refer to iso-2-morphisms� x and � x

ascomparison (aka constraints ) 2-morphisms.

A strict 2-functor (cf. De�nition 1.1.1) can be viewed as a pseudo-functor

whereby comparison 2-morphisms� and � are identity 2-morphisms. 1 Pseudo-

functors of bicategories are generalized tolax functors by dropping the con-

dition of invertibility of �x : 1F x ) F (1x ) and � : F (g) � F (f ) ) F (gf ) for all

x in B 0 and all (composable) morphisms f and g. Reversing the direction of

comparison 2-morphisms yield the notion of oplax functors 3 of bicategories.

An oplax functor of the type B ! C is the same thing as a lax functor of the

type B co ! Cco. An (op)lax functor of bicategories is normal (resp. strictly

normal ) whenever the comparison 2-morphisms� x are all iso (resp. identity)

2-morphisms .

REMARK 1.3.1. We recall two well-known observations on lax functors ([Bén67],

[Lac10a]):

(i) A monad in a bicategoryB is precisely a lax functor1 ! B .

(ii) For a monoidal categoryV and a setC0, a lax functorC : C0
ind ! � V is a

V-enrichment structure on elements ofC0. Note thatC0
ind is the indiscrete

category ofC0 so that the unique functorC0
ind ! 1 is fully faithful.

C0
ind � V

1

C

(1.5)

Note thatC(x) = � for all elementsx 2 C0, and we writeC(x; y) 2 V for the

value ofC at the unique morphism fromx to y in X ind . The lax constraints

give the (enriched) compositionC(y; z) 
 C(x; y) ! C(x; z) and the unit

I ! C(x; x). In particular a lax functorC : C0
ind ! � Set, whereSet is

3Lax and oplax functors of bicategories generalize lax and oplax functors of monoidal
categories.
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the cartesian monoidal category of sets, is just a small category whose set of

objects is exactlyC0.

Consider two functors F; G: B � C of categories and a natural transformation

� : F ) G. For any morphism f : b ! b0 in B we get an identity of morphisms

in D, namely G(f ) � � b = � b0 � F (f ). In passing from categories to 2-categories,

we can weaken this condition by replacing the above identity with an iso-2-

morphism or even just any 2-morphism which placesG(f ) � � c and � c0 � F (f ) in

the same connected component. Of course this weakening must be compatible

with 2-categorical structures of domain and codomain of F and G and also

how strictly F and G preserve these structures. Detailed de�nitions of various

well-known notions of 2-transformation of functors of bicategories with their

coherence conditions are given in Appendix A.4. We have the following classes

of natural transformation between morphisms of bicategories:

f strictg � f pseudog � f normal (op)lax g � f (op)lax g (1.6)

DEFINITION 1.3.2. A 2-transformation (strict, pseudo, lax)� : F ) G: B ! C

is anequivalence 2-transformation whenever every morphism� x : Fx ! Gx is

an equivalence inC.

REMARK 1.3.3. We remark that there is quite some confusion in literature in us-

ing pre�xes “op” and “co”. For instance, `lax' and `oplax' as attributes of functors

of 2-categories and bicategories are occasionally used in exactly opposite way we

just de�ned. Same goes for their use as attributes of natural transformations (e.g.

[Joh02a]). The terms “left lax” (for what we called lax) and “right lax” (for what

we called oplax) were introduced in [Str72]. Adding to this confusion, some people

have used `colax' instead of oplax particularly in the context of monoidal categories.

However, our main concern is not to introduce yet new terminology, but to maintain

consistency throughout the thesis. So, in our terminology we follow Benabou's origi-

nal choice ([Bén67]), as well as Leinster ([Lei98]), Borceaux, and most of Australian

writings (e.g. [Kel74b]).

A pseudo functor from a 2-category K to Cat can be stricti�ed to a strict

2-functor up to a (pseudo) natural equivalence.
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REMARK 1.3.4. SupposeF : K ! Cat is a pseudo functor whereK is a 2-category.

For each objectc of K , let Fs(c) be the category whose objects are pairs(f; x )

wheref : d ! c is a morphism inK andx is an object ofF (d), and a morphism

u: (f; x ) ! (g; y) in Fs(c) is given by a morphismu: f � (x) ! g� (y) in category

F (c), wheref � (x) := F (f )(x). The identity morphism and composition inFs(c)

are trivially given by the identity and composition structure inF (c). Also, Fs ex-

tends to astrict 2-functor onK: its action on a morphismh: c ! c0 is given by

Fs(h)(f; x ) = ( hf; x ), andFs(h)(( f; x ) u�! (g; y)) = ( hf; x )
� g;h h � (u)� f;h��������! (hg; y).

The action ofFs on 2-morphism� : h0 ) h1 is given at the component(f; x ) by

(� � f )� (x). Finally, � : F ) Fs with � c(x) = ( idc; x) establishes a pseudo natural

equivalence with quasi-inverse� � 1
c (f; x ) = f � (x).

There is a really powerful and more general approach which covers a wide

range of stricti�cation results about bicategories and pseudo functors, and in

particular covers the case of remark above ([BKP89], [Pow89]). See appendix

A.6

REMARK 1.3.5. Any normal lax functorF : B ! C of bicategories can naturally

be modi�ed to a strictly normal lax functoreF : B ! C. The functor eF is de�ned

exactly asF on objects and non-identity morphisms. We de�neeF (1x ) := 1 F x ,

and accordingly modify de�nition ofF on 2-morphisms using invertible� : 1F x )

F (1x ). Thus, we get an equivalence pseudo natural transformation� : eF '=) F where

� x = id x for all objectsx of B , and

� f =

8
><

>:

� � 1
F (1x ) � � F (1x ) � (�F x � 1F x ) if f = 1 x

� � 1
F (1x ) � � F (1x ) otherwise.

Evidently eF is strictly normal.

From the structural point of view, the more appropriate morphisms of bicate-

gories are pseudo functors. For observe thatB has the structure of a bicategory

iff the representable B (X; � ) : B ! Cat has the structure of a pseudo functor,

and for a morphism f : X 0 ! X in B , there is an induced pseudo natural

transformation f � : B (X; � ) ) B (X 0; � ). For this reason, we shall sometimes

refer to pseudo functors of bicategories ashomomorphism of bicategories.
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Moreover, once we introduce the notion of limit for bicategories (at the appro-

priate generality they are weighted bilimits of §1.9) it is straightforward to see

that the representable homomorphism B (X; � ) preserves bilimits.

However, we are still interested in strict 2-functors of 2-categories and bicat-

egories and they play an important role in Chapters 2 and 4. Additionally,

The strict 2-functors are generally better behaved than pseudo-functors and

lax functors with respect to (strict) limits and colimits. For instance, in the

category jj2 Catstr jj
1
, the pushout of span2 0 � 1 1�! 2 exists and is isomorphic

to the category 3. However, this does not hold in the category jj2 Catpsdjj 1
:

any such pushoutP must contain two arrows and their composite and it is in

general not uniquely decidable where to send the composite in some other

cocone categories: the coconeQ in below has three 1-morphisms and an

iso-2-morphism ' : g0 � f 0 �= h0. Now, there is no unique pseudo-functor from

U : P ! Q with U � g = g0 and U � f = f 0: we can chooseU : P ! Q with

U(g � f ) = g0 � f 0 and iso 2-morphism � f;g being id, or U0 with U0(g � f ) = h0

and iso 2-morphism � f;g being ' .

�
�

� A

B

C

�=

P Q

f g

g � f

U

U0

f 0 g0

h0

Pseudo functors (resp. lax functors) of bicategories are composed strictly:

given pseudo functors (F; �; � ) : B ! C and (G;  ; � ) : C ! D, we de�ne

the composition G � F : B ! D on objects and morphisms by successive

actions of F and G, that is G � F (x) = G(F (x)), G � F (f ) = G(F (f )) , and

G � F (� ) = G(F (� )) . The unit comparison is given by (� � � )x := G(�x ) � � F (x)

and the composition comparison is given by( � � )f;g := G(� f;g ) �  F (f );F (g) .
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Hence, we write (G � F; � � �;  � � ) for the composite pseudo (resp. lax)

functor. With this composition we get a category BiCat (resp. BiCatlax ) of

small bicategories and pseudo (resp. lax) functors. We have the following

chain of (non-full) subcategories:

BiCatstr ( BiCat ( BiCatnlax ( BiCatlax (1.7)

REMARK 1.3.6. We note that unlike the situation with 2-categories of categories,

bicategories and pseudo functors do not from a 2-category or even a bicategory. The

reason is that independent of the choice of the kind of 2-transformation, be it strict,

pseudo, or lax, one fundamental issue persists and that is they do not have a strict

vertical composition. For any 2-transformations

B C

F

G

H

K

�

�



and for any objectx of B , we have x � (� x � � x ) �= ( x � � x ) � � x ) in C. There-

fore, the vertical composition of 2-transformations is weakly associative and as such

this forces us to arrive at thetricategory Hom of bicategories, homomorphisms,

pseudo natural transformations, and modi�cations (See [Str80], [Lac10b]).Hom

constitutes the archetypal instance of tricategory structure. However, we shall not

de�ne this structure. We refer the interested reader to [GPS95] and [Gur06].Hom

is enriched over bicategories. Observe that for any 2-categoryK, the bicategory

Hom (B ; K) is actually a 2-category even ifB is a bicategory.

REMARK 1.3.7. There is a sub-tricategoryGray of Hom which consists of strict

2-categories, strict 2-functors, pseudo transformations, and modi�cations. InGray

the composition of morphisms is strictly associative and unital as well as vertical

composition of 2-morphisms. However, the interchange law holds only up to an

invertible modi�cation. Indeed,Gray is a prototypical example ofGray-enriched

category whereGray is the closed monoidal category of 2-categories and strict 2-

functors with monoidal structure given by the Gray tensor product
 psd. The under-
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lying category ofGray is given byjj2 Catstr jj
1
. Recall that for 2-categoriesJ and

K, theGray tensor productJ 
 psd K is a “fattened up” deformation of the cartesian

productJ � K in which the equality(f; 1)(1; g) = (1 ; g)(f; 1) is replaced by an in-

vertible4 2-morphism for any pair of morphismsf : x ! x0 in J andg: y ! y0 in

K. The tensor product is given by the universal property expressed by the following

bijection

jj2 Catstr jj
1
(J 
 psd K; L) �= jj2 Catstr jj

1
(J; 2 Catpsd(K; L))

The closed structure[K; L] of Gray, as used in the bijection above, is given by the

hom 2-category2 Catpsd(K; L). Note that analogous to the case of bicategories, for

every objectX of a tricategoryT , T (X; X ) is aGray-monoid5.

In [Lac07] it is proved that the tricategoryGray is not equivalent toHom . However,

any tricategory, includingHom , is equivalent to someGray-category [GPS95]. We

also note that there is an embeddingGray (K; L) ,! 2 Catpsd(K; L) of 2-categories,

and for a strict 2-functorH : L ! L0, post-composition byH induces a strict 2-

functor H � : Gray (K; L) ! Gray (K; L0). This observation is also true in any

Gray-enriched category. The same observation also shows that why2 Catpsd can not

be aGray-category.

Our interest in lax functors of bicategories comes directly through the way we

arrived at bicategories as a generalization (in this caseoidi�cation ) of monoidal

categories. In fact, strong monoidal functors F : (V; 
 ; I ) ! (V0; 
 0; I 0) are in

one-to-one correspondence with pseudo functors� F : � V ! � V0 of bicate-

gories. However, not the strong monoidal but the lax (and colax) monoidal

are the prevalent functors of monoidal categories. For instance, in the context

of monoidal Dold-Kan correspondence, the Moore chain complex functor and

the nerve functor are lax functors ([nLa19a]). Also, note that lax monoidal

functors transfer monoids to monoids: if hM; � : M 
 M ! M; � : I ! M i is

4We remark that the original version of Gray tensor product ([Gra74]) did not require
invertibility condition and introduced the concept using a general 2-morphism

5i.e. a monoid object in Gray or equivalently a one-object Gray-category
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a monoid (resp. comonoid) in a monoidal category (V; 
 ; I ) and (F; �; � ), as

above) is a lax (resp. colax) monoidal functor then

hF (M ); F (� ) � � M;M : F (M ) 
 F (M ) ! F (M ); F (� ) � � I : I ! F (M )i

is a monoid in V0.

Same is true when we generalize from monoidal categories to bicategories:

a lax (resp. oplax) functor (F; �; � ) : B ! C of bicategories take any monad

ht : X ! X; �; � i to the monad hF (t) : F (X ) ! F (X ); F (� ) � � t;t ; F (� ) � �X i .

This can be observed from the aforementioned fact of lax monoidal functors

and the observation that FX;X : B (X; X ) ! C(FX; FX ) is a lax monoidal

functor of monoidal categories. Another way to reach to the same conclusion

is to realize that a monad in B is exactly a lax functor from the terminal

bicategory to B and that lax functors are stable under composition.

However there are some aspects of lax monoidal functors which do not gen-

eralize to lax functors of bicategories and may be regarded as unpleasant

properties of lax functors. There is a 2-categoryMonCatlax of monoidal cate-

gories, lax monoidal functors, and monoidal transformations. This 2-category

has a sub-2-categoryMonCatstrong where the 1-morphisms are restricted to the

strong monoidal functors. Although MonCatstrong is not a full sub-2-category it

has some nice properties: by doctrinal adjunction, any left adjoint in MonCatlax

is automatically strong monoidal. Since any equivalence in a 2-category can

be improved to an adjoint equivalence, any equivalence inMonCatlax consists

of strong monoidal functors. Thus, the notion of “equivalence of monoidal

categories” doesn't depend on what kind of functor one chooses to work with,

and the notion of “lax monoidal functor” is invariant under this equivalence.

For a start, we can not make a 2-category out of bicategories, lax functors, and

any kind of natural transformation of 2-functors (See 1.6). The reason is sim-

ple: were they to form a 2-category we would be able to whisker 1-morphisms

with 2-morphisms. To the contrary suppose we can. Let(G;  ; � ) : C ! D

be a lax functor of bicategories and � : (F; �; � ) ) (F 0; � 0; �0) a lax natural

transformation of lax functors F; F 0: B � C. Form the whiskered lax natural
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transformation G � � : GF ) GF 0. For a morphism f : x ! y in B , we have

the 2-morphisms

GF 0(f )� G(� x )
G( F 0( f ) ;� x )
======= ) G(F 0(f )� � x )

G(� f )
=== ) G(� y � F (f )) ( =======

G( � y ;F ( f ) )
G(� y)� GF (f )

in D. But we see that the most right arrow goes in the wrong direction and

there is no chance we can form the component ofG � � at f .

REMARK 1.3.8. Under two special circumstances such whiskering in above would

be possible: �rst, if the functors of bicategories are pseudo instead of lax. In this

scenario, for our desired whiskering, we could use the inverse of the troublesome

2-morphismG( � y ;F f ) in D. Although whiskering is possible it does not satisfy the

exchange law, even for strict 2-functors, for there is no reason that the pasting of the

diagrams

GFx GF 0x G0F 0x

GFy GF 0y G0F 0y

G(� x )

GF (f )

� F 0x

GF 0(f )
G(� f )

G0F 0f� F 0( f )

G(� y ) � F 0y

GFx G0Fx G0F 0x

GFy G0Fy G0F 0y

� F x

GF (f )

G0(� x )

G0F (f )
� F f

G0F 0(f )
G0(� f )

� F y G0(� y )

on the two sides should be equal unless either� : F ) F 0 or � : G ) G0 is identity.

Therefore, we still cannot form a 2-category with lax transformations even if we

restricted to strict 2-categories and strict functors.

Indeed, there is only one good way of getting a 2-category of bicategories

and lax functors with non-strict natural transformations as its 2-morphisms.

The 2-morphisms are restricted forms of lax natural transformations called

“icons”6 ([Lac10b]). An icon between lax functors F; G: B � Cof bicategories

is an oplax transformation � with extra constraints that all components � x are

identity morphisms for all objects x in B .

Fx Gx

Fy Gy

F f Gf
� f

6Short for Identity Component Oplax Natural-transformation
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In the case of one-object bicategories the icons are precisely the monoidal

natural transformations. This shows that, from a certain perspective, the

reason icons are to be preferred as generalization of monoidal transformations.

Another observation in this direction is to look at the structure of an oplax

transformation of lax functors C; C0: Sind � � Set. By remark (ii), C; C0 are

categories with a common set of objectsS. An oplax transformation � : C ) C0

provides us with a family of sets f X (c)gc2 S and a family f � c;d : C(c; d)� X (d) !

X (c) � C0(c; d)g of functions, satisfying evident identity and composition

constraints. The data of � can be elegantly packaged into a bundle� S : X ! S

together with a bundle map � S� SC � � �
1X ! � �

0X � C0 over S � S satisfying

a unit and a composition law. When � is an icon the bundle � S : X ! S is

isomorphic to the trivial bundle IdS : S ! S, and the bundle map � S� S is a

functor C ! D. Therefore, icons between lax functorsC; C0: Sind � � Set

correspond exactly to the functorsC ! C0 which are identity on objects.

However, icons have their downsides as well. The requirement the the com-

ponents � x must be strict equalities is unsatisfactory in many situations. For

instance as we shall see in chapter 2 that a cloven Grothendieck pre�bration

P : E ! B of categories correspond to a lax functorP : Bop ! Cat, and a map

of pre�brations to a pseudo transformation. However, an icon between any

two such lax functors would require strict equality of �bres of corresponding

pre�brations, i.e. an equality of categories.

At any rate, The additional constraints of icons make the obstructions in Re-

mark 1.3.6 and Remark 1.3.8 in forming a 2-category of bicategories disappear.

Indeed, we can form the 2-category Icon of bicategories, lax functors, and

icons. The same paper introduces a 2-monad on the 2-category ofCat-enriched

graphs for whose algebras are 2-categories, and pseudo (resp. lax, resp. oplax)

functors are the pseudo (resp. lax, resp. oplax) morphisms of algebras, and

icons are the transformations of algebra morphisms.

Another serious problem with the lax functors of bicategories is that they

are not invariant under equivalence or biequivalence of bicategories. Again,

consider an inhabited category C as a lax functor C : C0
ind ! � Set For an

inhabited set C0. We have the equivalenceC0
ind ' 1. But composingC with
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this equivalence does not yield a lax functor if C, for instance, has more than

one connected components.

There are stronger notions than equivalence of bicategories and although

we shall not make a great use of them, we de�ne them here for the sake of

completeness and, more importantly, contrast.

DEFINITION 1.3.9. A pseudo functor (resp. lax)(F; �; � ) : B ! C is anisomor-

phism of bicategories if it has an inverse pseudo functor (resp. lax)(G;  ; � ) : C !

B , i.e. (G � F;  � �; � � � ) = (Id B ; id; id) and(F � G; � �  ; � � � ) = (Id C; id; id).

Recall that a functor U : C ,! D exhibits C as a full subcategory ofD if U is

a fully faithful functor, that is Ux;y : C(x; y) ! D(Ux; Uy) is an equivalence of

sets for all objectsx; y of C. In a similar fashion

DEFINITION 1.3.10. A homomorphism (resp. 2-functor)U : B ! C exhibitsB

as asub-bicategory (resp. sub-2-category) ofC if the functor Ux;y : C(x; y) !

D(Ux; Uy) is an equivalence of categories for all objectsx; y of B .

This means that any morphismg: Ux ! Uy in C is isomorphic to Uf for some

morphism f : x ! y in B , and any 2-morphism � : Uf ) Uf 0 in C is equal to

U(� ) for a unique 2-morphism � : f ) f 0 in B .

As a non-example of full subbicategory consider the embedding of bigroupoids

� � 2(S1) ! � � 2(S1 _ S1) induced by the inclusion of, say, the left component.

THEOREM1.3.11. The categoryBiCat of (small) bicategories is bicategory-enriched:

for any bicategoriesB andC, pseudo functors, pseudo natural transformations and

modi�cation between them form a bicategoryBiCat(B ; C).

For important examples of categories enriched in a bicategory see [Wal81],

[Wal82], [Bet+83].
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1.4 Constructions on bicategories

CONSTRUCTION1.4.1 (The symmetries of bicategories). The groupZ=2Z �

Z=2Z acts on the class of bicategories.7 This action yields four 3-functors:

• (� )(0;0) = Id : Hom ! Hom

• (� )(1;0) = ( � )op : Hom co ! Hom

• (� )(0;1) = ( � )co : Hom ! Hom

• (� )(1;1) = ( � )coop : Hom ! Hom

For any bicategoryB , the bicategoryB op is obtained by reversing the 1-morphisms

only,B co by reversing the 2-morphisms only, andB coop by reversing both 1-morphisms

and 2-morphisms. Since the de�nition of a bicategoryB was given in terms of its

local hom-categories, we remark that

B co(X co; Y co) := B (X; Y )
op

The operation(� )co is sometimes referred to asconjugation. Note that iff a g with

unit � and counit� in K, thengco a f co with unit � co and counit� co in Kco.

Moreover, we haveHom (B op; Cop) ' Hom (B ; C)
op

an alsoHom (B co; Cop) '

Hom (B ; C)
co

REMARK 1.4.2. We seriously warn the reader tonot carry the logic in construc-

tion above to its conclusion. The terminological inconsistency mentioned in Remark

1.3.3 is not accidental. As we have said, in a 2-category `op' refers to reversing the

1-morphisms and in a category it denotes reversing the 1-morphisms. If we use the

terminology of `op' and `co' strictly consistently, doesn't it follow that we should

call colimits in a 1-category or in a 2-category `oplimits' and yet, no one does that.

7In general the group (Z=2Z)n acts on the (meta) n-category of (weak) n-categories and every
element g = ( g1; : : : ; gn ) of the group determined a meta n-functor rs(g) : (n CAT)g !
n CAT where rs: (Z=2Z)n ! (Z=2Z)n is the “right shift” group homomorphism. In
particular rs(0; 1) = (0 ; 0) and rs(1; 0) = (0 ; 1).
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In category theory we use `co' for most dualizations. Furthermore, later in Chap-

ter 2, we shall see that an op�bration internal to a 2-categoryK is indeed a �bration

in Kco. In fact, what is nowadays called op�brations was originally called `co�bra-

tions' in [Gra66]. However, this clashed with the use of the term `co�bration' in

topology, so it was avoided in the category theory literature quite consistently there-

after. One of the root reasons for recurring inconsistencies is the fact that categorical

structures can be generalized to 2-categories in many ways different ways: through

the realization of a category as a discrete 2-category, as the delooping bicategory

of a monoidal category (See Example 1.2.1), and through representational approach

(See §1.7). Each of these axes of generalization gives its own account of arriving at

“op-concepts” and “co-concepts”.

CONSTRUCTION1.4.3 (The underlying category of a 2-category). We can throw

away all 2-morphisms of a 2-category and get a category. More precisely, this is

done by the transport of enrichment structure. SupposeF : V ! V0is a lax-monoidal

functor andC is aV-enriched category. We transport the enrichment structure ofC

alongF : we construct aV0-enriched categoryCF where

• Ob(CF ) := Ob( C)

• CF (c; d) := F (C(c; d)) for any pair of objectsc; dof C.

• The composite morphismI V0 ! F (I V) ! F (C(c; c)) in V0 de�nes the unit

map ofCF .

• The composite morphismF (C(c; c0)) 
 F (C(c0; c00)) ! F (C(c; c0)
 C(c0; c00)) !

F (C(c; c00)) in V0de�nes the composition map ofCF .

Transporting the enrichment structure of a 2-categoryK along the representable carte-

sian monoidal functorHom(1; � ) : Cat ! Set, which sends a small categoryC to

the set of objects ofC, yields a categoryjjKjj
1

which is called theunderlying cat-

egory of K. We have:

• Ob(K0) = Ob( K)

• K0(x; y) := Hom( 1; K(x; y)) �= Ob(K(x; y))
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Obviously,(Kop)1
�= (jjKjj

1
)op and(Kco)1

�= jjKjj
1
.

CONSTRUCTION1.4.4. Any bicategoryB has aclassifying category � � 1(B )

associated to it. The objects remain the same while the morphisms of the classifying

category are isomorphism classes of morphisms ofB . This construction gives us

a homomorphism� � 1 : BiCat ! Cat. This construction originally appeared in

[Bén67, page 56]. Of course the Construction 1.4.3 cannot be carried out in the

same way for bicategories since we cannot discard 2-morphisms of a bicategory and

get a category. However, we can regard the classifying category of a bicategory as

its homotopical underlying 1-category. This view is justi�ed by the observation that

the classifying category of the bigroupoid� � 2X of a topological spaceX (Example

1.2.2) is precisely the fundamental groupoid ofX .

CONSTRUCTION1.4.5. Recall that to each categoryC, one associates the maxi-

mal sub-groupoidCore(C) whose morphisms are invertible morphisms ofC. Indeed,

Core is the right adjoint to the forgetful embeddingGrpd ! Cat whose left adjoint in

turn is the re�ective localizationL : Cat ! Cat[� � 1], where� : 2 ! I is the inclusion

of the free walking arrow category into the walking isomorphism interval. Indeed,L

adds formal inverses to categories to make them into groupoids. Similarly, to each bi-

categoryB , we associate the maximal sub-bigroupoidCore(B ) whose 2-morphisms

are invertible 2-morphisms ofB . For instance,Core(Cat)(1; C) �= Core(C). All

pseudo weighted limits and colimits (1.9) in a bicategoryB are indeed lax weighted

limits and colimits inCore(B ). Also, to any bicategoryB , we associate the full sub-

bicategoryGrpd(B ) whose objects are bigroupoidal objects (De�nition 1.7.5) ofB .

For instanceGrpd(Cat) = Grpd. ObviouslyGrpd(Core(B )) �= Core(B ). Finally,

we have an adjunction

(2; 1) Catstr 2 Catstr

?

?

Core

Inc

L

CONSTRUCTION1.4.6 (The pseudo-functor of points). SupposeB is a bicategory

with the terminal object1. For every objectX 2 B 0, apoint x of X is a morphism
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x : 1 ! X . The points ofX form a category, namelyptB (X ) ' B (1; X ). The

homomorphismptB : B ! Cat is represented by the terminal object1 of B .

For instance, in the bicategoryTop� 2 from Example 1.2.3, the groupoid pt(D2)

of points of 2-dimensional disk D 2 is discrete with uncountable many objects

and the groupoid pt(S1 `
S1) has two connected components and in each

component any two objects are isomorphic in exactlyZ ways.

The 2-categoryCat is very special: any of its objects (i.e. a category) is com-

pletely determined by its category of points that is, for every categoryC, the

functor category Fun(1; C) �= C.

PROPOSITION1.4.7. The 2-functorptCat: Cat ! Cat is 2-isomorphic to the iden-

tity 2-functorId : Cat ! Cat and therefore,ptCat is a 2-equivalence.

For a bicategoryB , equipped with a terminal object, and for any pair of objects

X; Y of B , we have the action functor

B (X; Y ) � pt(X ) ! pt(Y)

which can be transposed to the functor

B (X; Y ) ! Cat(pt(X ); pt(Y)) (1.8)

DEFINITION 1.4.8. A bicategoryB (equipped with a terminal object) is calledwell-

pointed whenever the homomorphismptB : B ! Cat is faithful, that is the action

functors(1.8) are faithful for all objectsX andY of B .

Note that the above de�nition of well-pointedness for a bicategory generalizes

the usual de�nition of well-pointedness for categories. Of course, a well-

pointed category B is in particular a concretebicategory with the faithful

functor to Cat being ptB . Proposition 1.4.7 shows that the 2-categoryCat is

indeed well-pointed. The 2-categoryCat(S) from Example 1.5.1 is well-pointed

if category S is well-pointed. On the other hand, the bicategory Top� 2 is not

well-pointed.
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REMARK 1.4.9. The concrete 2-categoriesLoc, ETop, BTop are not well-pointed.

The construction below of `Display sub-2-category' requires explaining the

notion of bipullback in 2-categories. We shall later give a precise intrinsic

de�nition based on weighted limits in §1.9. Nonetheless, for the sake of

readers unfamiliar with or uninterested in weighted limits, we give a concrete

de�nition of bipullback listing the required data and axioms. The latter

de�nition is equivalent to the intrinsic one.

DEFINITION 1.4.10. A bipullback of an opspanA
f
�! C

g
 � B in a bicategoryB

is the universal isocone overf andg, i.e. an objectP together with 1-morphisms

d0 : P ! A; d1 : P ! B and an iso-2-morphism� : fd 0
�= gd1 satisfying the fol-

lowing universal properties

(BP1) Given another iso-cone(l0; l1; � : f l 0
�= gl1) overf andg (with apexX ), there

exist a1-morphismu and two iso-2-morphisms 0 and 1 such that the pasting

diagrams below are equal.

X

P B

A C

u

l0

l1

�=  0

�=  1

d1

d0 g�= �

f

=

X

B

A C

l0

l1

g

�= �

f

(1.9)

(BP2) Given 1-morphismsu; v : X � P and 2-morphisms� i : di u ) di v (i = 0; 1)

such that the diagram

fd 0u fd 0v

gd1u gd1v

f �� 0

� �u � �v

g�� 1

commutes inK(X; C ), there is a unique� : u ) v such that each� i = di � � .
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The two conditions (BP1) and (BP2) together are equivalent to saying that the

functor

B (X; P ) '�!
�
B (X; f ) #�=

B (X; g)
�

is an equivalence where the right hand side is the pseudo pullback of func-

tors B (X; f ) : B (X; A ) ! B (X; C ) and B (X; g) : B (X; B ) ! B (X; C ). One

direction of the equivalence is obtained from whiskering by the iso-cone

(d0; d1; � ).

Note the distinction from pseudopullbacks, for which the equivalence is an

isomorphism of categories. And of course a strict pullback has similar condition

of universality as in above except that they are with regard to strict cones

instead of iso cones.

DEFINITION 1.4.11. A 1-morphism inK is bicarrable (resp.carrable , pseudo-

carrable ) whenever a bipullback (resp. strict pullback, pseudo pullback) of it along

any other 1-morphism (with the same codomain) exists inK.

Of course, bipullbacks are de�ned up to equivalence and the class of bicarrable

1-morphisms is closed under bipullback.

Two important facts that we are going to deploy in chapters 3 and 4 are:

• All extension maps in the 2-categoryConof AU-contexts are carrable.

(See [Vic19])

• In the 2-category ETop of elementary toposes all bounded geometric

morphisms are bicarrable. (See [Joh02a, B3.3.6]).

CONSTRUCTION1.4.12 (Display sub-2-category). SupposeK is a 2-category. Let

D be a chosen class of bicarrable 1-morphisms inK, which we shall call “display

1-morphisms”, with the following properties:

• Every identity 1-morphism is inD.

• If x : x ! x is in D, andf : y ! x in K, then there is some bipullbacky of x

alongf such thaty 2 D.
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We form thedisplay 2-categoryKD as follows. We use a systematic “upstairs-

downstairs” notation with `overbars' (e.g.f ) and `underbars' (e.g.f ) to help navigate

diagrams.

(KD : 0) Objects arex : x ! x in D.

(KD : 1) For any objectsx andy, the 1-morphisms fromy to x are given by the triples

f = hf ;
H
f ; f i wheref : y ! x andf : y ! x are 1-morphisms inK, and

H
f : xf ) f y is an iso-2-morphism inK.

(KD : 2) If f andg are 1-morphisms fromy to x, then 2-morphisms fromf to g are of

the form� = h�; � i where� : f ) g and� : f ) g are 2-morphisms inK so

that the obvious diagram of 2-morphisms commutes.

x

x

x

y x

y x

H
f +

f

y

f

x

y x

y x

H
f +

H
g +

f

g

y
f

g

x

�

�

Composition of 1-morphismsk : z ! y and f : y ! x is given by pasting them

together, more explicitly it is given byfk := hf k;
H
k �

H
f ; f ki where

H
k �

H
f

:= ( f �
H
k ) � (

H
f � k). Vertical composition of 2-morphisms consists of vertical

composition of upper and lower 2-morphisms. Similarly, horizontal composition of

2-morphisms consists of horizontal composition of upper and lower 2-morphisms.

Identity 1-morphisms and 2-morphisms are de�ned trivially from those ofK.

Notice that KD is a sub-2-category of the 2-categorycyl �= (K) := Gray (2; K),

where the latter consists of strict 2-functors, pseudo-natural transformations,

and modi�cations from the free walking arrow category 2. Indeed, cyl �= (� )

construction is a 2-dimensional generalization of the construction of arrow
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category. There is a (strict) 2-functor cod : cyl �= (K) ! K which takes object x

to its codomain x, a 1-morphism f to f and a 2-morphism (�; � ) to � . The 2-

category cyl �= (K) has a universal property: Any pseudo natural transformation

� : F ! G: L � K lifts to a strict 2-functor e� : L ! cyl �= (K) with dom � e� = F

and cod � e� = G. The relationship between K, KD , and cyl �= (K) is illustrated

in the following commutative diagram of 2-categories and 2-functors:

KD cyl �= (K)

K
cod cod

(1.10)

We can generalize the construction above to bicategories although some care

has to be taken with regard to weak unitality and weak associativity when

we paste squares and cylinders both horizontally and vertically. Depending

on whether we drop the invertibility condition of the 2-morphisms inside

squares of 1-morphisms we obtaincylinder bicategory cyl (B ) or iso-cylinder

bicategory cyl �= (B ) of a bicategory B ([Bén67]). We would instead obtain

a homomorphism cod : cyl (B ) ! B de�ned in the same way and a display

sub-bicategoryB D .

In passing from categories to 2-categories, the construction of slices of cat-

egories is bifurcated into four versions: strict, pseudo, lax, and oplax slice

2-categories.

CONSTRUCTION1.4.13. For an objectB of a 2-categoryK, there is alax slice

2-category K . B : the objects ofK . B are morphismsq: E ! B in K,

the morphisms ofK . B are pairshf; ' i : q ! p such that' : pf ) q is a 2-

morphism inK, and the 2-morphisms ofK . B are of the form� : hf; ' i ) h f 0; ' 0i

where� is a 2-morphism fromf to f 0 in K which is compatible with' and' 0, i.e.

' 0� (p�� ) = ' . The composition of morphismshg;  i : q0 ! qhf; � i : q ! p is given

by the morphismhfg;  � (� � g)i . A morphismhf; ' i : q ! p is an isomorphism in

K . B iff both f and� are invertible. It is an equivalence ifff is an equivalence of

and� is an iso-2-morphism.
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The construction ofoplax slice 2-category K % B is similar except that in the

de�nition of morphismhf; ' i , the 2-morphism' goes in the opposite direction, i.e.

' : q ) pf . If all ' are invertible (and therefore their direction does not matter),

then we obtain the notion ofpseudo slice 2-category (or sometimes simply a

slice 2-category) which we shall denote byK � B . If all ' are identity, then we get

the notion ofstrict slice 2-category which is denoted byK=B. There is a strict

2-functorK=B ,! K � B which is identity on objects and sends a morphismf to

hf; idi , and is identity on 2-morphisms. It is locally full and faithful, however, it is

not necessarily an embedding of 2-categories. Also, it is not locallyreplete(Recall

that a subcategory is replete if the property of belonging to it respects the principle of

equivalence of categories, i.e. iff : x
�=�! y andx 2 D ,! Ctheny 2 D andf lies in

D as well). Similarly, there are 2-functorsK � B ,! K % B, andK � B ,! K . B

which are identity on objects, morphisms, and 2-morphisms. They are locally fully

faithful and replete, but not necessarily emebedding of 2-categories.

The embeddings of slice 2-categories above lie overK, i.e. the following triangles of

2-functors commute.
K=B K � B K . B

K
dom

dom
dom

Any morphismhf; � i : q ! p in K � B factors asdom -vertical morphism (i.e. a

morphism whose image underdom is identity) followed by a strict morphism (i.e.

a morphism in the strict sliceK=B). The same is true for morphisms inK . B and

K % B.

E F

B

f

q p

�
=

E E F

B

1

q pf

f

p

�
=

Therefore, we may write

hf; � i = hf; idi � h 1; � i

Also, any objectp: E ! B of K . E induces a 2-functor� p : K . E ! K .

B which takes objectx : X ! E to px: X ! B , morphismhf; � i : y ! x to

hf; p � � i : py ! px, and it acts identically on 2-morphisms.
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REMARK 1.4.14. The slice and coslice categories can be realized as oplax and

lax limits in the 2-categoryCat, respectively (See Remark 1.9.20). One might be

tempted to construct lax (resp. oplax) slice 2-categories as oplax (resp. lax) limits in

some 3-category of 2-categories. However, this is not straightforward (if possible at

all!) since the construction requires the use of lax (op)lax natural transformations

which do not form a 3-category of 2-categories. Nonetheless, similar to the fact

the slice and coslice categories are obtained as special cases of comma categories,

lax and oplax slice 2-categories are obtained as special cases of Gray's 2-comma

categories [Gra74].

1.5 Examples of 2-categories and

bicategories

In this section we give few typical examples of 2-categories and bicategories.

For more examples we refer the reader to [Lac10a, Section 1].

EXAMPLE 1.5.1. SupposeS is �nitely complete category. There is a 2-category

Cat(S) of internal (small) categories inS, internal functors and natural transforma-

tions. See De�nition A.8.1 in Appendix. In Chapter 2, we shall see that it embeds

into the 2-categoryFib(S) of categorical �brations overS. This embedding though

only holds in the bicategorical sense of Section 1.3.

An special case of the above example is the 2-category of (internal) groupoids.

EXAMPLE 1.5.2. Groupoids, functors, and natural transformations between them

(necessarily invertible) form a 2-categoryGrpd. Consider the delooping 2-functor

� : Grpd ! Grpd whereGrpd is the discrete 2-category of groups. In the theory of

groups, one is often concerned only with group homomorphismsup to conjugacy

(i.e. study of groups by inner automorphisms). We note that the essential image

of � : Grpd ! Grpd is the 2-category of groups where a 2-morphism� : �( f ) )

�( g) : G � H is an iso-2-morphism iff it is a conjugacy between group homomor-

phismsf andg, i.e. an element� of H such thatg(x) = �f (x)� � 1 for all x in G.

Whiskering� on the left with a morphism�( h) : � G0 ! � G is given by the same

element� 2 H , while whiskering� on the right with a morphism�( k) : � H ! � H 0
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is given by the elementk(� ) 2 H 0. The vertical composition of 2-morphisms landing

at � H is given by multiplication of the corresponding elements inH . In particular,

for an endomorphismf : G ! G, a 2-morphism� : �(id G) ) �( f ) exhibitsf as

the inner automorphismf = ( � )� : G ! G. Therefore, the connected component of

the groupoidGrpd(� G; � G) containing�(id G) is precisely the set of all inner auto-

morphisms ofG. Finally, the groupGrpd(� G; � G)(�(id G); �(id G)) is isomorphic

to the central subgroupZ(G) of G.

EXAMPLE1.5.3. Locales and locale maps with specialization order form a 2-category

Loc. Recall that for a localeX we have an associatedframe of `opens'O(X ) and

a mapf : Y ! X of locales give rise to a map of framesf � : O(X ) ! O(Y) in

the reverse direction. A 2-morphism between such two such mapsf; g : Y � X if

f � (V) � g� (V) for any openV in the frameO(Y). This order is known by the name

of “specialization order”: we writef v g Note that there is at most one 2-morphism

between any two 1-morphisms. In fact,Loc is Dcpo-enriched: given a directed fam-

ily f f i g of maps inLoc(X; Y ), the directed join of them is given by the formula

( f i )� V = (f i )� V TheDcpo-enrichment implies that a The construction of frame

of opens of a locale gives a 2-functorO: Loc ! Frm which is represented by the

Sierpinski spaceS whose frameO(S) is given by the posetf 0 � I � 1g. Therefore

Shas two points? ; > with ? v > .

EXAMPLE1.5.4. For an elementary toposS (with nno) the object classi�er (over

S ) is a toposS [O] whose (generalized) points in other toposes form the underlying

category of that topos, i.e.

BTop
.

S (E; S [O]) ' E

By underlying categoryE of a toposE, we simply mean the category of objects of

toposE which is locally representable. The role of object classi�erS [O] ! S

generalizes the the role of Sierpinski spaceS. WhileSclassi�es opens (i.e. subtermi-

nals) of locales,S [O] ! S classi�es objects of otherS -toposes (i.e.S -sheaves).

Note that the object classi�er represents the pseudo functor

( BTop
.

S )
op

! Catlrp

which takes a geometric morphism(f � ; f � ) of S -toposes to the cocontinuous functor

f � of locally representable categories. [BC95] shows that the 2-category(BTop=S )op
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is 2-monadic over the 2-category of locally presentable categories and cocontinuous

functors between them internal toS . Therefore, the pseudo functorBTop=S (� ; S [O])

has a left 2-adjoint.

EXAMPLE 1.5.5. The simplex category8 � of �nite ordinals can be updated to a

2-category in three ways: �rst, as a locally discrete 2-category, and second, as a

delooping of its monoidal structure (See §A.6), and �nally, and perhaps the most

interesting way is to consider� as a locally posetal 2-category. This insight goes

back to [Str80] which uses this 2-category to de�ne the notion ofdoctrineon any bi-

categoryB : it is a strict monoidal homomorphism from� (considered as monoidal

2-category) to the monoidal bicategoryHom (B ; B ). A bit of calculation shows that

doctrines on bicategories are basically the same thing as pseudomonads, i.e. monads

whose associativity and unit laws hold only up to coherent isomorphisms, instead of

strict equalities.

More precisely, the objects and morphisms are the same as standard simplex cate-

gory � and 2-morphisms are obtained in virtue of poset-structure of ordinals. For

instance, the hom-category�( 1; 2) consist of two monomorphisms� 1 � � 0, and

�( 2; 3) consist of three monomorphisms� 2 � � 1 � � 0 where the order is pointwise.

Morphisms� i are known ascofacemorphisms, and geometrically, they are pictured

as follows (but now with the addition of 2-morphisms):

; f 0g f 0 1g

8
<

:

9
=

;
0

1

2
� � �

� 0
� 1

� 0

� 2

� 1

� 0

In general in hom-category�( n; n + 1), we have a chain of 2-morphisms

� n ) � n� 1 ) : : : ) � 0

This is half of the picture; there are epimorphisms� i which go in the other direc-

tion and they are calledcodegeneracymorphisms. In general in the hom-category

�( n + 1; n), we have a chain of 2-morphisms

� 0 ) : : : ) � n� 1

8This is the simplex category of category theorists, not topologists.
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The chains of 2-morphisms above are generated by the following string of adjunc-

tions:

� n a � n� 1 a � n� 1 a : : : a � 0 a � 0

where the unit of� k a � k� 1 and the counit of� k a � k are identities. From these we

obtain:

� k = � k � � k� 1 � � k� 1
"=) � k� 1

Similarly,

� k� 1 = � k � � k � � k� 1
� k �"
==) � k

REMARK 1.5.6. Note that in hom-category�( n; n + 1) there are more morphisms

than just coface and codegeneracy morphisms. For arbitrarym andn, there are in

fact
�

n+ m� 1
m

�
number of objects in the hom-categoryHom� (m; n).

j Hom� (m; n)j =
X

k

jmono(k; n)j � j epi(m; k)j =

X

k

 
n
k

! 
m � 1
k � 1

!

=
X

k

 
n
k

! 
m � 1
m � k

!

=

 
n + m � 1

m

!

This uses the well-known canonical decomposition of morphisms into cofaces and

codegeneracies, and Vandermonde's identity.

EXAMPLE1.5.7. For any �nitely complete categoryS there is an associated bicate-

gorySpan(S) of spans(akacorrespondences) in S. The objects ofSpan(S) are the

same as the objects ofOb(S), and the morphisms fromA to B are spans betweenA

andB, that is diagrams of the form

S

A B

s0 s1
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wheres0; s1 are morphisms in ofS. We denote such 1-morphism bys = hs0; S; s1i .

A 2-morphism� : s ) s0 is a morphism� : S ! S0 in Swhich makes both triangles

in below commute.
S

A B

S0

s0 s1

�

s0
0 s0

1

The composition of 1-morphisms is given by pullback.

Span(S)(A; B ) � Span(S)(B; C) �! Span(S)(A; C)

(hs0; S; s1i ; ht0; T; t1i ) 7�! h s0 � s�
1(t0); S � B T; t1 � t �

0(s1)i

The vertical composition of 2-morphisms is given by composition of morphisms in

S, and the horizontal composition of 2-morphisms is the induced morphism on the

pullbacks obtained by their universal property.

A monad inSpan(S) is the exactly the same thing as a (small) category internal toS

([Str74]) and a monad morphism corresponds to a profunctor of internal categories.

There are embedding homomorphismh1; �i : Sd ,! Span(S) andh� ; 1i : (Sd)op ,!

Span(S) of bicategories whereby the �rst embedding takes a morphismf : X ! Y

in S to the spanh1X ; X; f i , and the second embedding takesf op : Y ! X in

Sop to hf; X; 1X i . We also have an invertible involution 2-functorSpan(S) !

(Span(S))op which is identity on objects and acts on morphisms and 2-morphisms

by switching the legs of spans.

Span(S) has a certain 1-dimensional property: any functorF from the underlying

category ofSpan(S) to a categoryC is uniquely determined by a pair of functors

F � : Sop ! C andF� : S ! C which take the same value on objects ofC and more-

over, any pullback inS on the left is taken to a commutative square inC on the

right:

A B

C D

f

g

p
k

h

7!
A B

C D

F � (g)

F � (h)

F � (f ) F � (k)
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EXAMPLE1.5.8. SupposeS is a regular category, in particular we need stable epi-

mono factorization inS. The bicategoryRel(S) of relations internal toS has the

same objects asS, and as morphism spansr = hr0; R; r 1i for which r0 andr1 are

jointly monic, and we consider only the 2-morphismh which are monic. This makes

Rel(S) is a locally posetal bicategory. Note that in any locally posetal bicategory, the

2-dimensional coherence equations become redundant as all parallel 2-morphisms

manifestly commute. There is a lax functorU : Rel(S) ! Span(S) which forgets

the jointly monic property of spans. The composition of relationsr : A p! B and

s: B p! C has one more step than composition of their corresponding spans: it is

calculated as the image (i.e. the monomorphism of epi-mono factorization inS) of

morphismhr0 � r �
1s0; s1 � s�

0r1i : R � B S. In the internal language ofS, the composite

relations � r may be described as follows:

a(S � R)c () 9 b: B:(aRb) ^ (bSc)

EXAMPLE1.5.9. The2-categoryPar (S) is a sub-2-category ofSpan(S); we only

consider those 1-morphismhi; D; f i for which i is monic, and we consider only the

2-morphismh which are monic. The2-functorP : Par (Set) ! Set� which takes a

objectA to the pointed set(A
`

f�g ; � ) and is furthermore de�ned on hom-categories

by PA;B : Par (S)(A; B ) ! Set� (A
`

f�g ; B
`

f� 0g), wherePA;B (i; f )(x) = f (x) if

x 2 D and PA;B (i; f )(x) = � 0 otherwise, establishes and equivalence of bicate-

gories.

EXAMPLE1.5.10. Suppose(V; 
 ; I ) is a monoidal category equipped with equaliz-

ers and coequalizers which are stable under tensoring (such as the monoidal category

of Abelian groups). Then the bimodules inV form a bicategoryBiMod (V). This

bicategory generalizes bicategoriesSpan(V) and opSpan(V). (See Construction

A.8.11 and Examples A.8.13 and A.8.14 in Appendix.)

EXAMPLE1.5.11. SupposeV is a complete and cocomplete closed symmetric monoidal

category (i.e. A Bénabou cosmos). There is a bicategoryDist (V) of categories,V-

distributors (aka profunctors), andV-natural transformations. More precisely, the

objects areV-enriched categoriesA, B, etc., a morphism between objectsA andB

is a V-functor Bop � A ! V (hereV considered self-enriched itself via its closed

structure), and a 2-morphism between morphismsH andK is aV-natural transfor-
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mation � : H ) K : Bop � A � V. The identity morphism onA is given by

V-hom-functorA(� ; � ) : Aop � A ! V: the localV-morphisms

(Aop � A)(( a; b); (a0; b0)) ! [A(a; b); A(a0; b0)]V

are induced by

A(a0; a) � A(a; b) � A(b; b0)
m� (m� id)
������! A(a0; b0)

Distributors can be considered as bimodules of categories.

The composition of morphismsH : A p! B and K : B p! C is given by the coend
Rb2 B H (b;� ) 
 K (� ; b) which traces out the middle variablebof B.

A 2-morphism� : H ) H 0 is a V-enriched natural transformation (in the case of

Bimodules a bilinear homomorphism). The vertical and horizontal composition of

2-morphism is performed similarly to that of bimodules (See A.8).

A lax monoidal functorF : V ! W of cosmoi induces a lax 2-functorDist (F ) : Dist (V) !

Dist (W) (all applyingF to all the `hom-objects' aV-category orV-distributor), and

a lax monoidal adjunctionF a G: W ! V of cosmoi induces alocal adjunction

Dist (F ) a Dist (G).

A special case of distributors are matrices.

EXAMPLE 1.5.12. The 2-categoryMat of matrices is formed of (�nite) sets (i.e.

discrete categories in the context of example above) as objects and 1-morphisms

between objectsX andY areX � Y-indexed families of sets. We denote such a

family by (Axy )x2 X;y 2 Y . The composition of two 1-morphismsA 2 Mat (X; Y )

andB 2 Mat (Y; Z) is given by their product(AB )xz =
P

y Axy � Byz. The 2-

morphisms are de�ned component-wise. Note thatMat is a genuine bicategory

since for setsA; B; C , we have(A � B) � C 6= A � (B � C), but are isomorphic

via a canonical associator� given by� ((a; b); c) = ( a; (b; c)) .
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1.6 2-categories of toposes

Elementary and Grothendieck toposes form honest 2-categories and concerning

the core of the thesis, we really doe not need bicategories in their full generality.

However, there are persisting and essential bicategorical aspects to these 2-

categories, such as the use of bilimits of toposes, which require us to have a

mixed approach.

Another reason is that a geometric morphism from the classifying toposSet[T]

to Set[T0] is up to unique isomorphisma model of T0 in Set[T], i.e. a model

of T0 constructed geometricallyfrom the generic model of T. As such, the

isomorphism, and not the equality, of 1-morphisms of toposes should be

regarded as the correct notion of structural sameness (§A.2) of morphisms

of toposes. If the objects are of interest as classifying toposes, then they are

de�ned only up to equivalence. We can only get bipullbacks, not strict or

pseudo pullbacks of toposes. These properties of toposes and their morphisms

are manifestly bicategorical. Therefore, throughout the thesis we have the

bicategorical aspect in mind. The section §1.9 emphasizes the distinction

between strict, pseudo, and bilimits on which we shall heavily rely in the next

chapters. By contrast as we shall see in Chapter 3 the 2-categoryCon, the third

model of generalized spaces, is strictly 2-categorical (all exisiting limits and

colimits are strict).

The setting for our main result of the thesis (4.2.2) is the 2-category ETop

whose objects are elementary toposes (equipped with nno9), whose morphisms

are geometric morphisms, and whose 2-morphisms are geometric transforma-

tions.

However, our concern with generalized spaces means that we must also take

care to deal with boundedgeometric morphisms. Recall that a geometric

morphism p: E ! S is boundedwhenever there exists an objectB in E (a

bound for p) such that every A in E is a subquotient of an object of the form

9natural number object
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(p� I ) � B for some I 2 S : that is one can form the following span in E, with

the left leg a mono and the right leg an epi.

E

(p� I ) � B A

The signi�cance of this notion can be seen in the relativized version of Giraud's

Theorem (see [Joh02a, B3.4.4]): p is bounded if and only if E can be got

as the topos of sheaves over an internal site inS . (In the original Giraud

Theorem, relative to Set, the bound relates to the small set of generators.)

It follows from this that the bounded geometric morphisms into S can be

understood as the generalized spaces, the Grothendieck toposes, relative to

S .

Bounded geometric morphisms are closed under isomorphism and composi-

tion (see [Joh02a, B3.1.10(i)]) and we get a 2-category BTop of elementary

toposes, bounded geometric morphisms, and geometric transformations. It is

a sub-2-category ofETop, full on 2-morphisms.

Also [Joh02a, B3.1.10(ii)], if a bounded geometric morphism q is isomorphic

to pf , where p is also bounded, then so too isf . This means that if we are

only interested in toposes bounded overS , then we do not have to consider

unbounded geometric morphisms between them. We can therefore take the

“2-category of generalized spaces overS ” to be the slice 2-categoryBTop=S ,

where the 1-morphisms are triangles commuting up to an iso-2-morphism.

[Joh02a, B4] examines BTop=S in detail.

For the (op)�brational results, [Joh02a, B4] reverts to BTop. This is appro-

priate, since the properties hold with respect to arbitrary geometric transfor-

mations, whereas working in BTop=S limits the discussion to those that are

identities over S .
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Unbounded geometric morphisms are rarely encountered in practice, and so

it might appear reasonable to stay in BTop or BTop=S [Joh02a, B3.1.14].

However, one notable property of bounded geometric morphisms is that their

bipullbacks along arbitrary geometric morphisms exist in ETop and are still

bounded [Joh02a, B3.3.6]. (Note that where [Joh02a] says pullback in a

2-category, it actually means bipullback – this is explained there in section

B1.1.) Thus for any geometric morphism of base toposesf : S 0 ! S , we

have the change of base pseudo functorf � : BTop=S ! BTop=S 0. One might

say the `2-category of Grothendieck toposes' is indexed overETop�= (where

the 2-morphisms in ETop�= are restricted to isos). [Vic17] develops this in its

use of AU techniques to obtain base-independent topos results, and there is

little additional effort in allowing change of base along arbitrary geometric

morphisms. To avoid confronting the coherence issues of indexed 2-categories

it takes a �brational approach, with a 2-category GTop “of Grothendieck

toposes” �bred (in a bicategorical sense) over ETop�= .

We shall take a similar approach, but note that our 2-categoryGTop, which

we are about to de�ne, is not the same as that of [Vic17] – we allow arbitrary

geometric transformations “downstairs”. We shall write GTop�= when we wish

to refer to the GTop of [Vic17].

DEFINITION 1.6.1. Following the Construction 1.4.12, the2-categoryGTop is de-

�ned asETopD , whereD is the class of bounded geometric morphisms of elementary

toposes. We callGTop the2-category of Grothendieck toposes.

GTop (ETop # ETop)

ETop
cod cod

To be more explicit, inGTop

(GTop 0) Objects are Grothendieck toposesp: E ! S over some elementary toposS .

(GTop 1) For objectsp and q, the 1-morphisms fromq to p are given by the triples

f = hf ;
H
f ; f i wheref : q ! p and f : q ! p are geometric morphisms,
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and the geometric transformation
H
f : pf ) f q is an invertible geometric

transformation.

(GTop 2) If f andg are 1-morphisms fromq to p, then 2-morphisms fromf to g are of

the form� = h�; � i where� : f ) g and� : f ) g are geometric transfor-

mations such that� lies over� (modulo invertible geometric transformations
H
f and

H
g ).

E

S

p

F E

S 0 S

�=

f

q

f

p

F E

S 0 S

�=
�=

f

g
q

f

g

p

�

�

Notice that in particular, GTop(S ) = Base� 1S = BTop=S .

An important part of the next chapter will focus on the codomain 2-functor

cod : GTop ! ETop.

It is important to note that this codomain functor is not a �bration in any

2-categorical sense, as it is not well behaved with respect to arbitrary 2-

morphisms in ETop. This will turn out to be easy to see if one takes the

point of view of indexed 2-categories (and the corresponding change-of-base

functors).

Indeed, it becomes a �bration if one restricts the downstairs 2-morphisms

to be isos, as in [Vic17]. However, it will still be interesting to consider its

�brational objects, cartesian 1-morphisms and 2-morphisms, which we shall

do in §2.5 §2.6.
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1.7 Representability and bicategorical

concepts

In this section, we shall discuss the importance of the notion of representability

in 1-categorical and 2-categorical setting. Recall that

DEFINITION 1.7.1. A functor F : C ! Set is representable whenever there is

an objectA in the categoryC with a natural isomorphism� : F �= Hom(A; � ).

In this situation, we sayF is representedby the objectA. A presheafP : Cop !

Set is representable when there is an objectB in the categoryC with a natural

isomorphism : P �= Hom(� ; B).

NOTE. We usually use notationsyA = Hom( A; � ) andyB = Hom( � ; B). The

functorsy� andy� are, respectively, Yoneda and co-Yoneda embeddings. By Yoneda

lemma, the representing object is determined uniquely up to canonical isomorphism

for a given representable functor (resp. presheaf).

There are many reasons why representable functors and representable presheaves

are so important in category theory and higher category theory. Suppose we

want to de�ne an object satisfying a universal property, such as a limit, a

colimit, an exponential, etc. in a given category C. One elegant approach is to

take advanatge of topos structures (e.g. cartesian closedness, completeness,

cocompleteness, etc.) ofSetC
op

and the Yoneda embeddingC ! SetC
op

: The

desired object (satisfying our universal property), provided it exists in C, is

the representing object for a presheaf, constructed from representables, which

satisfy the same universal property inSetC
op

. The Yoneda lemma ensures us

that this object, if it exists, will be unique up to canonical isomorphism.

EXAMPLE1.7.2. LetCbe a category andA andB objects inC. Take the functoryA �

yB : Cop ! Set. If this functor is represented by an objectC in C, thenHom(X; C ) �=

Hom(X; A ) � Hom(X; B ), naturally inX . The data of these natural isomorphisms

is exactly the data of a product ofA andB in C, provided that the later exists inC.

An application of the representational approach is found in de�ning new

objects in mathematics with higher structures. Suppose we want to de�ne a
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group internal to any category with binary product and terminal object. One

way is to write down all the data needed for operations of a group plus the

group axioms for these operations. This is special case of the de�nition of

an internal category. (See Appendix A.8). For more sophisticated structures

such as topological groups and groupoids, bicategories and double categories,

Lie groups, spectra, etc. internal to categories (with enough structures), this

approach can be tedious. Instead we can use Yoneda embedding again: An

object A in C is a group object iff the representable presheafyA has a unique

lifting along the forgetful functor U : Grp ! Set.

Grp

Cop Set

U

yA

fyA

One example of such lifting is the fundamental group of a topological space.

EXAMPLE1.7.3. LetTop� ;� 1 be the category consisting of pointed topological spaces

with morphisms homotopy classes of base-point preserving maps. The co-representable

functory(Sn ;� ) computes, for every pointed spaces(X; x 0), the set ofn-spheres (loops

for n = 1), up to homotopy, based atx0 in X . The lifting ofy(Sn ;� ) along the forgetful

functorU gives then-th fundamental group.

Grp

hTop Set

U

y( S 1 ; � )

� 1

Ab

hTop Set

U

y( S n ; � )

� n

Therefore,(Sn ; � ) is an internal cogroup in the categoryTop� ;� 1 whose co-multiplication

map is given by the canonical mapSn ! Sn _ Sn .

We can jump one level up from categories (i.e.Set-categories) to 2-categories

(i.e. 2-categories) and bicategories. The idea is still the same with the main

difference that in the world of 2-categories and bicategories there are two

distinct ways to formulate representability: using isomorphism versus equiva-

lence of hom-categories and precisely these different choices account for strict
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and weak structures of representing objects such as limits, colimits, etc. We

shall use the pre�x “bi” when we refer to the bicategorical cases.

PRINCIPLE. If P is a property/structure of categories, then we say that an objectX

in a bicategoryB representably satis�esP (or is representablyP ) if for all objects

W of B , B (W; X ) satis�es/exhibitsP. If P is a property/structure of functors of cat-

egories, then we say that a 1-morphismf : X ! Y in a bicategoryB representably

satis�es P (or is representablyP ) if for all objects W of B , f � : B (W; X ) !

B (W; Y) satis�es/exhibitsP.

REMARK1.7.4. Recall from category theory that a category isindiscrete(akacodis-

crete chaotic) whenever for any two of its objects there is a unique morphism (nec-

essarily invertible) between them. An indiscrete category is inhabited iff it is equiv-

alent to the terminal category. A typical example of an indiscrete category is the

fundamental groupoid of a contractible topological space.

Consider the chain below of (forgetful) functors whereOb forget morphisms,jj�jj
0

=

Und is the underlying category.

pt(1) (pt(S); =) (Set; �= ) (Cat; ' ) (2 Catpsd; ' )

?

?

?

?

?

?

?

?

(� ) ind

(� )d

jj�jj
1

(� ) ind

jj�jj
0

(� )d

(� ) ind

jj�jj
� 1

(� )d

>

jj�jj
� 2

?

whereS is the Sierpinski space,pt(S) can be regarded as the category of truth values

(aka (-1)-categories)? = ; and> = f;g . Note thatSet is the category of points of

the object classi�er toposS [O]. Also, jj � jj
� 2

is the unique functor!, jj � jj
� 1

is

the propositional truncation , andjj � jj
0

is the `underlying set of objects' functor.

DEFINITION 1.7.5. SupposeB is a bicategory. We de�ne the following concepts in

B representationally: An objectA isbidiscrete (resp.biposetal , resp.bigroupoidal )

if the representable pseudo functorB (� ; A) : B op ! Cat factors, up to an equiva-

lence, through the sub-2-categorySet (resp.Poset, resp.Grpd) of sets (resp. posets,
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resp. groupoids). The phrase `up to equivalence' means that there is there is a natural

equivalence

B op Cat

K

'

B (� ; A )

^B (� ; A )

whereK is the 2-categorySet (resp.Poset, resp.Grpd).

In more basic terms,A is bigroupoidal iff each 2-morphism

X A

is invertible or equivalently, the morphism

I t X ! 2 t X ,

induced by the categorical embedding 2 ! I , is an equivalence in B . A

is biposetal iff there is at most one such 2-morphism between any pair of

1-morphism. Finally A is bidiscrete iff it is both bigroupoidal and biposetal.

REMARK 1.7.6. The analogue of de�nition above for 2-categories replaces `up to

equivalence' by `up to isomorphism'.

1.8 Adjunctions, extensions, and liftings

In addition to the de�nition of equivalence, adjoints, and adjoint equivalences

in bicategories, which we have discussed to before, a host of other basic con-

cepts of categories and functors functors can be internalized in bicategories.

PROPOSITION1.8.1. Every adjunction can be promoted to an adjoint equivalence.

EXAMPLE 1.8.2. Every adjunction in the 2-categoryGrpd is automatically an ad-

joint equivalence. Also, it is a theorem of formal category theory that every adjunc-

tion of categories can be promoted to an adjoint equivalence. This works mutatis
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mutandis in every bicategory. If we consider groups as one-object groupoids (Exam-

ple 1.5.2), then an adjunctioǹ: G � H : r of groups consists of elements� 2 G

and" 2 H such that" � 1 = `(� ) and� � 1 = r ("). So," is uniquely determined from

� . In fact, bothr � ` and` � r are inner automorphisms, given by conjugation with�

and", respectively.

DEFINITION 1.8.3. (i) A 1-morphismi : X ! Y is faithful (resp.full ) if whisker-

ing with i on the left is a faithful functor (resp. full), i.e. for everyW 2 K0

the induced functori � : K(W; X ) ! K(W; Y) is faithful (resp. full) inCat.

We can give a �rst order reformulation:i : X ! Y is full iff for any pair

of 1-morphismsf; g : W � X , any 2-morphism� : i � f ) i � g has a lift

� : f ) g. Moreoveri is fully faithful iff such lifts are unique.

W

X

Y
� +

� +
f

g
i

i � f

i � g (1.11)

(ii) A pseudo-retract of 1-morphismf : X 0 ! X is a 1-morphismr : X ! X 0

together with an iso-2-morphismidX 0
�= r � f . A pseudo-section of p: E !

B is a 1-morphisms: B ! E together with an iso-2-morphismp � s �= idB .

(iii) Given 1-morphismsf : A ! C and j : A ! B , the 2-morphism' : f )

g � j 2 K(A; C) exhibitsg 2 K(B; C) as theleft extension of f alongj

whenever for any 1-morphismg0 2 K(B; C) we have the bijection of sets

K(B; C)(g; g0) �= K(A; C)(f; g 0j )
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given, from left to right, by the assignment� 7! (� � j ) � ' .

A C

B

j

f

'

g

(1.12)

(iv) Given 1-morphismsf : A ! B andp: E ! B , the 2-morphism : f )

p� g 2 K(A; B ) exhibitsg 2 K(A; E ) as theleft lifting of f alongp whenever

for any 1-morphismg0 2 K(A; E ) we have the bijection of sets

K(A; E )(g; g0) �= K(A; B )(f; g 0p)

given, from left to right, by the assignment� 7! (p � � ) �  .

E

A B

p

f

g

 
(1.13)

The extension (resp. lifting) isabsolute if it is preserved by all outgoing (resp.

incoming) arrows fromC (resp. toB).

REMARK 1.8.4. The left liftings inK are the left extensions inKop. Also we de�ne

the right liftings (resp. right extensions) as the left liftings (left extensions) inKco.

At times, we shall use the notationlanf
j for the left extension andranf

j for the right

extension. If all left (resp. right) extensions of morphisms of the typeA ! C

along j exist, then we get a left (resp.) adjointlan(� )
j a j � (resp.j � a ran(� )

j )

wherej � = K(j; C ) : K(B; C) ! K(A; C). Note that in particular the 2-morphism

� : f ) lanf
j � j is the unit of the adjunction above atf . The left extensionlanf

j is

absolute iff for anyu: C ! C0, we haveu� (� f ) = � uf .

REMARK 1.8.5. The notions of extension and lifting in a bicategory are direct gen-

eralization of left and right closed structures of monoidal category. Consider mor-

phismsA, X , andB in the delooping bicategory� V of a closed monoidal category

V (Example 1.2.1). A right lifting ofX alongA gives the counit[A; X ] 
 A ! X

of adjunction� 
 A a [A; � ] and a right extension ofX alongB gives the counit

B 
 [B; X ] ! X of adjunctionB 
 � a [B; � ] in V. In a symmetric monoidal
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category there is no difference between left and right closed structures and this can

be seen from the previous remark since(� V)op �= � V

PROPOSITION1.8.6. In the extension(g; � ) of diagram(1.12) ' is an iso-2-morphism

iff j is an equivalence.

Proof. We only prove the “if” direction. The “only if” direction is similar.

Supposej : A ! B is an equivalence. Then� := � � 1
j;j � 1 ;f � (f � ) � � 1A ;f is an

iso-2-morphism betweenf and (f j � 1) � j .

REMARK 1.8.7. The representably de�ned notion of fully faithful 1-morphism can

be recasted in terms of left lifting: tautologically,f : A ! B is fully faithful iff 1A

is an absolute left lifting off against itself.

REMARK1.8.8. The unit� of an adjunctionf a u exhibits the left adjointf : A !

B as the absolute left lifting of1A along the right adjointu. For any morphism

f 0: A ! B and any 2-morphism� : 1A ) uf 0, we de�ne e� := ( � � f 0) � (f � � ) : f )

f 0. The left adjunction equation in 1.2 yields the equality of pasting diagrams in

below:
B B

A A A

u

1

u

1

f 0

f

1

�

�
=

B

A

u u

REMARK 1.8.9. In a 2-categoryK with a terminal object1, the colimit and limit of

a morphismf : A ! B can be intrinsically de�ned as the left and right extensions

of f along the unique (up to iso-2-morphism) morphism!A : A ! 1, respectively.

A C

1

!A

f

'

colim f

A C

1

!A

f

'

lim f
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Pasting(lanf ; � ) with the comma square in below makes(gb;(lanf
j � � ) � (� � d0))

into a left extension offd 0 alongd1 : (j # b) ! 1.

(j # b) A C

1 B

d0

d1 j

f

'

b
lan f

j

�
(1.14)

By de�nition, we have

lanf
j b �= colim((j # b) d0�! A

f
�! C) (1.15)

PROPOSITION1.8.10. From the remarks above we conclude that

(i) Left (resp. right) adjoints preserve left (resp. right) extensions. In particular,

they preserve colimits (resp. limits).

(ii) The left adjoint is fully faithful iff the unit is an iso-2-morphism.

(iii) The right adjoint is fully faithful iff the counit is an iso-2-morphism.

EXAMPLE1.8.11. In the 2-categoryCatof categories extensions are known asKan

extensions as a tribute to the early work of Daniel Kan on adjoints and extension.

It is by now a classical result that in the case whenA is small,B is locally small, and

C is cocomplete then the left Kan extension of any functorf along anyj exists, and

is pointwise calculated by the coend
Ra2 A B(ja; b) 
 fa ([ML98, § X.4.1-2]). Of

course, the expression of coend uses the set-enrichment structure of categories, so

B(ja; b) 
 fa is basicallyB(ja; b)-indexed coproduct offa with itself. (See §1.9

for formulation of cotensor as a weighted limit and the expression of left extensions

in the more general setting ofV-enriched categories.)

Now, the coend expression of the left Kan extension suggests that the condition

of local smallness of B can be weakened to the requirement that allB (ja; b) are

small (i.e. a set), a condition called “admissibility” ofj , by Street and Walters in
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their `Yoneda structures' A familiar case of this equation in the 2-categoryCat of

categories is the following situation:

(F op # d) Cop Set

1 Dop

�

F op

P

'

d

LanF op P

�

From the general case, we deduce that

LanF op P(d) �= colim((d # F )op ��! Cop P�! Set)

This is known as `push-forward' of presheaves. It is, by the universality property of

left extensions, the left adjoint to the `pullback functor'F � : PShv(D) ! PShv(C)

obtained from pre-composition withF op. Indeed,F � (Q) �= PShv(D)(yDF (� ); Q).

Note that by this equation, a natural transformation� : F ) G induces a natural

transformation� � : G� ) F � , and therefore

WhenF is left exact, then(d # F ) is �ltered and since �ltered colimits commute with

�nite limits (See [MLM94, §VII.6]), it follows thatLanF op : PShv(C) ! PShv(D)

is left exact, and therefore it is the inverse of geometric morphism(LanF op ; F � ) : PShv(D) !

PShv(C). Therefore, we have a 2-functorPShv(� ) : Catcart
op ! ETop. (For more

details see [Joh02a, Example 4.1.10].)

EXAMPLE1.8.12. We saw the connection between left extensions and colimits. But,

there is a sense which relates lefts extensions to the object of (path) connected com-

ponents. Let1: A ! Set be the functor which is constant at the terminal set1 = f ?g.

It is straightforward to see that the left extension of1 along any functorK : A ! B

computes, atb 2 B, the set of connected components of comma category(K # b),

i.e.

LanK 1(b) �= colim((K # b) d0�! A 1�! Set) �= � 0(K # b)
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A special case of this situation involves category of elements of a diagram. Suppose

F : B ! Set is a functor and
R

B F is the category of elements ofF obtained by the

following comma object.
R

B F 1

B Set

!

� B 1

F

�

In fact the 2-morphism� in the comma square above establishesF as the left exten-

sion of constant functor1:
R

B F ! Set, and therefore we have

F (b) �= colim((� B # b) d0�!
Z

B
F 1�! Set) �= � 0(� B # b) (1.16)

To see the isomorphismF (b) �= (� B # b) more concretely, note that in the comma

category(� B # b), an object is of the form(x; d; � ) wherex 2 F (d) and� : d ! b

is in B, and a morphism of(� B # b) is of the formg: (x; d; � ) ! (x0; d0; � 0) where

g: b ! b0 is a morphism inB with g � x = F (g)(x) = x0and� 0 � g = � .

x

x0

d b

d0

�

g � 0

The functord0 : (� B # b) !
R

B F forgets theband� parts. Now, any two objects in

the same connected component of(� B # b) we associate the same element� � x =

(� 0� g) � x = � � (g� x) = � 0� x0. The mappingsx 7! (x; b;idb) 2 and(x; d; � ) 7! � � x

give the isomorphismF (b) �= (� B # b).

1.9 2-Categorical and bicategorical limits

The aim of this section is to introduce a consistent language to talk about and

delineate between 2-categorical (co)limits and bicategorical (co)limits. As

mentioned before bicategorical (co)limits are the correct notion of (co)limits

in various 2-categories of toposes, while the important 2-categoryCon of
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AU-contexts for us in Chapter 3 the limits are strict and 2-categorical. This

demarcation is summarized in the table of Remark 1.9.6. It should be noted

therein that although in general by weakening of structures of cones and

representation for (co)limits we obtain various notions of 2-limits and bilimits,

in particular cases these various notions could well be equivalent. This is

manifested in handful of examples in this section.

We use the elegant machinery of weighted limits ([Kel82], [Joh02a]) for

giving the de�nition of most general 2-limits and bilimits. At the start, we

shall motivate the notion of weighted limits from the 1-dimensional case of

limits of diagrams in categories.

In Remark 1.9.5, we observe that we can divide the universal properties

of 2-limits to the 1-dimensional universal properties and the 2-dimensional

universal properties. We will stick to this terminology throughout the whole

thesis.

Limits of diagrams in category theory, viewed as a representing objects for ap-

propriate Set-functor, generalizes to the notion of weighted limitsof a weighted

diagrams in 2-category theory, de�ned as representing objects of certainCat-

valued 2-functor.

We quickly recall a version of 1-dimensional limit and colimits which can

be readily generalized to weighted 2-dimensional limits. Example 1.7.2 of

product is one of the simplest instance of products in category theory. As with

the product, a limit of a diagram in a category represents the presheaf of cones

on that diagram. SupposeJ is a small category andD : J ! C is a diagram of

shapeJ in the category C. For an object A in C, the set of cones inC with apex

A is in bijection with the set of natural transformations between the constant

functor at 1 = f�g , namely �(1) : J ! 1 ! Set, and functor D. More formally,

Cone(A; D ) �= [J; Set](�(1) ; C(A; D (� )) �= [J; C](�( A); D) (1.17)

Note that this isomorphism is natural in A, and as such we obtain a presheaf
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Cone(� ; D) : Cop ! Set. A limit of diagram D is a representation (lim
J

D; � )

for the presheaf Cone(� ; D) where � : �( A) ) D.

We wrote C(A; D (� )) instead of homC(A; D (� )) to emphasize theSet-enrichment

structure of the category C. Indeed, it is known since long that the theory

of limits and colimits of categories has a robust generalization to the cate-

gories enriched in closed monoidal categories and they are known asenriched

weighted (aka indexed) limits([BK75], [Kel82]). The enriched theory of limits

and colimits generalizes ordinary categorical theory of limits and colimits by

choosing (V; 
 ; I ) to be the symmetric closed monoidal category(Set; � ; 1).

In below, we give a brief outline of this generalization, emphasizing why the

notion of weight must be introduced in the passage fromSet-categories to

general V-categories.

NOMENCLATURE. Nowadays, the terminology `weighted (co)limits' is much more

commonly used perhaps for the good reason that the term `indexed' is already over-

loaded with various meanings in category theory. There is another reason why we

should prefer the terminology `weighted (co)limits': For a familyf X i gi 2 I of sets,

eachX i with cardinalityni , the cardinality of
`

i 2 I
X i is �

i 2 I
ni , and therefore coprod-

uctsare likesums. Weighted productsare likeweighted sums�
i 2 I

wi � ni . This view

is vindicated by the coend formula

colim
W

D =
Z j 2 J

W(j ) 
 D(j )

for weighted colimits. Nonetheless, beware that some of the pioneering papers about

weighted limits (e.g. [KS74], [BK75], [Kel89]) use the terminology `indexed limits'.

First, recall that V-enriched representable functors are de�ned asV-functors

C(A; � ) : C ! V, and the action of this enriched functor10 on hom-objects is

determined by the right adjoint

C(X; Y ) ! [C(A; X ); C(A; Y )]V

10Note that here V is considered enriched over itself via its closed structure.
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to the composition morphism

C(X; Y ) 
 C(A; X ) ! C(A; Y )

In above we rely on the closed structure11 of V.

NOTE. If V is symmetricmonoidal closed, then we can also de�ne enriched repre-

sentable presheavesC(� ; A) : Cop ! V. UnderstandingV-functors asC ! V as

V-modules, in the absence of symmetry, we need to distinguish between left and

right for the module structure; one is used for limits, the other for colimits.

Second, the category of natural transformation, used in equation 1.17, is

generalized to a V-category. If the monoidal category V is complete then

we posses the means to make the collection ofV-functors between any two

V-categories into anV-category. This is usually expressed by considering the

objectof natural transformations between V-functors F; G: C � D as the end
Rc2 C D(F (c); G(c)).

It seems that we now have all the ingredients to generalize the notion of

(co)limits to the enriched setting by replacing 1, the unit of monoidal category

Set, with I the unit of V. However, a simple-minded generalization will

not yield the correct notion for two reason: �rst that to establish the �rst

isomorphism in equation 1.17 we fundamentally used the fact that 1 = f�g

is the terminal object of Set. This is not true for many interesting monoidal

categories. Furthermore, the categorySet is well-pointed and the unit 1 is

the separator. Moreover, any setX is entirely determined by its points, i.e.

morphisms 1 ! X , and any function of sets is entirely determined by its action

on points. Again, these facts do not generalize to a general monoidal category

(by a point of object A of (V; 
 ; I ) we mean a morphismI ! A). Therefore, to

obtain a nicely behaved notion of enriched (co)limit we have to replace �(1)

by a fattened up V-functor W : J ! V.

11Steven Vickers noted that we can do away with this reliance: we can understand aV-functor
A from C to V as a “V-module” over C, for each object X of C it has a V-object A(X ); and
for each pair X; Y there is a “scalar multiplication” C(X; Y ) 
 A(X ) ! A(Y ).
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SupposeV is a closed monoidal category andC is a category enriched inV.

A V-weighted diagram of shape J consists of a pair of V-functors D (the

diagram) and W (the weight) where J is a small V-category.

J C

V

D

W

A weighted cone with apex A in C is a V-natural transformation W )

C(A; D (� )) . Consider the transposedV-functor cD : Cop ! [J; V]; it takes a

object X of C to the V-functor C(X; D (� )) : J ! V, and is de�ned on hom-

objects by the composition morphismC(X; D (j )) 
 C(Y; X) ! C(Y; D(j )) . Note

that in the case J = 1, the assignmentD 7! cD is nothing but the enriched

Yoneda embedding.

A limit over the weighted diagram above is a representation(lim
W

D; � ) for the

functor

ConeW D : Cop �! V

X 7! [J; V](W; cDX )
(1.18)

where � : W ) cDX is a V-natural transformation, that is

C(X; lim
W

D) �= [J; V](W; cDX ) (1.19)

natural in X . Note that � is indeed the unit of this isomorphism, i.e. the image

of I ! C(lim
W

D; lim
W

D) under the isomorphism above.

Dually, one de�nes the notion of weighted colimit over a weighted cocone

(D : J ! V; W : Jop ! V) where Jop(j; j 0) := J(j 0; j ). The cocone diagram can

be expressed as the span below:

Jop Cop

V

D op

W
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The colimit then is de�ned by the isomorphisms

C(colim
W

D; Y ) �= [Jop; V](W;
c

DY ) (1.20)

natural in Y, where
c

D : C ! [Jop; V] is the V-functor which takes X to

C(D(� ); Y). A V-enriched category iscomplete whenever cD has a left adjoint

for all diagrams D. It is cocomplete whenever
c

D has a left adjoint for all

diagrams D.

[J; Set] Cop>

cD

lim
(� )

D

[Jop; Set] C>

c

D

colim
(� )

D
(1.21)

When V is the cartesian monoidal category Set of sets, as opposed to the

general case, then all weighted enriched limits can be expressed by ordinary

limits. Nevertheless, weighted limits usually have a simpler diagram functor

D as they transfer the complexity of diagrams, over which we take limits and

colimits, to the weights. For instance, consider the example of product
Q

W
D,

where D is in C and W is a discrete category, which is the limit of constant

diagram �( D) : W ! C. It is of course isomorphic to the limit of weighted

diagram with weight functor W : 1 ! Set and the diagram D : 1 ! C. The

latter limit is known as cotensor(aka power) W t D. In this case we have

W t D �=
Q

W
D �= D W . The limit cone � is given by W-many morphism

W t D ! D, obtained by exponentiating W-many morphism 1 ! W.

Moreover, even in the case of set-weighted limits, the notion of weighted

(co)limit is important on its own merits as it gives a conceptual clarity not

offered by ordinary (co)limits. For instance for every complete V-category C,

the functor colim
(� )

D in the diagram (1.21) is the left extension of D : J ! C

along the Yoneda embedding.

All of the strict 2-categorical limits can be obtained via weighted limits when

we take V to be the cartesian monoidal category of categories and functors. For
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the rest of the thesis we will be concerned only with category-weighted limits.

We shall give an elementary description of 2-categorical weighted limits. Note

that they generalize the enriched limits over the cartesian monoidal category

Cat of categories and functors in that we can weaken the strictCat-natural

transformations, used in de�nition of category of cones, to pseudo and lax

transformations. Also, we can weaken isomorphisms of categories by their

equivalence in de�nition of the limits as representation. But �rst, it is helpful

to contrast picture of category-weighted cones with ordinary cones.

REMARK1.9.1. In the ordinary case, a cone over a diagramD : J ! Cis given by a

apexX of C, and for eachj of J a singlemorphismX ! D(j ) natural with respect

to action of morphismsf : j ! j 0 in J. The limit ofD is the universal such cone over

D. In the case of category-weighted limits, a category-weighted cone over a diagram

D : J ! K speci�es a category of morphismsX ! D(j ), for each objectw of the

categoryW(j ), and moreover it speci�es actions of 1-morphisms and 2-morphisms

of J as functors and natural transformations between these categories.

�

�

�

�
������ yy%%

+3"*
5=

19
%-

X

D(j )
����%%

"*

19

X

D(j 0)
oo

DEFINITION 1.9.2. SupposeJ is a small 2-category andK is a 2-category. Moreover,

let D : J ! K andW : J ! Cat be strict 2-functors. Adiagram of shape J with

weight W in K consists of

J K

Cat

D

W

where the 2-functorD is the diagram, andW speci�es a weightW(j ) for each

objectj 2 J0 and a weight transformerW(f ) to each morphismj
f
�! j 0 in J. A lax

weighted cone over the weighted diagram(D; W ) with apexX 2 K0 is given by

the following data:

(WC1) A functorL(j ) : W(j ) ! K(X; D (j )) for eachj 2 J0.

1.9 2-Categorical and bicategorical limits 73



(WC2) A natural transformationL(f ) : D(f )� � L(j ) ) L(j 0) � W(f ), for each arrow

f : j ! j 0 in J.

W(j ) K(X; D (j ))

W(j 0) K(X; D (j 0))

L (j )

W (f ) D (f ) �

L (j 0)

L (f ) (1.22)

satisfying the coherence condition expressed by equality of pasting diagrams

in below:

W(j ) K(X; D (j ))

W(j 0) K(X; D (j 0))

L (j )

W (f )W (f 0) D (f ) �

L (j 0)

L f
W (� ) =

W(j ) K(X; D (j ))

W(j 0) K(X; D (j 0))

L (j )

W (f 0) D (f 0) � D (f ) �

L (j 0)

L f 0
D (� ) �

(1.23)

for any 2-morphism� : f ) f 0: j � j 0 in J.

Notice that the last condition materializes only when J is not a locally discrete

2-category. It appears in the shape diagram of equi�er (Example 1.9.28),

inverter (Example 1.9.31), and identi�er (Example 1.9.32).

CONSTRUCTION1.9.3. We form the categoryL axConeX
W

D of lax weighted cones

over the weighted diagram(D; W ) with apexX . The objects of this category are lax

natural transformationsL : W ) K(X; D (� )) as given in (WC2), and a morphism

between two such natural transformationsL andL0 is a modi�cationm: L V L0

which speci�es for each objectj of J, a natural transformationm(j ) : L(j ) ) L0(j )

such that

L0
f � (D(f )� � m(j )) = ( m(j 0) � W(f )) � L f (1.24)
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Equation(1.24) expresses commutativity of the obvious diagram of 2-morphisms

in diagram(1.25) : traversing along the front face and then bottom face yields the

same 2-morphism as traversing the top face followed by back face.

W(j ) K(X; D (j ))

W(j ) K(X; D (j ))

W(j 0) K(X; D (j 0))

W(j 0) K(X; D (j 0))

L 0(j )

D (f ) �L (j )

W (f )

m(j )

L 0(j 0)

L (j 0)

m(j 0)

(1.25)

Consider the2-functor cD : Kop ! [J; Cat]; it takes a objectX of K to the functor

K(X; D (� )) : J ! Cat, a 1-morphismf : Y ! X to the natural transformations

of functorscD(f ) : cD(X ) ) cD(Y) and a 2-morphism� : f ) g to a modi�cation
cD(� ) : cD(f ) V cD(g).

The categoryL axConeX
W

D just so constructed is a functor category, that is:

L axCone
X

W
D �= [J; Cat]lax (W; cDX ) �= [J; Cat]lax (W; K(X; D (� ))) (1.26)

where the 2-category[J; Cat]lax consists of strict 2-functors, lax transformations and

modi�cations.

DEFINITION 1.9.4. A lax weighted limit over the weighted diagram(D; W ) is

the representing objectlimW D of K0 for the 2-functor

L axCone
W

D : Kop ! Cat

X 7! L axCone
X

W
D

This is equivalent to give equivalences

� X : K(X; lim
W

D) ' [J; Cat]lax (W; cDX ): 	 X (1.27)
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of categories, natural inX . We call �(1 lim W D ), which gives the structure of limit

cone, theunit of representation and we denote it by� W;D .

Dually, a lax weighted cocone can be de�ned by a pair of strict 2-functors

D : J ! K and W : Jop ! Cat. A lax weighted colimit is an object together

with equivalences

� Y : K(colim
W

D; Y ) ' [Jop; Cat]lax (W;
c

DY ): 	 Y (1.28)

natural in Y. Thus weighted colimits are the same thing as weighted limits in

Kop.

REMARK 1.9.5. We can break the universal property of limit expressed in(1.27)

into two parts:

(i) One-dimensional property which is expressed by the equivalence in(1.27)

restricted to the underlying categories:

jjKjj
1
(X; lim

W
D) ' jj [J; Cat]lax jj

1
(W; cDX ) (1.29)

where the isomorphism above is a bijection of sets.

(ii) Two-dimensional property which states that for any pair of morphismsl0; l1 : X �

limW D, any modi�cation�l 0 ) �l 1 of cones is equal to� � � for a unique

2-morphism� : l0 ) l1.

REMARK 1.9.6. There are several important variations of this de�nition which pro-

vides us with stricter structures. More precisely, the level of strictness of our weighted

limits supervenes upon

• the strictness structure of functor 2-category[J; Cat]? where? can be �lled

with lax, psd, or str , and

• the strictness of representation of the limit, that is whether it represents cate-

gory of cones by isomorphism or equivalence of categories in equation(1.17) .
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We enumerate some important variations from the most strict to the least.

Diagram Cone Representation

Strict weighted limits strict strict �=

Pseudo weighted limit strict pseudo �=

Lax weighted limit strict lax �=

Weighted bilimit strict pseudo '

Lax weighted bilimit strict lax '

For instance the paper [PR91] on PIE limits exclusively deals with strict weighted

limits but [Joh02a] is mostly concerned with weighted bilimits particuarly in vari-

ous 2-categories of toposes, although the pre�x `bi' is not used there. We have fol-

lowed the consensus of Australian category theorists in naming various concepts of

2-categorical weighted limits. For instance See [Kel89]. However, of course not ev-

erybody adheres to this convention. Most notably, [Joh02a, §B1.1] takes “lax limit”

to mean the limit of a lax diagramD, as opposed to our terminology where we took

`lax' as an attribute of weighted cones. However, the theory of limits of lax diagrams

can be reduced to weighted limits with strict diagrams (See [Joh02a, Lemma 1.1.6]).

REMARK 1.9.7. The correct bicategorical notion of weighted limit is that of bilimit

(aka weak limits). In bicategories, and also various 2-categories of toposes, we shall

only consider bilimits, and we shall explicitly state it when we do. Since isomor-

phisms of categories are equivalences, any limit is automatically a bilimit, but the

converse almost always fails to be true.

REMARK1.9.8. The theory of weighted limits can be done �brewise. Here, we only

sketch the outline of it. Its details will be the subject of a future study. Suppose

diagramD and weightW are given as before. AW-coneL with apexX in K is an

op�bration mapW ! X � D over J whereX � D is the weak slice constructed

as the comma 2-category ofX : 1 ! K andD : J ! K. By op�bration in above

we mean a �bration of 2-categories which will be discussed in chapter 2. The limit

lim
W

D then is the universal such op�brationlim
W

D � D ! J with an op�bration map

from W overJ.

EXAMPLE 1.9.9. Any weighted limit with weight functorW = �( 1) : J ! Cat

constant at the terminal category1 is calledconical . Notice that in this case, an
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object ofL axConeX
W

D is an ordinary cone overD with apexX in underlying cate-

gory jjKjj
1
, and a morphism therein is a modi�cation of such cones. The universal

property in(1.27) exhibits something more than just a limit in underlying category

jjKjj
1
. There is also the 2-dimensional universal property. Therefore, every conical

limit, such as product, pullback, etc., in a 2-categoryK is an ordinary limit injjKjj
1
.

However the converse is not true; a binary product injjKjj
1

need not be a conical

limit in K.

EXAMPLE1.9.10. Consider the weighted diagram whereJ = 1 is the terminal 2-

category,D is an object ofK andW is a (small) category. The strict weighted limit

lim
W

D is known ascotensor (akapower ) of D by W and is denoted byW t D.

Similarly the colimitcolim
W

D is known as thetensor (akacopower ) and is usually

denoted byW 
 D. Equations 1.27 and 1.28 become specialized to

K(X; W t D) �= Cat(W; K(X; D )) and K(W 
 D; Y ) �= Cat(W; K(D; Y ))

(1.30)

In the case of cotensor, the weighted limit cone consist a familyf d(� )gof 2-morphism

W t D D

d(w0)

d(w)

d(� )

indexed by morphisms� : w ! w0 in W. The 1-dimensional universal property

states that any other familyf l(� )g factors uniquely through the familyf d(� )g. The2-

dimensional universal propertystates that for any parallel pair of morphismsh; k : X �

W t D and a familyf � w : d(w)h ) d(w)kg of 2-morphisms inK which makes the

following diagram of 2-morphisms

d(w)h d(w)k

d(w0)h d(w0)k

� w

d(� )�h d(� )�k

g�m1

commutes, there is a unique 2-morphism� : h ) k with d(w) � � = � w for each

objectw of W. The characterization of universal properties of tensor is similar. The
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tensor and cotensor with the free walking arrow category2 has special status. In fact

in the 2-categoryCat, the tensor2 
 C is isomorphic to the product2 � C and the

cotensor2 t C is the comma category(C# C). These two are very different things:

for instance2 
 1 �= 2 6' 1 �= 2 t 1.

Of course in the environment of bicategories, and also 2-categories of toposes by

tensor and cotensor we really mean the weak version, i.e. a bilimit. In this case, for

any 2-morphism� : a0 ) a1 : X � D, we have a morphismp� q: X ! 2 t D,

unique up to a unique iso-2-morphism, together with iso-2-morphisms� i : ai
�= di �

p� q (i = 0; 1) such that� � 1
1 � (� � p� q) � � 0 = � . For instance, in the case where

K = ETop, we have a 2-functor2 
 (� ) : ETop ! ETop. For a toposE, the

underlying category of2 
 E is the comma category(E # E) = Cat(2; E), whereE

is the underlying category ofE. There are (bounded) inclusionsd0; d1 : E � 2 
 E

whose inverse images are given by domain and codomain functors(E # E) � E,

i.e. d�
0(E0

f
�! E1) = E0 andd�

1(E0
f
�! E1) = E1. The direct images are given

by (d0)� E = ( E !�! 1) and(d1)� E = ( E id�! E). For the �nal toposS , we have

2 
 S ' Shv(S). An direct way to see this is to consider sheaves over as discrete

op�bration: A sheafX overS then is a discrete bundle (op�bration) over points of

S, and as such is given by a morphismX ? ! X > in S . Similarly 2 
 Shv(X ) '

Shv(S� X ).

PROPOSITION1.9.11 ([Kel89]) . If a 2-categoryK admit strict tensors with2 then

all the 2-dimensional universal properties of existing strict weighted limits follows

from their respective 1-dimensional universal properties.

Proof. Suppose diagramD and weight W are given as before, andA is an

object satisfying strict version (i.e. with isomorphism instead of equivalence)

of (1.29) natural in X . Therefore, we have the structure of limit cone of A,

and we get functors � X as in 1.27, though not necessarily an isomorphism yet,

by whiskering with the structure of limit cone of A. We want to show that � X
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is indeed an isomorphism of categories. Consider the commutative diagram of

sets in below.

jj Catjj
1
(2; K(X; A ))

jjKjj
1
(2 
 X; A )

jj Catjj
1
(2; [J; Cat](W; cD(X )))

jj [J; Cat]jj
1
(W; cD(2 
 X ))

�=

jj Catjj
1
(2; � X )

�=

�=

The left bijection is the expression of the 1-dimensional universal property of

tensor 2 
 X , while the bottom row bijection follows from the 1-dimensional

universal property of A by our assumption. The right bijection is a combination

of currying (with respect to the cartesian monoidal structure of jj Catjj
1

and

the 1-dimensional universal property of 2 
 X . Now it is an easy exercise to

see that jj Catjj
1
(2; � ) : jj Catjj

1
! Set re�ects isomorphisms. Therefore, � X is

an isomorphism.

In such 2-categories, such asCat, ETop, and Con, our proofs that a certain

object is equivalent to a weighted limit are more economical since we do not

need to check the 2-dimensional aspect.

DEFINITION 1.9.12. A 2-category iscomplete (resp.cocomplete ) if it admits

products (resp. coproducts), equalizers (resp. coequalizers), and cotensor products

(resp. tensor products). It isbicomplete (resp. bicocomplete) if it admits the weak

version of these limits. We say that a 2-category is �nitely complete (resp. �nitely

cocomplete) if it admits �nite products (resp. coproducts), equalizers (resp. coequal-

izers), and cotensor (resp. tensor) with2.

PROPOSITION1.9.13. The following statements hold about strict completeness:

• Cat is complete and cocomplete.

• The 2-category2Cat(J; K) is complete (resp. cocomplete) whenK is so, and

the limits (resp. colimits) are calculated pointwise.

• Any full re�ective sub-2-category of a complete 2-category is again complete.
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EXAMPLE1.9.14. SupposeK be a �nitely complete 2-category (or “representable”

in terminology of [Str74]). Therefore,K has all comma objects (See Remark 1.9.27).

For an objectC in K, the paird0; d1 : 2 t C � C can be enriched to an internal

category (See A.8) in the underlying categoryjjKjj
1
. The identity 2-morphismid1C

induces a morphismi : C ! 2 t C with � � i = id 1C . Also, the 2-morphism(� �

(d�
0d1)) � (� � (d�

1d0)) formed by the pasting diagram

(2 t C) d1 � d0 (2 t C) 2 t C

2 t C C

d�
1 d0

d�
0 d1

p
d0 d1

d0

d1

�

�

induces a morphismm: (2 t C) d1 � d0 (2 t C) ! 2 t C with � � m = ( � � (d�
0d1)) �

(� � (d�
1d0)) . Indeed,i andm are respectively unit and composition of category object

C = ( d0; d1 : 2 t C � C). A morphismf : C ! D in K lifts to internal functor

(f; 2 t f ) : C ! D sincef � � C must uniquely factor through� D .

2 t C 2 t D

C D

�=) �=)

f

d0 d1

2 t f

d0 d1

Additionally, any 2-morphism� : f ) f 0: C � D in K lifts to an internal natural

transformatione� : C ! 2 t D from (f; 2 t f ) to (f 0; 2 t f 0). This induces a fully

faithful 2-functor2 t � : K ! Cat(jjKjj
1
). For instance, inK = Cat, this 2-functor

takes to a categoryCto the double category of commutative squares ofC.

There is a generalization of Yoneda embedding for 2-categories:
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CONSTRUCTION1.9.15. Any small 2-category can be embedded into a complete

and cocomplete 2-category: given a small 2-categoryK, the Yoneda embeddingYon

is given as the composite

K ,! Cat(jjKjj
1
) ,! 2 Catstr (jjKjj

1
; Cat)

of fully faithful strict 2-functors whereby the second functor is the externalization of

an internal category denoted byFam (Appendix A.8 A.8.7). Therefore the 2-functor

Yon: K ,! 2 Catstr (jjKjj
1

op; Cat) takes an objectA to Fam(A). The codomain of

Yon is equivalent to the 2-category of split normal cloven �bred categories over

jjKjj
1

(See Chapter 2 2.3). Therefore, we can express the Yoneda embedding of

2-categories by a 2-functorYon: K ! splnlFib(jjKjj
1
). Note thatYon is biconser-

vative in that it re�ects equivalences.

EXAMPLE1.9.16. Consider the weighted diagram

�

�

�

A

B

C

J K

Cat

1 2

1

0

1

D

W

f

g

(1.31)

where2 is the category with two objects and a free (walking) arrow between them as

its only non-identity morphism. The strict weighted limit of(D; W ) is a known as

comma object of f andg and is usually denoted by(f # g) (or sometimes(f # g)).
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For a objectX in K, a W-cone with apexX over opspanhf; C; g i is speci�ed by

functorsL(j ) : W(j ) ! K(X; D (j )) satisfying strict naturality condition (with iden-

tity for each 2-cellL(f ) in the diagram(1.22) ).

Therefore, we get two morphismsl0 : X ! A andl1 : X ! B , and also, two mor-

phismX � C with a 2-morphism� between them. The strict naturality condition

dictates that the source and target of� must be equal tof � l0 andg � l1, respectively.

X B

A C

l1

l0 g

f

�
=

=

=

X B

A C

l1

l0 g

f

� (1.32)

Now, universal property oflim
W

D = ( f # g) says that for any 1-morphismu: X !

Y the following diagram commutes:

K(Y;(f # g)) L axConeY
W

D

K(X; (f # g)) L axConeX
W

D

�=

u � L axCone
u

�=

Let the unit� lim W D (1lim W D ) be the limit coneh(f # g); d0; d1; � i , where� f;g : fd 0 )

gd1. Then commutativity of the above diagram for objectY := ( f # g) implies that

� is calculated by whiskering with the limit cone, i.e.� X (u) = hX; d0u; d1u; � f;g � ui

for any 1-morphismu: X ! (f # g).
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On the other hand, for any coneL = hX; l 0; l1; � i , u = 	 X (L) : X ! (f # g) is the

unique morphism with� X u = id (f #g) . In other words,d0 � u = l0, d1 � u = l1, and

� f;g � u = � .

X

(f # g) B

A C

u

l0

l1

=

=
d1

d0
g� f;g

f

(1.33)

Thus the1-dimensional universal propertyof the comma object(f # g) states that

any 2-morphism� : f l 0 ) gl1 uniquelyfactors through the universal 2-morphism�

up to equality. Now, suppose thatL = hX; l 0; l1; � i andL0 = hX; l 0
0; l0

1; � 0i are both

weighted cones with apexX . A modi�cation m: L V L0 consists of 2-morphisms

m0 : l0 ) l0
0 andm1 : l1 ) l0

1 rendering the diagram below (left) commutative.

f l 0 f l 0
0

gl1 gl01

f �m0

� � 0

g�m1

fd 0u fd 0u0

gd1u gd1u0

f ��

� �u � �u0

g��

In such a situation, the unique 2-morphism	( m) : 	( L) ) 	( L0) generatesm0 and

m1 by whiskering withd0 andd1 respectively. The2-dimensional universal property

can be expressed as follows: given morphismsu; u0: X � (f # g) and 2-morphisms

� : d0u ) d0u0and� : d1u ) d1u0which make the diagram above (right) commute,

there exists aunique2-morphism : u ) u0with d0 �  = � andd1 �  = � .

REMARK 1.9.17. Dually, cocomma objects are de�ned as colimits of spans. In the

weighted diagram 1.31,J is replaced by its opposite, and the weight functorW takes

J to
2 1

1

!

!

Obviously, cocomma objects inK are comma objects inKop. This is generally true

about all weighted limits.
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REMARK1.9.18. Notice that in the case of weighted diagram(1.31) , pseudo weighted

limits are equivalent to strict weighted limits: we can construct comma objects as

pseudo-weighted limits. IsomorphismsL(f ) in (1.22) provide us with two extra

iso-2-morphisms� 0 : f l 0
�= z and� 1 : gl1 �= z0 in addition to� : z ) z0. Such a

pseudo cone can be stricti�ed tohX; l 0; l1; e� i wheree� := � � 1
1 �� 0.

X B

A C

l1

l0 g

f

�

�=

�=

7!

X B

A C

l1

l0 g

f

e�

REMARK 1.9.19. The weighted bilimit over the same diagram as above is the so-

calledbicomma object . We'll use the same notation for bicomma objects, but the

context shall indicate whether we use comma or bicomma objects in each instance.

The structure of limit cone remains the same but the universal property becomes

weaker. First of all, arbitrary cones factor through the limit cone of(f # g) not neces-

sarily uniquely, but rather the factorization is unique up to a unique iso-2-morphism.

Moreover, the equalitiesd0u = l0 andd1u = l1 are replaced with cannonical iso-

2-morphisms. Nevertheless, the 2-dimensional universal property remains the same.

Finally, with this change in the weighted diagram, the weighted bilimit is called the

bipullback of f andg. We visited them earlier in 1.4.10.

REMARK 1.9.20. Two special well-known cases of comma object(f # g) are when

eitherf or g is identity morphism or even more specially, bothf andg are identity

morphisms. In the �rst case, say wheng = 1C , we get, what is known as, thelax

limit of morphism f , i.e. an object(f # C) with morphismsd0 : (f # C) ! A

andd1 : (f # C) ! C and a 2-morphism� : fd 0 ) d1, universal among such data.

For instance inCat, the coslice categoryC=Cis obtained as the lax limit of constant

functorX : 1 ! C. In the second case, we have(1C # 1C ) �= 2 t C. Sometimes we

denote the latter by(C # C).

EXAMPLE 1.9.21. If in the structure of weight of diagram(1.31) we replace the

category2 with the interval groupoidI (which is obtained from2 by localizing

at the free walking arrow), then the weighted limit is known aspseudo pullback .

Weighted cones are similar to 1.32 except that� therein becomes an iso-2-morphism,

i.e. an iso-square. It has the same universal properties with respect to iso-squares.
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EXAMPLE1.9.22. Both comma objects and pseudo pullbacks are well-known in the

2-categoryCat of categories. For functorsF : C ! E andG: D ! E thecomma

category (F # G), has as its objects all triples(c; d; �) wherec is an object ofC, d

is an object ofD and� : F (c) ! G(d) is a morphism inE. A morphisms between

any two such objects is a pair(f; g ) : (c; d; �) ! (c0; d0; � 0) wheref : c ! c0 is a

morphism inC andg: d ! d0 is a morphism inD such that the following square

commutes inE.

F (c) F (c0)

G(d) G(d0)

F (f )

� � 0

G(g)

The pseudo pullback (akaiso-comma category )
�
F #�=

G
�

can be similarly de-

scribed but with the difference that the component� in the object(c; d; �) is an iso-

morphism ofE. In the 2-categoryCat of categories, there is no distinction between

pseudo pullbacks and bipullbacks. However, strict pullbacks and pseudo pullbacks

of functors give inequivalent categories in general. Obviously, the canonical compar-

ison functor

I : CF � G D !
�
F #�=

G
�

(c; d) 7! (c;idF (c) ; d)

(f; g ) 7! (f; g )

(1.34)

is fully faithful. It is an equivalence if eitherF or G is an iso�bration. The same

holds in every bicategoryB . (See [JS93b] for more details.)
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EXAMPLE1.9.23. Consider the weighted diagram in below.

� � A C

J K

Cat

1 2 = f 0 ! 1g
0

1

D

W

g

f

The limit cone is the universal diagram of the from

I (f; g ) A

A C

p

p g

f

�

which is called theinserter of f andg. Let us enumerate its universal properties:

(UP1) Given any morphismq: X ! A and any 2-morphism : fq ) gqthere exists

a unique morphismu: X ! I (f; g ) such thatpu = q and� � u =  .

(UP2) Given a pairu; v : X ! I (f; g ) and a 2-morphism� : pu ) pv which makes

the diagram

fpu fpv

gpu gpv

f ��

� �u � �v

g��

commute, there exists a unique 2-morphism� : u ) v satisfyingp � � = � .
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REMARK 1.9.24. Replacing2 with the groupoidI = f 0
�=�! 1g, we get theiso-

inserter as the limit. Iso-inserter off andg agrees with their inserter if the object

C is groupoidal. Replacing2 with the terminal category1, we getequalizer as the

limit.

EXAMPLE 1.9.25. The inserter of functorsF; G: A ! C is the categoryI (F; G)

whose objects are pairs(a; � : Fa ! Ga) wherea is an object ofA and � is a

morphism inC, and whose morphisms are of the formf : (a; � ) ! (a0; � 0) where

f : a ! a0 is a morphism inA with G(f ) � � = � 0� F (f ). The categoryI (F; G) is a

subcategory of(F # G), however it is not full. The universal properties of inserters in

a bicategory (i.e. a weak inserter) can be equivalently formulated by the equivalence

K(X; I (f; g )) ' I (K(X; f ); K(X; g))

of categories, and therefore, it is obvious that the inserter morphismp: I (f; g ) ! A

is both faithful and conservative. It is fully faithful if the objectC is posetal. Finally,

observe that every inserter is in particular a weak inserter, and any pseudo inserter is

equivalent to a strict inserter.

EXAMPLE1.9.26. The free categoryF(G) of a graphG = ( E; V ), understood as a

spanV d0 � E d1�! V whereE is the set of edges andV is the set of vertices of the

graph, is equivalent to the inserter of the aformentioned span.

REMARK 1.9.27. Inserters and comma objects may be constructed from the prod-

ucts, pullbacks, and cotensor with2.

I (f; g ) 2 t C

A C � C

u
p d0 � d1

hf;g i

(f # g) 2 t C

A � B C � C

d0 � d1

p� f;g q

p d0 � d1

f � g

(1.35)

Moreover, all comma objects can be obtained from inserters and products, for the

comma object(f # g) can be constructed as the inserter off � A ; g� B : A � B � C,

where� A ; � B are the product projection morphisms.
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EXAMPLE1.9.28. The 2-categorical generalization of equalizers is what is known

asequi�er . It can be constructed as the weighted limit of the weighted diagram

below.

� �
B C

J K

Cat

1 2

0

1

D

W

f

g

� �

(1.36)

Therefore, the strict equi�er of� and� is given by an objectEq(�; � ) and a mor-

phisme: Eq(�; � ) ! B such that� � e = � � e subject to the following universal

properties:

(UP1) Given any morphismq: X ! B with � � q = � � q, there exists a unique

morphismu: X ! Eq(�; � ) such thateu = q.

(UP2) Given a pairu; v : X � Eq(�; � ) and a 2-morphism : eu ) ev, there exists

a unique 2-morphism� : u ) v satisfyinge � � = � .

REMARK 1.9.29. The limits reducible to the products, inserters and equi�ers are

referred to PIE limits and they are characterized in elementary terms and further

studied in [PR91] (they are all strict limits). Any pseudo PIE limit is equivalent to a

strict PIE limit.

PIE limits are important for us, since the 2-categoryCon of AU-contexts has got

all PIE limits ([Vic19]), but not all conical limits (e.g. pullbacks). In 2-categories
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where we have both products and pullbacks, any strict equi�er can be constructed

from cotensor with2.

Eq(�; � ) 2 t C

B (2 t C) � (2 t C)

e
p

�

hp� q;p� qi

(1.37)

In particular the equi�er morphisme: Eq(�; � ) ! B is fully faithful.

REMARK 1.9.30. Lax equi�ers are de�ned by a more complicated 2-dimensional

universal property. For instance, in the 2-categoryCat, a lax equi�er of natural trans-

formations�; � between functorsF; G: B � C is given by the categoryEq
lax

(�; � )

whose objects are quadruples(b; g; 0;  1) wherebis an object ofB, g: c0 ! c1 is a

morphism ofC, and 0 : F (b) ! c0,  1 : G(b) ! c1 are morphisms inCwhich make

both diagrams in below commute.

F (b) c0

G(b) c1

 0

� b g

 1

F (b) c0

G(b) c1

 0

� b g

 1

A morphism(b; g; 0;  1) ! (b0; g0;  0
0;  0

1) in Eq
lax

(�; � ) is given by a morphism

f : b ! b0 in B and morphismst i : ci ! c0
i , for i = 0; 1, in C such that all faces of

the cubes below commute.

F (b) G(b)

c0 c1

F (b0) G(b0)

c0
0 c0

1

� b

F (f )

 0  1

G(f )
t0

g

t1� b0

 0
0

 0
1

g0

F (b) G(b)

c0 c1

F (b0) G(b0)

c0
0 c0

1

� b

F (f )

 0  1

G(f )
t0

g

t1
� b0

 0
0

 0
1

g0

In the pseudo case, i (i = 0; 1) are isomorphisms and the objects ofEq
str

(�; � ) have

the simpler form of triples(b;  0;  1) with no extra equations. In the simplest case of

strict equi�er,  i are identity morphisms. Note that the strict equi�erEq(�; � ) is a

full subcategory ofB whose objects are those objectsbof B for which� b = � b. This

agrees with the construction of strict equi�er as the pullback in(1.37) . The fact that
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EXAMPLE1.9.31. Let � : f ) g: B � C is a 2-morphism in a 2-categoryK. The

inverter of � is the universal morphismi : Inv (� ) ! B such that the whiskered

2-morphism� � i is invertible. More precisely, the universal properties state that any

morphismu: X ! B which is whiskered with� to an invertible morphism factors

uniquely throughi , and moreover, any 2-morphismiu ) iv : X � B is uniquely

induced by a 2-morphismu ) v : Inv (� ) � B .

A familiar instance of coinverters is the categories of fractions. See [KLW93]

for more details.

EXAMPLE1.9.32. Let � : f ) g: B � C is a 2-morphism in a 2-categoryK. The

identi�er of � is the universal morphismi : Id(� ) ! B such that the whiskered

2-morphism� � i is the identity 2-morphismidf .

EXAMPLE 1.9.33. Identi�ers and coidenti�ers are not bicategorical. Consider the

cotensor limit cone

(C# C) C

cod

dom

�

in Cat. The identi�er of � is the globular subcategory of the arrow category(C# C)

which is isomorphic toC itself. The coidenti�er is the quotient ofC by the equiva-

lence relation of `being connected by a zig-zag (span) of morphisms' on objects of

C. Therefore, the coidenti�er is the category of path components ofC.

Comma construction preserves adjunctions.

PROPOSITION1.9.34 ([Str74]) . SupposeK is a 2-category andf : A ! B is a

morphism with the right adjointu, unit � , and counit� . For any morphismg: C ! B

for which the comma category(f # g) exists inK, the �lling arrow v: C ! (f # g)

obtained by factoring� � g through� : fd 0 ) gd1 is the right adjoint tod1 with

identity counit.

The 1-morphism v in the proposition is uniquely determined by equations

d1v = 1, d0v = ug, and � � v = � � g. Moreover, the proposition states that we
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can lift the 2-morphism � in the lower part of the diagram to a 2-morphism

1 ) vd1 in the upper part.

C

(f # g) C (f # g)

A B A

ug

1

v

d0

d1

1

v

d0
f

1

u

g

� *

Proof. We �rst construct the unit � 1 of putative adjunction d1 a v. Using the

fact (� � f ) � (f � � ) = 1 , we obtain the equality of pasting diagrams

(f # g) A A

C B A B

d0

d1

1

f 1

g

�

u

1

�

�
f

=
(f # g) A

C B

d0

d1 f

g

�

Therefore,

(� � vd1) � (f � ((u � � ) � (� � d0)) = ( � � gd1) � (fu � � ) � (f � � � d0) = �

From the 2-dimensional universal property of the comma object (f # g), we

obtain a unique 2-morphism � 1 : 1 ) vd1 with

d0 � � 1 = ( u � � ) � (� � d0)

d1 � � 1 = id d1

(1.38)

One readily veri�es that id : d1v = 1C and � 1 : 1(f #g) ) vd1, d1 satisfy the

triangle equations of adjunction.
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The proposition above has a dual whereby one of the morphisms participating

in the construction of comma object has a left adjoint instead.

REMARK 1.9.35. In a 2-category with a terminal object, takingC = 1 andg =

b: 1 ! B , the proposition above generalizes the well-known fact of category the-

ory that (f # b) has a terminal point for everyb: 1 ! B if f has a right adjoint.

Recall that in the 2-categoryCat the terminal point of(f # b) is given by the pair

(u(b); � b : fu (b) ! b) and its universality discloses the familiar fact that any mor-

phism � : fa ! b lifts along � b to f (b� ) for a uniqueb� . However,Cat, unlike a

general 2-category, is well-pointed, and therefore the fact above holds in the reverse

direction as well: if(f # b) has a terminal object for everyb: 1 ! B thenf has a

right adjoint. Dually, if a morphismu: B ! A in the 2-categoryK has a left adjoint

then the comma object(a # u) has an initial point, for everya: 1 ! A.

REMARK 1.9.36. A useful special case of the above proposition is whenf andg

are both identity morphisms1: E ! E. In this case(f # g) ' (E # E) ' 2 t E

and v = iE : E ! (E # E) whiskers with� E : e0 ) e1 to give the identity 2-

morphismid1E . The unit � 1 : 1(B #B ) ) iE � e1 is the unit of familiar adjunction

e1 a iE while the counit is identity. Thus,e1 is a re�ection. similarly, the dual of

proposition 1.9.34 yieldsiE as the left adjoint ofe0 : (E # E) ! E. The unit of

iE a e0 is identity, makinge0 a retraction. The counit is given by the unique 2-

morphism� 0 : iE � e0 ) 1(E #E ) de�ned by the equationse0 � � 0 = id e0 ande1 � � 0 = � .

WhenK = Cat, we have� 0(u) = (id ; u), and� 1(u) = ( u; id) for anyu: e0 ! e1 in

(E # E).

e0 e0

e0 e1

id

id u

u

e0 e1

e1 e1

u

u id

id

1.10 Notes

The canonical reference for weighted limits and colimits is [Kel82, Chapter

3]. Therein they are known by the name of indexed limits. The origin of the

notion itself goes back further than that; see for instance [BK75]. Weighted

limits and colimits are studied in areas other than pure category theory and

categorical homotopy theory. See their use in study of topological Hochschild
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homology [MSV97] and in [PRV04] in their study of the Davis-Januszkiewicz

spaces.

As we saw in §1.3, the enrichment structure can be realized as a lax functor

from an indiscrete (aka chaotic) category to the suspension of a monoidal

category. In fact, there are indications which support the view that the theory

of enriched categories should be approached as a part of the theory of lax

functors ([Bén67] and [Str05]. First steps have been taken in [Bac13] in

extending the internal hom of enriched categories to lax functors taking their

values in a symmetric monoidal category. More recently, the paper [GH13]

introduces a notion of enriched in�nity-category analogous to the view of

enrichment as a lax functor.

We also saw some serious problems with lax functors, the most severe being

that they are not invariant under equivalences. One good solution is to work

with double categories instead. Bicategories get `horizontally' embedded in

double categories and the same is true for all bicategorical concepts of this

chapter. All examples of 2-categories and bicategories in this chapter have

smooth generalization to double categories; the most prominent example

being the bicategory of modules and profunctors. In addition, there is a

satisfactory notion of lax functors between double categories whichis invariant

under equivalence (See [Shu08]). Lax double functors are laxly functorial

on horizontal morphisms, and strictly functorial on the vertical morphism of

double categories, whereas the components of the transformations remain

vertical and therefore, whiskering preserves naturality. We saw with lax

functors of 2-categories we could not do this and that is why the surrogate

notion of icon is needed.
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2Categorical �brations

In this chapter, we review the two styles of internal �brations in 2-categories,

which we shall call the Chevalleyand Johnstonestyles. In Chapter 3 we use

Chevalley style to de�ne �brations of AU-contexts and in Chapter 4 we use

Johnstone style �brations as �brations of toposes. The main theorem of the

thesis then connects the �brations of AU-contexts to the �brations of toposes.

Our main task in §2.4 is to clarify the 2-categorical structure needed, and the

strictness issues, when we apply the Chevalley criterion inCon.

As an original contribution, we introduce the notion of �brational object for

2-functors of 2-categories. In §2.6, we prove that Johnstone-style �brations

are in fact �brational objects of the 2-functor cod : GTop ! ETop. This

reformulation will be a crucial step in our proof of the main theorem (4.2.2)

of the thesis.

2.0 Introduction

The standard notion of categorical �bration, i.e. Grothendieck �bration, ex-

pressed as a property of a functor of categories, can be generalized to a

property of a 1-morphism in a 2-category, but how this may be done depends

on the structure available in that 2-category.

Basically, for a Grothendieck �bration (resp. op�bration) P : E ! B, every

morphism f : b ! a whose codomain (resp. domain) is in the image of P

has a cartesian lift in E. This induces a `transport' functor from the �bre of

P over a to that over b, with a certain universality conditions that express

cartesianness. When we generalize fromCat to some other 2-categoryK, the
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obvious generalization of Grothendieck �bration may seem to be achieved

by replacing P : E ! B by a 1-morphism p: E ! B in K, a and b with

1-morphisms from the terminal object 1 to B, and with f a 2-morphism

between them. Note that Remark 1.4.7 justi�es this move for well-pointed

2-categories.

However, in general, even when K has a terminal object, there may fail to

be enough 1-morphisms from the terminal object 1 to object B to make a

satisfactory de�nition this way. This is generally the case with 2-categories of

toposes.

The crude remedy for this is to considera and bas 1-morphisms from arbitrary

objects B 0 to B in K, and this underlies Johnstone's de�nition for BTop in

[Joh02a, B4.4]. This de�nition requires very little structure on K other than

some – not necessarily all – bipullbacks (De�nition 1.4.10), suf�cient to have

bipullbacks of p along all 1-morphisms to B. We shall call it the Johnstone

style of de�nition of �bration. This de�nition is quite intricate, because it has

to deal with several coherence conditions. In § 2.6, we shall give a cogent

reformulation of Johnstone-style �brations in terms of �brational objects of

a certain �brations of bicategories. The utility of this reformulation is that it

repackages lots of coherence data in the de�nition of Johnstone-style �bra-

tions, arising from bipullbacks involved in the said de�nition, into universal

properties of cartesian morphism of a certain �bration of bicategories.

In the special case wherebyK has comma objects, corresponding to a generic

2-morphism � between 1-morphisms with codomain B, we get a 1-morphism

whose codomain is the cotensor2 t B of B with the walking arrow category

2, and whose whiskering the free 2-morphism � B : d0 ) d1 : 2 t B � B is � .

In such a 2-categoryK, the �bration structure for arbitrary B 0 and � can be got

from generic structure for the generic � . Therefore, the structure of �bration

needs to be given only once, instead of each time for everyB 0. We shall call

this a Chevalley criterion. For ordinary �brations the idea was attributed to

Chevalley by Gray ([Gra66]), and subsequently referred to as the Chevalley

criterion by Street ([Str74]).
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However, unfortunately our 2-categories of interest such asBTop (unlike

BTop=S ) do not support the structure of comma objects, and as such we can

not use the simpler Chevalley criterion to de�ne �brations inside it.

But, not all hope is lost. The 2-categoryConof AU-contexts (See chapter 3)

has all comma objects and pullbacks we need. Also,Conis intimately linked

to BTop. The strategy which we shall pursue in Chapter 4 is to use Chevalley

criterion in Conto de�ne �brations therein and then relate those �brations to

Johnstone style �brations in BTop.

We shall begin this chapter, in §2.1, by a general discussion concerning bundles

and �brations. In the subsequent section (§2.2) we will motivate this discussion

by giving examples of 1-categorical �brations of groupoids and categories from

their origin in algebraic topology. For instance the notion of covering spaces in

topology gives rise to discrete �brations of groupoids.

We then pass on from discrete �brations to Grothendieck �brations (§2.3).

While the �bres of a discrete �bration are discrete categories (i.e. sets), the

�bres of a Grothendieck �bration are generally not discrete. As example 2.3.45

shows, non-discrete �brations are quite important and commonplace in va-

riety of branches of mathematics To state precise de�nition of Grothendieck

(op)�bration we will need to reintroduce the ancillary notion of (op)cartesian

morphisms. Readers familiar with the parlance of higher category theory

recognize Grothendieck (op)�bration as “(op)cartesian �brations” as they have

`enough' cartesian lifts (for instance in [Lur09]).

Additionally, we shall review the correspondence between Grothendieck �bra-

tions and indexed categories through the Grothendieck construction, and shall

highlight the reasons why it is preferable for us to work with �brations rather

than indexed categories.

The general approach of this chapter is to proceed with the philosophy of

seeing constructions on categories as inherently 2-categorical notions, and as

such we emphasize the 2-categorical aspects of Grothendieck �brations. Many

of the propositions stated with regard to 1-categorical �brations are stated
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in a way that have natural intrinsic 2-categorical formulations. In §2.4, we

review the fact that Grothendieck �brations are Chevalley-style �brations in

Cat. Chevalley-style �brations and their characterization in [Str74] as pseudo

algebras is summarized in the same section. New calculations concerning

the strictness of the counit of Chevalley adjunction are provided. In §2.6, we

remark that both Chevalley and Johnstone styles of �brations are respectively

the strict and weak versions of the representational notion of �bration in

2-categories.

In §2.6, using Construction 1.4.12 of display sub-2-category we give a cogent

reformulation of Johnstone-style �bration. The utility of this reformulation is

that it repackages lots of coherence data in the de�nition of Johnstone-style

�brations, arising from bipullbacks involved in the said de�nition, into univer-

sal property of cartesian morphism of a certain �bration of bicategories. We

shall use this reformulation in obtaining results on �brations and op�brations

in the 2-category ETop of elementary toposes by takingK = ETop and D as

the collection of bounded geometric morphisms in ETop.

2.1 Bundles and �brewise view

In mathematics we do not work only with objects but also with families of

objects. In most classical set-based branches of mathematics, in�uenced by the

structuralism of Bourbaki, structures are sets determined internally in terms of

relations and operations on their elements, and when working with various

structures we often introduce de�nitions and constructions not only on object

but also on family of objects exhibiting considered structures.

In ZFC set theory, a cartesian product ofI -indexed families X = f X i gi 2 I

and Y = f Yi gi 2 I is an I -indexed family X � Y = f X i � Yi gi 2 I . Note that a

family like X as above can be consider as a functorX : I d ! Set where I d is

considered as the discrete category whose set of objects isI . Given families

X and Y a function � between them is de�ned, according the principle

of extensionality, elementwise. Therefore, it can be realized as a natural

transformation � : X ) Y.
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In category theory we do not have the same language (an admittedly strange

language!) as ZFC set theory and we shall not utter such a thing as “an

object of a category whose `elements' are a collection of objects of the same

category”.

First of all, it is not clear what the word `element' should mean. If we think

along the same lines as Lawvere's ETCS, we may consider an elementx of

object X of category S as a morphism x : 1 ! X . The problem with this

approach is that the category S may not have a terminal object and more

seriously, it may not be well-pointed.

So, it is best to change our perspective on families of sets. We can see a family

X : I d ! Set as a bundle : X ! I of sets where the �bre of  at the element

i 2 I is  � 1(i ) �= X i . In this way, we obtain the equivalence

Set =I ' Cat(I d; Set) (2.1)

of categories. Note that I d is the set I considered as a discrete category.

In the language of category theory, the above change of perspective is expressed

by stipulating X i as a pullback of  along i : 1 ! I in S, if such a pullback exists

in S. So, for an object I of a category S an I -indexed family of objects can

be simply regarded as a morphism : X ! I in S. One of the �rst exercises

in set theory is that any construction on sets (such as product, union, sum

(disjoint union), the set of functions and relations between sets, etc.) can be

elementwise carried out for families of sets. Categorically, this means that the

slice categorySet =I possesses the same structures as the categorySet. The

same holds for any elementary topos and even for any Grothendieck topos and

it is known as “the fundamental theorem of topos theory”.

In particular, for an elementary topos S , the topos S =I is cartesian closed

sinceS is. This means that we get natural isomorphisms

S
.

I

0

@p � I q: X � I Y
.

I ; r : Z
.

I

1

A �= S
.

I

0

@p: X
.

I ; r q : Z Y
.

I

1

A
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Unwinding the natural isomorphism of sets above precisely says that for any

morphism f : J ! I the pullback functor f � : S =I ! S =J has a right adjoint

� f (Note that in addition, f � has a left adjoint � f given by post-composition

with f ).

Recall that in a cartesian categoryC with an exponentiable object B , the object

of sectionsof a morphism  : X ! B is obtained by the pullback

� B ( ) [B; X ]

1 [B; B ]

p
B 

cidB

where didB is the transpose of the isomorphism projection 1 � B �= B. A

generalized element of� B ( ) at stageW is equivalent to a morphism � (W )
B ! 

in the slice category C=B, where � (W )
B : W � B ! B is the second product

projection. Type theoretically, it can be expressed as a term of type
Q

b: B
(W !

X b).

For a Grothendieck toposE, and an object (sometimes called a sheaf)I of

E, I � : E ! E=I is part of an essential geometric morphism whereI � (X ) =

I � X � 0�! I . In the special situation when S = Set, given a setX , we haveI � (X )

as a bundle with constant �bre X , and given an I -indexed family  = f X i gi 2 I ,

we have � I ( ) = � i 2 I X i . Note that the direct image � I de�ned in above,

computes the `set' of sections (more precisely, it is the discrete core�ection of

the spaceof sections which exists as an internal point-free space). Observe that

� I uses non-geometric constructions.

If E is a Grothendieck topos (say over elementary toposS ), classifying a theory

T, then E=I classi�es the theory of pairs (M; x ) where M is a model of T and

x is a global element of I � (M ). The geometric morphism (I � ; � I ) : E=I ! E

then takes the point (M; x ) to M .
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The crucial observation is that the language of topos theory enables us to com-

pute things such as space of sections of a bundle functorially and synthetically.

Indeed, �brewise topology of bundles (for toposes they are bounded geometric

morphisms) shows the advantage of working with point-free topology: the

localic bundle theorem of Joyal and Tierney says that point-free spaces internal

to a topos S are equivalent to localic bundles overS .

2.2 Discrete �brations

We recall from topology that a continuous map p: E ! B is said to be

a covering map , and spaceE is a covering space over B , whenever for

every point x 2 B there is an open neighbourhoodU containing x such that

p� 1(U) = q i 2 I Vi , a disjoint union of open sets Vi in E such that pjVi : Vi
�= U.

A simple example of a covering map is the quotient mapR2 ! T where the

torus T is obtained as the quotient space ofR2 by the congruence generated

by identi�cations (x; y) � (x + m; y + n) for every m; n 2 Z.

Another well-known examples is the helix-shaped real line over 1-sphere. More

generally, some of covering spaces are built out of locally constant sheaves. We

recall that a sheaf P on a topological spaceX is locally constantif there exists

an open cover ofX such that the restriction of P to each open set in the cover

is a constant sheaf. If the topological spaceX is locally connected, a locally

constant sheafP on X is, up to an isomorphism, the sheaves of sections of the

étale covering � : ét(P) ! X .

The famousunique path lifting property holds for covering maps with connected

and locally connected base.

THEOREM 2.2.1. SupposeB is a connected and locally path connected space and

p: E ! B is a covering map of spaces. Suppose also that� : I ! B is a path inB

starting at� (0) = b0. Then for eache 2 p� 1(b0) there is a unique path~� : I ! E

with p(~� ) = � . Moreover, if there is a homotopyH between two paths� and (with
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the same starting and ending points) in the base spaceB, then there is a unique lift~H

of homotopyH between the lifts~� and~ (with the same starting and ending points).

E

I B

p~�

�

A proof of this theorem can be found in section 3.2. of [May99]. Moreover,

covering spaces are `almost' stable under base change.

REMARK 2.2.2. If f : A ! B is a map wherebyA is path connected thenf � p, the

pullback ofp alongf , is a covering map. In particular, the �breEb is a covering

space over a pointb2 B, and henceEb must be a discrete space.

Eb E

1 B

p p

b

There is a strict 2-functor � � 1 : Top� 2 ! Grpd which associates to every topo-

logical space its fundamental groupoid, to a continuous map of spaces a functor

of groupoids, and to a homotopy between maps, an natural isomorphism.

For each groupoid G and each object c of G, de�ne � (G; c) as the full sub-

groupoid of G with only one object namely c. So, � (G; c)(c; c) = Aut G(c).

Composing this functor with � � 1, we get the familiar fundamental group

at point of a topological space at point c. We can use 2-functor � � 1 for

lifting of paths and homotopies of topological spaces in terms of groupoids

and functors: If p: E ! B is a covering map of spaces then the functor

e=p: e=� � 1(E) ! p(e)=� � 1(B ), which sends a homotopy class[� ] represented

by path � : I ! E starting at e in E to homotopy class[p� � ], is an isomorphism

of groupoids for any point e 2 E.

We now give an algebraic characterization of the notion of covering map of

spaces in terms of functors of groupoid:
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DEFINITION 2.2.3. A functorP : E ! B of groupoids is acovering functor when-

ever

(i) P is surjective on objects, and

(ii) e=P: e=E ! P(e)=B is an isomorphism of categories for every objecte in E.

REMARK 2.2.4. For any groupoidE, there is only a unique morphism between any

two objects ofe=E. So, isomorphism of such co-slice categories means isomorphism

of their underlying sets of objects.

THEOREM2.2.5. (i) For a covering mapp: E ! B of topological spaces the

fundamental groupoid functor� � 1(p) : � � 1(E) ! � � 1(B ) is a covering func-

tor.

(ii) Covering functors of groupoids are closed under composition.

(iii) Covering functors of groupoids are stable under base change.

REMARK 2.2.6. By the unique path lifting property it is trivial to see that� � 1(E)b

does not have no non-identity morphisms and therefore, it is discrete. We note that

� � 1(E)b ' � � 1(Eb) since both are discrete groupoids with the same set of objects.

By the unique path lifting theorem, for any point b 2 B, there is a transitive

action of fundamental group � (B; b) on the �bre Eb:

� : � (B; b) � Eb ! Eb

de�ned by � (l)(e) = ~l(1), where ~l is the unique lift of l with ~l(0) = e.

e0 e1 E

b B

~l

P

l
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Notice that for any e; e0 2 Eb, P(� (E; e)) and P(� (E; e0)) are conjugate sub-

groups of � (B; b) and each is isomorphic to isotropy group of the action.

Hence

Eb
�= � (B; b)=P(� (E; e))

as � (B; b)-sets.

DEFINITION 2.2.7. SupposeB is a connected groupoid. We de�neCov(B) to be

the category whose objects are coverings with baseB with morphisms between any

two coveringsP : E ! B and Q: F ! B being functorsG: E ! F such that

Q � G = F .

E F

B

G

P Q

REMARK 2.2.8. Any such morphismG is necessarily a covering itself ifF is con-

nected.

PROPOSITION2.2.9. For a connected groupoidB, we have the following bijection

Cov(B) (E; F) �= � (B; b)- Set (Eb; Fb)

wherebis any base point inB. This bijection is natural with respect to the choice of

b.

See [May99, p.29] for a proof. In fact, we can study covering of spaces entirely

by covering of their fundamental groupoids and not lose any information. This

is a pretty atypical situation in algebraic topology. Generally, we have the strict

hierarchy of subclasses of morphisms of topological spaces:

f homeomorphismsg � f homotopy equivalencesg � f weak homotopy equivalencesg

We can of course generalize the notion of covering functors of groupoid to the

functors of categories. Note, however that there is a breaking of symmetry in

passing from groupoids to categories. For a groupoidE, we havee=E �= (E=e)op
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and we could have instead formulated the notion of covering of groupoids in

term of slice groupoids. The breaking of symmetry leads to thecovariant and

contravariant notions of covering for categories.

We shall also drop the condition of surjectivity on objects. This omission

gives a structure more easily attuned to the setting of categories and internal

categories. Note that a functor P : E ! B of groupoids which satis�es the

condition (ii) of 2.2.3 is the same thing as a functor B ! Core(Set), where

Core is the maximal subgroupoid functor. Therefore, for a groupoid B we have

an equivalence

dFib(B) ' Cat(B; Core(Set)) (2.2)

DEFINITION 2.2.10. A functor P : E ! B of categories is adiscrete �bration

if for every objecte of E, every morphismf : b ! P(e) in B has a unique lift
~f : ~b ! e in E. A functor F : E ! B is a discrete op�bration whenever the

functorF op : Eop ! Bop is a discrete �bration. For a categoryB, discrete �brations

(resp. op�brations) overB form a full subcategory ofCat=B which we shall denote

by dFib(B) (resp.doFib(B). The categoryB is sometimes referred to as thebase

categoryof �bration.

REMARK 2.2.11. Unwinding the above de�nition of discrete op�bration, we note

that F is a discrete op�bration precisely whenever for every objecte of E, every

morphismf : Fe ! b in B has a unique lift~f : e ! ~b in E.

REMARK 2.2.12. The word `discrete' refers to the fact that the �bres of functor

P form discrete categories. To see why, assume thatEb is the �bre given by the

following pullback of categories:

Eb E

1 B

!
p

P

b

over any objectb in the base, and take any arrowu: e0 ! e in Eb. Of courseu is a

lift of idb with codomaine. However,ide is the unique lift ofidb with codomaine

and thusu = id e ande0 = e.

REMARK 2.2.13. Note that for a discrete �brationP : E ! B, even if each �bre is

discrete, it may not be the case thatE is discrete.
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REMARK 2.2.14. We can reformulate De�nition 2.2.10 so that it can be extended

to internal categories in any �nitely complete categoryS. For internal categories1

B = ( B1 � B0) andE = ( E1 � E0) in S, an internal functorP: E ! B is an

internal discrete �bration if

E1 E0

B1 B0

P1

d1

p
P0

d1

(2.3)

is a pullback diagram in the categoryS. The dual notion ofinternal discrete op�bra-

tion is de�ned by replacingd1 with d0 in the diagram(2.3) .

CONSTRUCTION2.2.15. The Grothendieck construction for presheaves of sets (i.e.

discrete categories) establishes an adjoint equivalencedFib(B) ' PShv(B).

discrete �brations presheaves

Presheaf of �bres

Grothendieck construction

E

Set

B

BopP
P

(2.4)

the presheafP is de�ned as follows:

P: Bop Set

b Eb

(b0 f
�! b) (Eb

f �

�! Eb0)

(2.5)

wheref � maps an object in the �bre ofb to dom( ~f ), where ~f is the unique lift off .

The functoriality ofP precisely follows from the uniqueness of lifts.

1For an internal category C = ( C1 � C0) we shall call C0 the object of objectsand C1 the object
of morphisms. Occasionally we shall use the notationsC0 = Ob( C), and C1 = Mor( C). See
Appendix A.8.1 for more details.
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For instance for an objectb in a locally small categoryB, the functor� b : B=b! B

formed by the lax pullback

B=b 1

B B

!

� b

Id

b

(2.6)

is a discrete �bration and the presheaf of �bres is indeed the representable presheaf

y(b) = Hom B(� ; b). We shall refer to� b as the representable �bration.

Conversely, starting from a presheafX : Bop ! Set, the Grothendieck construction

yields the so-called category of elementsXo B with a forgetful functor� X : Xo B !

B. In fact, � X can be constructed as the lax pullback of?op alongXop : B ! Setop

whereby?: 1 ! Set is the unique left exact functor.

X o B 1

B Setop

!

� X

Xop

?op

(2.7)

We readily observe that� X is a discrete �bration: the �bre(X o B)b is isomorphic

to the setX(b) and this yields the equivalence 2.4. The Grothendieck construction of

representable presheaves are slice categories:

Hom(� ; b) o B �= B=b

Hence, the equivalence 2.4 restricts to

8
<

:
Discrete �brations

� b : B=b! B

9
=

;
'

8
<

:
Representable presheaves

Hom(� ; b) : Bop ! Set

9
=

;

Moreover,

dFib(� b; P) �= Eb
�= P(b) �= PShv(Hom(� ; B); P)
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Similarly, we have the equivalence

discrete op�brations functors

Functor of �bres

Grothendieck construction

E

Set

B

BF
F

(2.8)

Adopting the �brational viewpoint of presheaves (resp. functors) enables us to

internalise them to other categories. Taking an internal presheaf essentially

as an internal discrete �bration (See Remark 2.2.14), we de�ne an internal

presheaf (resp. internal diagram) as follows.

DEFINITION 2.2.16. For an internal categoryC = ( C1 � C0) in a �nitely complete

categoryS, aninternal presheaf X overC consists of

• an objectX of S,

• abundlemorphism : X ! C0, and

• anactionmorphism� : X  � d1 C1 ! X

such that the left square in below commutes, i.e. � � = d0 � � 1 where� 1 is the

pullback of alongd1.

X X  � d1 C1 X

C0 C1 C0

 � 1

� � 1

p 

d0 d1

(2.9)
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and moreover,� satis�es the unit and associativity axioms for a (right) action, ex-

pressed by the commutativities in below:

(X  � d1 C1 ) d0 � 1 � d1 C1

X  � d1 C1

X

X  � d1 d2 (C1 d0 � d1 C1 )

X  � d1 C1

� � id
�

�=

id � d1

�

X

X  � d1 C1 X

id � i

�

id

(2.10)

Of course any set-valued presheaf is an internal presheaf in the categorySet.

REMARK 2.2.17. SupposeP : Cop ! Set is a presheaf whereC is a small category.

We can viewP as an internal presheaf in the categorySet: takeX =
`

c2 C0

P(c)

with the map : X ! C0 as the �rst projection, and the action given by� (c; x 2

Pc; f : d ! c) = ( d; P f (x)) . We haveX o C '
R

C P where the latter is the familiar

category of elementsof P.

From De�nition 2.2.16, it is easily observed that �; � 1 : X  � d1 C1 � X form

an internal category in S where � is the domain morphism, � 1 is the codomain

morphism, and identity and composition are given by identity and composition

in C. We call this internal category the internal action category 2 and we

denote it by X o C . Furthermore, commutativity of diagrams 2.9 and 2.10 are

indeed the (internal) functoriality axioms for � X := h� 1;  i : X o C ! C. We

note that
(X o C )1 (X o C )0

C1 C0

� 1

� 1

p 

d1

(2.11)

is a pullback diagram in S. By Remark 2.2.14, the forgetful functor h� 1;  i is

an internal discrete �bration. This process describes the internal version of

Grothendieck construction earlier described in 2.2.15. It is similar to see that

an internal discrete �bration has the structure of an internal presheaf in the

sense of De�nition 2.2.16.

2This is the internal version of category of elements.
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We would like to conclude this section by discussing theuniversal discrete

�brations and op�brations of categories.

PROPOSITION2.2.18. The forgetful functorU : Set� ! Set, whereSet� is the cat-

egory of pointed sets, is a discrete op�bration of large categories, and the �bre over

each setX is isomorphic the setX itself (viewed as a discrete category). We occa-

sionally refer toU as thetautological discrete bundle . Moreover,U classi�es

all discrete op�brations of small categories: for a small categoryB, the equivalence

doFib(B) ' Fun(B; Set) of Grothendieck construction is achieved by pulling back

alongU : Set� ! Set.

More concretely, for any small categoryB and every functor F : B ! Set, the

pullback of U along F gives us a discrete op�bration � F : B o F ! B with the

�bre over b2 B being the discrete categoryF (b), as shown in the diagram

B o F Set�

B Set

� F

� 1

p
U

F

where U(X; x ) = X , and � 1(b; x) = ( F (b); x). Moreover, any discrete op�bra-

tion P : E ! B, is gotten as a pullback ofU along a unique (up to isomorphism)

functor F : B ! Set. Of course, by de�nition Uop : Setop
� ! Setop is the univer-

sal discrete �bration of categories. Observe that an immediate consequence of

proposition above is that the discrete �brations and discrete op�brations are

stable under pullback.

The sheaf condition can be expressed �brewise.

REMARK 2.2.19. Recall that a presheafP on a site(C; J ) is a sheaf if and only

if for any objectU of C and any covering sieveS 2 J (U), any matching family

� : S ! P can be uniquely extended to� : yU ! P in PShv(C) (the diagram on the
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left). Fibrewise, this is expressed by saying that� o Chas a unique extension to the

discrete �bred categoryC=U (the diagram on the right).

yU P

S

�

� 7!

C=U

S o C P o C

C

� o C

� o C

2.3 Grothendieck �brations

In this section we will review the notions of precartesian and cartesian mor-

phisms. They are introduced by Grothendieck which he used to develop

the notion of �bration of categories. The standard present-day notions of

`precartesian' morphisms and `cartesian' morphisms were originally named

by Grothendieck `cartesian' morphisms and `strongly cartesian' morphisms

(See [GR71, Exposé VI], especially its beautiful introduction). For us, as it

is the standard nomenclature nowadays, the corresponding notion of func-

tor with enough cartesian (resp. precartesian) lifts will be `�bration' (resp.

`pre�bration').

In learning about �brations and writing this chapter, I have also bene�ted from

consulting [Vis05, Chapter 3], [Str18], [Joh02a, Part B], and [Jac99, Chapter

1].

2.3.1 Precartesian and cartesian morphism

DEFINITION 2.3.1. Let P : E ! B be a functor. A morphismu: X ! Y in E is

said to beP-precartesian whenever for anyE-morphismv: Z ! Y with P(u) =

P(v), there exists a uniqueE-morphismw such thatu � w = v andP(w) = 1 P (X ) .

Morphism u: X ! Y is said to beP-cartesian whenever for anyE-morphism

v: Z ! Y and anyh: P(Z ) ! P(X ) with P(u) � h = P(v), there exists a unique
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lift w of h such thatu � w = v. The notion of opcartesian morphism is the dual of

the notion of cartesian morphism.

NOMENCLATURE. In the diagrams we writeX 7! A, for X 2 E0 andA 2 B0 to

indicate that X̀ is sitting aboveA', that is P(X ) = A. Besides, morphisms in the

�bre categoryEB , that is allE-morphismsv: X ! Y with P(v) = id B , are called

vertical. Furthermore, when functorP is obvious from the context, then we simply

use the term cartesian instead ofP-cartesian.

REMARK 2.3.2. De�nition 2.3.1 essentially saysu being cartesian means that any

lifting of P(v) alongP(u) in the base category (B) is uniquely induced from a lifting

of v alongu in (E).
W

v
))

w
##

_
��

PW

h ##
P (v)

))

X u
//

_
��

Y
_
��

PX
P (u)

//PY

:

In the next proposition we list some basic observations about precartesian and

cartesian morphisms:

PROPOSITION2.3.3. SupposeP : E ! B is a functor.

(i) Any cartesian morphism is precartesian.

(ii) Precartesian lifts, if they exists, are unique up to unique isomorphism.

(iii) An immediate consequence of the remark above is that any precartesian verti-

cal arrow inE is an isomorphism.

(iv) Any isomorphism is cartesian.

(v) A precartesian morphism with a right inverse is an isomorphism.
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LEMMA 2.3.4. An E-morphismu: X ! Y is P-cartesian (resp.P-opcartesian) if

and only if the left (resp. right) commuting square is a pullback diagram inSet for

each objectW in E:

E(W; X ) E(W; Y)

B(PW; PX) B(PW; PY)

PW;X

u��

p
PW;Y

P (u)��

E(Y; W) E(X; W )

B(PY; PW) B(PX; PW )

PY;W

�� u

p
PX;W

�� P (u)

From this lemma and pullback-pasting lemma it follows that

PROPOSITION2.3.5. The closure properties of cartesian morphisms with respect to

composition are:

(i) Cartesian morphisms are stable under composition.

(ii) For a cartesian morphismu: X ! Y, a morphismv: X 0 ! X is cartesian if

and only ifu � v : X 0 ! Y is cartesian.

(iii) Given a commutative square ofE-morphisms

X 0 X

Y 0 Y

v0

u

v

u0

wherev; v0 are vertical andu0 is cartesian we have thatu is cartesian iff the

square is a pullback diagram.

Note however that these closure properties do not hold for precartesian mor-

phisms. By the proposition above we can associate to every functorP : E ! B

a strict double category D(P) which has P-vertical morphisms in E as its

vertical morphisms, P-cartesian morphisms as its horizontal morphisms, and

commutative squares as 2-morphisms. Evidenlty,D(IdE) is the standard double

category D(E) of commutative squares inE.
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EXAMPLE2.3.6. Let's see what precartesian and cartesian morphisms look like in

the simplest of cases.

• For any categoryB, there is a unique functorB ! 1. All morphisms ofB are

vertical, a morphisms is cartesian iff it is precartesian iff it is an isomorphisms.

• Let B be a category with pullbacks. The codomain functorcod: (B # B) ! B

takes an object : X ! B of (B # B) to its codomainB, and takes a mor-

phismhg; f i :  0 !  of (B # B), i.e. a commuting square, tof . Interestingly,

cod-cartesian morphisms in(B # B) are exactly pullback squares ofB. Also

a morphisms ifcod-precartesian iff it iscod-cartesian. (See Appendix for a

proof of these facts.)

B# Y X

B 0 B

B B 0 B

cod

g

 0 p


f

f

(2.12)

The �bre (B # B)(B) is isomorphic to the slice categoryB=B. The cartesian

vertical morphisms in that �bre formCore(B=B), that is the maximal sub-

groupoid ofB=B.

2.3.2 Pre�brations and �brations

DEFINITION 2.3.7. A functor P : E ! B is said to be aGrothendieck �bration

(resp.Grothendieck pre�bration ) whenever for eachX 2 E, every morphism

A
f
�! PX in C has a cartesian (resp. precartesian) lift inE. A functorF : E ! B is

aGrothendieck op�bration if F op : Eop ! Bop is a Grothendieck �bration.

Grothendieck �brations were originally introduced in the classical setting

where axiom of choice is valid. In order to not rely on the axiom of choice,

a choice of cartesian lifts is often required to be added to the structure of
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�brations and this choice for a �bration is called cleavage. A �bration equipped

with a cleavage is calledcloven.

DEFINITION 2.3.8. A cleavage for a (pre)�brationP : E ! B is a choice for each

X in E0 and morphismf : B ! PX in B, a (pre)cartesian liftc(f; X ) : cf X ! X

of f in E. More formally, the data of a cleavage is a termc of the following type:

c:
Y

B;A : Ob( B)

Y

f : B(B;A )

Y

X : X(A)

X

Y : X(B )

Cart E(Y; X)

where the typeCart E(Y; X) is type of all cartesian morphisms fromY to X . If the

�bration P is equipped with a cleavagec, then(P;c) is called acloven �bration. The

cleavagec is said to besplitting if for any composable pair of morphismsf; g :

c(g � f; X ) = c(g; X ) � c(f; cgX )

And normal whenever for every objectX in E:

c(idP X ; X ) = id X

REMARK 2.3.9. In the presence of axiom of choice, every Grothendieck �bration

is cloven. But in this chapter we will be quite explicit in working with cloven �bra-

tions, in that we will keep track of the effect of various operations on �brations (such

as pullback, composition, etc.) on the cleavage as well. Nonetheless some �brations

(for instance category of modules �bred over category of rings, see 2.3.45(i)) have

a `canonical' choice of a cleavage. However, this is not true in some important ex-

amples of �brations (e.g. as codomain �bration of 2.3.44(ii)), since pullbacks are

only de�ned up to isomorphism. In fact, there the data of cleavage proves us with

interesting things (e.g. choice of pullbacks) which we ought to book keep. This is

particularly true when one work in strict settings such as semantics of dependent

type theory where it is important that semantics of substitution, given by pullbacks,

should be strict. We will see in section 2.4.2 a cleavage for a �bration is determined

uniquely up to a canonical isomorphism. Thus, a �bration is a `non-algebraic' ap-

proach of formulating base change functors (e.g. indexed categories 2.3.3): the oper-

ationf � is characterized by a universal property, and the de�nitionmerelystipulates

that an object with that property exists, rather than selecting a particular such object

2.3 Grothendieck �brations 115



as part of the structure. In the terminology of [Mak01], they arevirtual operations

(as opposed tohonestoperations of say a bicategory or pseudo functors.).

REMARK 2.3.10. Sometimes when there is no risk of confusion about the cleavage

of a (pre)�bration , we usually use the suppressed notation~f : cf X ! X instead of

cartesian liftc(f; X ) of f : B ! PX . Further still, when the cleavagecis clear from

the context, we use the more compact notation~f : X f ! X

REMARK 2.3.11. A cleavage of a cloven �bration can be modi�ed to make the �-

bration normal cloven not necessarily splitting normal. The simplest example, given

in [Str18], is the delooping�( mod2) : �( Z) ! �( Z2) of the non-trivial group mor-

phismmod2 : Z ! Z2. The data of a normal cleavage for�( mod2) is just a function

Z2 ! Z which takes the identity element0 to the identity element0 of Z, and takes

1 to an odd element ofZ. But a splitting cleavage for�( mod2) is a group homomor-

phisms: Z2 ! Z with s(1) an odd integer. Suchs does not exist. Nevertheless,

any �bration is equivalent to a split �bration by changing the domain of �bration

to an equivalent category. The groupoid�( Z) (with one object) is equivalent to the

groupoidG, generated by two objects?e and?, inverse morphisms� : ?e � ?: � ,

and an invertible� : ? ! ?, via the equivalenceU : G! �( Z) which takes� to +1,

� to � 1, and� to +1. By taking� and� in the cleavage,�( mod2) � U is a splitting

�brations (and op�bration): the lift of1 : Z2 ! Z2 with the codomain? is taken to

be � and the lift of1 : Z2 ! Z2 with the codomain?e is taken to be� . Note that

� � � = id ? which is the chosen lift of identity0: Z2 ! Z2.

Assuming the stability of precartesian morphisms under composition, there is

no difference between �brations and pre�brations. The proof of proposition

below is given in Appendix A.9

PROPOSITION2.3.12. A (cloven) pre�bration is a (cloven) �bration if and only if

precartesian morphisms are closed under composition.

EXAMPLE2.3.13. We continue Example 2.3.6 by examining the simplest cases of

�brations and op�brations.

(i) The unique functorB ! 1 is a Grothendieck �bration. The canonical choice

of cartesian lift for eachX 2 E is idX , and with this choice the �bration is a

normal split �bration.
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(ii) For any categoryB, the codomain functorcod: (B # B) ! B is always

an op�bration, and it is a �bration if and only ifB has all pullbacks. A

cloven �bration(cod; c) : (B # B) ! B is precisely a categoryCwith a choice

of pullbacks inB. For a morphismf : B 0 ! B , the base change functor

f � : (B # B)(B) ! (B # B)(B 0) are the familiar pullback functorf � : B=B !

B=B0. Similarlydomis always a Grothendieck �bration and it is a Grothendieck

op�bration if and only if B has all pushouts.

(iii) Any discrete �bration P : E ! B is a Grothendieck �bration: any morphism

in E is P-cartesian and there are no non-trivial vertical morphisms.

The following proposition is a rewriting of De�nition 2.3.7 in terms of adjunc-

tion on slice categories. We include the proof in Appendix A.9 for the sake of

completeness.

PROPOSITION 2.3.14. (P;c) : E ! B is a cloven Grothendieck �bration if and

only if for each objectX 2 E, the induced functorPX : E=X ! B=PX has a right

adjoint right inverseSX , that is the counit of adjunction is identity.

The important thing about the proof of this proposition is that SX is de�ned by

cartesian lifts, and for any E-morphism u: Y ! X , the unit � (u) followed by

the cartesian lift S(Pu) in c gives the vertical-cartesian factorisation ofu:

Y

SP u(X ) X

� X (u) u

fP u

(2.13)

A similar proof also yields the following proposition.

PROPOSITION2.3.15. (P;c) : E ! B is a cloven Grothendieck �bration if and only

if the canonical functor(E # E) ! B=P has right adjoint right inverse.

The Chevalley �brations of Section 2.4.2 are generalisation of this formulation

of �bration to appropriate 2-categories.
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PROPOSITION2.3.16. (Cloven) Grothendieck �brations are closed under composi-

tion and pullback.

The proof of this classical result is included in Appendix A.9.

We are at a stage to de�ne the 2-category of Grothendieck �brations:

DEFINITION 2.3.17. A (pre)�bration map between two (pre)�brationsQ: F !

CandP : E ! B consists of two functorsF : C ! B andL : F ! E such that

F E

C B

Q

L

P

F

(2.14)

commutes, and moreover,L carriesQ-cartesian (resp. precartesian) morphisms toP-

cartesian (resp. precartesian) morphisms. A(pre) �bration transformation is a

pair of natural transformations(� : L0 ! L1; � : F0 ! F1) such thatP � � = � � Q.

A �bration map of cloven �brations(Q; cQ) and(P;cP ) is similarly de�ned with the

additional requirement thatL takes morphisms in the cleavagecQ to cP .

To spell out the de�nition of �bration map (L; F ) : Q ! P in above, take

a morphism f : c0 ! c in the base categoryC and a Q-cartesian morphism

u: y0 ! y over it in F. Apply F to f , and L to u. Commutativity of the diagram
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(2.14) says thatL(u) lies over F (f ). The unique lift of L(u) along the cartesian

lift ]F (f ) in E is a vertical morphism, sayv : L(y0) ! L(y)
F (f )

.

y0

y

L (y0)

L (y)
F ( f ) L (y)

F

C

E

B

c0 c
F (c0) F (c)

u

f
F (f )

L

F

Q P

]F (f )

L (u)
v

(2.15)

The fact that L preserves cartesian morphisms makesv an isomorphism. In

particular, we have L(yf ) �= L(y)
F (f )

. We call the �bration map (L; F ) strict if

this isomorphism is indeed an identity.

REMARK2.3.18. On the surface, we could have de�ned maps of �bration differently

by requiring a natural isomorphism instead of identity in square 2.14. However,

Remark 2.3.23 explains why that modi�cation is anyway immaterial as we would

obtain a 2-category biequivalent toFib.

Fix a category B. In the 2-category Fib(B), the discrete objects are exactly

discrete �brations: for any pair of maps of �brations to a discrete �bration,

there is at most one natural transformation between them.

REMARK2.3.19. Fixing a baseB, a �bration map to a discrete �bration inFib(B) is

itself a �bration. The assumption that the codomain is discrete is essential. Consider

the (non-discrete) �bration2 ! 1. A global section of this �bration inFib(1) ' Cat

exists but it is not a �bration. Moreover, if the domain is a discrete �bration, then the

�bration map is too a discrete �bration (For a proof, see [Joh02a, Lemma 1.3.11]).
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CONSTRUCTION2.3.20 (The 2-category of Grothendieck �brations) . Grothendieck

(pre)�brations, (pre)�bration maps, and (pre)�bration transformations form a 2-category

Fib (resp.preFib). We also useFib(B) to denote the full sub 2-category ofFib which

as objects has only categories �bred overB with 1-morphisms and 2-morphisms

only those who sit aboveIdB andidId B . Obviously,Fib(1) ' Cat. Similarly, clvFib

shall stand for the 2-category of cloven Grothendieck �brations andclvpreFib shall

stand for 2-category of cloven Grothendieck pre�brations. Furthermore,splFib (resp.

splnlFib) shall stand for the 2-category of cloven splitting (resp. splitting and normal)

Grothendieck �brations. We have the following chains of (forgetful) embedding of

2-categories:
splnlFib

splFib

clvFib clvpreFib

Fib preFib

REMARK2.3.21. Note that in diagram(2.14) sinceF preserves identity morphisms,

thenL respects vertical morphisms. Hence,L preserves the vertical-cartesian factor-

ization and therefore, we get a morphism of double categoriesD(Q) ! D(P). By

the commutativity of diagram(2.14) , a �bration map produces a family of functors

on �bre categories(FD ! EF (C) j C 2 Ob(C)). In fact, this family is the �bre of

1-morphismLP : Q ! F � P in Fib(C) induced byL : Q ! P in Fib.

The result below was proved in [Gra66]. Its proof is not particularly dif�cult:

it can be done componentwise. We state it here to make a connection later

with representably-de�ned notion of �bration internal to 2-categories.

PROPOSITION2.3.22. A functorP : E ! B is a Grothendieck �bration if and only

if Cat(F; P) : Cat(F; E) ! Cat(F; B) is a Grothendieck �bration for any category
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F and for any functorA : F0 ! F the commutative diagram below is a map of

�brations.

Cat(F; E) Cat(F0; E)

Cat(F; B) Cat(F0; B)

A � (E)

P� (F) P� (F0)

A � (B)

(2.16)

The proposition above parallels a similar results about �brations of spaces

(e.g. Kan �bration of simplicial sets). For a �bration p: E ! B of spaces,

the induced map p� : Map(X; E ) ! Map(X; B ) of mapping spaces is again

a �bration for every locally compact space X . Also, p induces a �bration


 E ! 
 B of the loop spaces. Since the traditional modelling of spaces uses

groupoids and higher groupoids, to model �brations of spaces categorically,

we do not need lift of all morphisms in the base, but rather only isomorphisms.

The notion of iso�bration of categories is a weaker notion than Grothendieck

�bration; it only requires a lift of isomorphism (with appropriate codomain)

of the base category. This means thatP : E ! B is an iso�bration iff the

induced functor Core(P) : Core(E) ! Core(B) of maximal sub-groupoids is a

Grothendieck �bration. Iso�brations relates to the study of spaces up to their

�rst homotopical dimension via their fundamental groupoids. In particular

there is a canonical model structure(F ; C; W) on the 1-category Grpd of

groupoids and functors where

• the class F of �brations consists of iso�brations.

• the class W of weak equivalences consists of categorical equivalences.

• the classC of co�brations consists of functors which are injections on

object parts. All objects are both �brant and co�brant and this makes the

model category quite simple.

The canonical model structure onGrpd has nice properties: for instance, it is

left proper and co�brantly generated. Some original ideas go back to work

is done in [Bro70], but the model category structure was �rst presented in
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[And78]. An excellent survey of this model structure with its applications can

be found [JT08].

REMARK 2.3.23. By Proposition 2.3.3(v), any Grothendieck �bration is an iso�bra-

tion, and in particular the functorP� (F) : Cat(F; E) ! Cat(F; B) is an iso�bration.

This justi�es the choice of strict equality instead of natural isomorphism in the de�-

nition of a �bration map in the diagram(2.14) : any natural isomorphismFQ �= PL

can be lifted to a natural isomorphismL0 �= L with PL0 = FQ.

CONSTRUCTION2.3.24. The tautological discrete bundleU : Set� ! Set can be

constructed as a part of the comma object of the unit1 : 1 ! Set andId: Set ! Set

in the 2-categoryCat. For this reason, we denote it by@1(1). Similarly, the functor

@1(1) : Cat� ! Cat obtained from the comma object

Cat� 1

Cat Cat

@0

@1 (1) 1

Id

�

is indeed a Grothendieck op�bration of large categories. By the construction above,

Cat� has as its objects pairs(C; c) wherec is an object ofC, and as its morphisms pairs

(F; f ) : (C; c) ! (D; d) wheref : F (c) ! d is a morphism inD. The op�bration

@1(1) classi�es all Grothendieck op�brations of small categories: Any op�bration

F : E ! B is equivalent to the pullback of@1(1) along the �bre functorF: B ! Cat.

2.3.3 Fibrations and indexed categories

The equivalences 2.1, 2.2, 2.2.15 and their internal versions suggest a pattern

for a bigger picture. As we discussed in the very �rst section of this chapter

a fundamental principle in mathematics is that objects do not exist only in

isolation, rather they occur in families. The adjectives “indexed, parameterized,

familial" appearing in the title of many �elds and concepts in mathematics

is a witness to our claim. In category theory, “indexing” is mainly expressed

by functors, pseudo functors, . . . , 1 -functors, etc. However, as we climb

the tower of dimensions, there naturally appears an increasing number of

coherence conditions to make sure the indexing is `functorial'. Particularly
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when our higher categories are weak (such bicategories, etc.) to specify and

verify the coherence conditions are dif�cult to track. If we take the bundle view

though, these coherence conditions can be repackaged under a single universal

property of cartesianness. The process of turning indexedn-categories to

�brations of n-categories is known as Grothendieck construction and we have

already seen examples of it for discrete �brations. In this section we are going

to describe Grothendieck construction of indexed categories and indexed 2-

categories. By an indexed category we mean a homomorphism of bicategories

of the type Cd ! Cat where C is a (small) category and Cd is the associated

discrete bicategory.

An interesting feature of the Grothendieck construction is that it reduces

category level as illustrated in the table below3:

Indexed families ofn-categories Fibrations ofn-categories

A set-indexed family of sets A bundle of sets

X : I d ! Set in Cat  : X ! I in Set

A category-indexed family of sets A discrete bundle of categories

F : Cop ! Set in Cat F o C ! C in Cat

A category-indexed family of categories A bundle of categories

P: Bop ! Cat in 2 Catpsd P o B ! B in Cat

...
...

Other than a change in viewpoint it makes a world of difference when we

work in higher levels. For instance, an 1 -stack in algebraic geometry can

be conceived as a “category �bred in spaces” instead of an1 -functor to the

1 -category of spaces.

In what follows we shall describe in details how to associate to a normal split

cloven Grothendieck �bration the 2-functor of �bres, to a cloven Grothendieck

3Of course there is a dual to this table which relates pseudo functors to op�brations.
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�bration a pseudo functor of �bres, and to a cloven Grothendieck pre�bration

a lax functor of �bres.

Suppose(P : E ! B; c) is a cloven pre�bration. We de�ne P: Bop ! Cat as

follows: For an object A of B, we de�ne P(A) to be the �bre of P whose

objects and morphisms are objects and morphisms ofE which are mapped to

A and idA by P, respectively. Note that for any morphism f : A ! B , we get a

`change of base' functorP(f ) : P(B) ! P(A) sending Y to cf Y and u: Y ! Y 0

in P(B) to cf (u), the unique vertical morphism which makes the following

diagram commute.

cf Y Y

cf Y 0 Y 0

A B

cf (u)

c(f;Y )

u

c(f;Y 0)

f

Now suppose f : A ! B and g: B ! C are morphisms in B. We have

P(gf )(Z ) = cgf Z and P(f ) � P(g)(Z ) = cf cgZ. Notice that since P(c(g; Z) �

c(f; cgZ)) = P(c(gf; Z )) = gf , and precartesian property of morphismsc(gf; Z )

yields a unique vertical morphism v: cf cgZ ! cgf Z such that c(gf; Z ) � v =

c(g; Z) � c(f; cgZ). (The fact that composition of precartesian morphisms may

not be precartesian precludesv from being an isomorphism.) All squares in

the diagram below commute and this shows the choice ofv is natural.
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cf cgZ cgZ Z

cf cgZ 0 cgZ 0 Z 0

cgf Z Z

cgf Z 0 Z 0

cf (cg u)

c(f; cg Z )

cg (u)

c(g;Z )

u

c(f; cg Z 0)

v0

c(f;Z 0)

cgf (u)

c(gf;Z )

v

u

c(gf;Z 0)

This turns P into a lax functor. If P was indeed a cloven �bration then v in the

diagram above would be an isomorphism and we would get a pseudo functor

P instead. Also, if we have a pre�bration map (F; L ) : (Q; cQ) ! (P;cP ) as in

De�nition 2.3.17, then LP : Q ! F � (P) in Fib(C) induces a pseudo natural

transformation � : Q ) P � F op.

C B

F E

Q

L

P

F

7! Cop

Bop

Cat

F P

Q

�

The pseudo-naturality squares are given, for a morphismf : c0 ! c, by

Q(c0) P(Fc0)

Q(c) P(Fc)

�= � ff �

� c

(F f )�

� c0

(2.17)

where the natural isomorphism � f at component y 2 Q(c) is exactly the vertical

isomorphism v of the diagram (2.15) . The �bration map (L; F ) is strict iff � is

a strict 2-transformation.
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What's more, we get a bijection between �bration transformations on the left

side and modi�cations of pseudo transformation of indexed categories on the

right side. Indeed, we obtain 2-functors

Fib(B) ! 2 Catpsd(Bop; Cat) (2.18)

splnlFib(B) ! 2Cat(Bop; Cat) (2.19)

which are biequivalenceof 2-categories.

The quasi-inverse is known as the “Grothendieck construction for indexed

categories” which we are going to explicate in below. Note that there is no

biequivalence for the case of pre�brations since there is no 3-category of 2-

categories having lax functors as their morphisms. SupposeB is a category and

P: Bop ! Cat is a pseudo functor. We would like to associate a Grothendieck

�bration to P such that �bres are categories equivalent to P(U) for objects U

in B.

CONSTRUCTION2.3.25. De�ne the categoryP o B

(i) whose objects are pairs(I; A ) whereI is an object ofB andA is in an object

of categoryP(I ), and

(ii) whose morphisms are(f; u ) : (J; B ) ! (I; A ) wheref : J ! I is a morphism

in B, andu: B ! f � (A) a morphism inP(J ).

Moreover,

• the identity morphism at(J; A) is given by the pair(idJ ; � J (A)), and

• the composition of

(K; C )
(g;v)
��! (J; B )

(f;u )
��! (I; A )

is given by

(K; C )
(f � g;h)
����! (I; A )

whereh := � f;g (A) � g� (u) � v.
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In above,� J : IdP(J ) ) P(idJ ) and� f;g : P(g) � P(f ) ) P(f � g) is part of coherence

data ofP.

The �gure below provides us a with a snapshot of the category P o B at

moments I; J; K .

P(K ) P(J ) P(I )

C

g� (B )

g� f � (A) B

(gf )� (A) f � (A) A

K J I

v

g� (u)

� f;g (A ) u

g f

(2.20)

It's plainly clear that � P : P o B ! B taking object (I; A ) to I is a Grothendieck

�bration. Moreover, every morphism in P o B factors as vertical morphism

followed by a horizontal one:

(J; B )

(J; f � (A)) (I; A )

(id ;� J (f � )� u)
(f;u )

(f; id)
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REMARK2.3.26. The biequivalences in(2.18) sends composition of indexed cate-

gories to pullback of �brations. Given a functorF : C ! B and an indexed category

P: Bop ! Cat, we get a pullback of categories

(PF ) o C P o B

C B

� P� F op

L

p � P

F

whereL((J; B )
(f;u )
��! (I; A )) = ( F (J ); B)

(F (f );u)
����! (F (I ); A).

COROLLARY2.3.27. Since monads in a 2-categoryCat are nothing but lax functors

1 ! Cat, we conclude from the above equivalence that monads are indeed the same

as pre�bred categories over the terminal category.

An application of Grothendieck construction is the formation of homotopy

quotients. SupposeG is a group, X is a topological groupoid, and G acts onX .

Therefore, X induces a functor � G ! Grpd. The Grothendieck construction

applied to this functor gives the homotopy quotient of X by G, denoted by

X==G. It is isomorphic to the groupoid whose objects are points of X , and

whose morphisms from point x to y are given by pairs(g; � ) where � : g � x �= y

in X . Here's why homotopy quotients are important. Supposep: E ! B is a

map of groupoids. The homotopy pullback (i.e. pseudo pullback) Eb ! E of

an element b: 1 ! E is always faithful but not full. The image of Eb in E is

connected and for b and b0 in the same connected component ofB, we have

Eb ' Eb0. Also, the group Aut( b) = E(b; b) canonically acts on the homotopy

�bre Eb. There is a fully faithful functor Eb==Aut( b) ! E. Therefore, we can

write one of the most fundamental equations of theory of groupoids, that is

E �=
X

b2 � 0 (B)

Eb==Aut( b)

for any groupoid E.

Another application of Grothendieck construction is the so-called external-

ization processwhich turns internal categories into �bred categories. The

heavy machinery of indexed categories is an essential component of Part B
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[Joh02a] and Part C of [Joh02b] to access and de�ne internal constructions

in toposes via their externalized indexed categories.4 For instance one of the

key theorem of relativised topos theory is that to any base toposS and any

geometric theory T one can assocciate an the classifyingS -topos S [T] which

is a Grothendieck topos in the sense that it is equivalent to the category of

internal sheaves over internal syntactic site ofT.

CONSTRUCTION2.3.28. SupposeC is an internal category inS. In Appendix A.8 it

is explained how an indexed categoryFam(C): Sop ! Cat can be constructed from

an internal categoryC in a �nitely complete categoryS. Applying the Grothendieck

construction yields a �bration� : Fam(C) o S ! S. The categoryFam(C) o Shas

• as its objects(I; X ) whereI is an object ofS andX : I ! C0 is a morphism

in S, and

• as its morphisms(�; f ) : (J; Y ) ! (I; X ) where� : J ! I is a morphism in

Sandf : Y ! � � X is given by a morphismf : J ! C1 in Swith d0 � f = Y

andd1 � f = X � � in S(J; C0).

The �rst projection gives a split normal cloven �bration� C : Fam(C) o S ! S.

Note that a morphism(�; f ) is cartesian ifff is an isomorphism inFam(C)(J ). The

canonical cleavage assigns to each� : J ! I the morphism(�; id� � X ).

EXAMPLE2.3.29. LetB be a category. Consider the associated �brationFam(B) !

Set of the 2-functor

Fun(� ; B) : Setop ! Cat

where for an (indexing) setI , Fun(I; B) is the category of functors from discrete

categoryI to B. The objects of this �bred category are familiesf X i gi 2 I of objects of

B indexed by a setI , and a morphism is a pair(�; f ) where� : J ! I andf a family

of morphismsf f j : Yj ! X � ( j )gj 2 J in B. In the case whereB is a small category this

exactly matches the externalization of categoryB (realized as an internal category in

Set) in Construction 2.3.28. A morphism(�; f f j : Yj ! X � ( j )gj 2 J ) is cartesian iff

eachf j is a bijection.

CONSTRUCTION2.3.30. The Grothendieck construction of an indexed category is

a special case of a 2-monadFamS: [Sop; Cat] ! [Sop; Cat] calledindexed family
4In other places such as [Str18] and [Lur09] a �brational approach is preferred.
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construction . For anS-indexed categoryP: Sop ! Cat de�ne FamS(P) to be the

S-indexed category ofS̀-indexed families of objects' ofP, i.e. for each objectI of

S, FamS(P)(I ) is the category whose objects are pairs(� : J ! I; A ) whereA is

an object ofP(J ), and whose morphisms are of the form(�; f ) : ( �; A ) ! (� 0; A0)

where� : � ! � 0 is a morphism in the slice categoryS=I (i.e. the left diagram in

below commutes) andf : A ! � � A0 is a morphism in the categoryP(J ).

J J 0

I
�

�

� 0
; A

f
�! � � A0

Note that ifShas a terminal object1, then in particularFamS(P)(1) is equivalent to

the total categoryP o Sof Grothendieck �bration ofP. The reindexing (aka change

of base) functor� � for a morphism� : K ! I in S is given by the pullback functor

which takes an object(�; A ) to (� � �; � �
2A), and morphism(�; f ) to (� � �; � � f � � )

where� is the canonical natural isomorphism� �
2� � �= (� � � )� (� 0

2)� as part of the data

of indexed categoryP.

(� � � )� (� 0�
2A0) � � A0

� �
2A A

� � J J

� � J 0 J 0

K I

� � f � � f

� � �

� 2

�

�
p

� � � 0

� 0
2

� 0

�

Now, any reindexing functor� � has a left adjoint� � : FamS(P)(K ) ! FamS(P)(I )

which takes an object( : L ! K; B ), with B an object ofP(L), to (� � ; B ).

Moreover, they satisfy Beck-Chevalley condition. Therefore,FamS(P) is the free

cocompletion of indexed categoryP. In fact, the 2-monadFamS is a KZ-monad

whose algebras are exactlyS-indexed categories withS-indexed coproducts.
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2.3.4 Yoneda's lemma for �bred categories

We have an embeddingBd ! Fib(B) of 2-categories by taking an objectU

of B to the slice �bration � U : B=U ! B, and a morphism f : V ! U to the

cartesian functor f � : B=V ! B=U over B. In section 2.2 we showed that the

discrete �bration � U is representable amongst discrete �brations, in that we

have the equivalence

dFib(B)( � U ; P) ' P(U)

for any discrete �bration P : E ! B. However if we are willing to pay the

cost of considering � U in the 2-category Fib(B) rather than in the category

dFib(B), we then win the prize of having it as a representable �bration.

PROPOSITION2.3.31. For any objectU in B, and any �bred category(P;c) : E !

B overB, we have a family of equivalences of categories

� U : clvFib(B)( � U ; P) ' P(U) : 	 U

natural inU.

Proof. For a �bration map L : � U ! P, de�ne �( L) := L(U id�! U). Also for

a vertical natural transformation � : L ) L0, de�ne �( � ) := � (idU ). � is a

functor. For an object X in E over U = P(X ), we de�ne the �bration map

	( X ) : B=U ! E as the following functor: 	( X )(V
f
�! U) = cf X , and for

h : f 0 ! f in B=U, 	( X )(f 0 h�! f ) = h. One easily checks that	( X ) is indeed

a functor. Moreover, by Proposition 2.3.5 P � 	( X ) = � U and 	( X ) preserves

cartesian morphisms of B=U. (That is every morphism of B=U since slice

�bration is discrete.) Note that 	 � �( L) �= L for any �bration map L: since

L sends each morphism ofB=U to a cartesian one in E, L(f : f ! idU ) is

cartesian, and therefore, 	 � �( L)( f ) = cf (L(idU )) �= L(f ).

2.3.5 Categories �bred in groupoids

We start by the following observation whose proof is given in Appendix A.9.
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PROPOSITION2.3.32. SupposeP: Bop ! Grpd is a pseudo functor. Every mor-

phism inP o B is � P-cartesian.

DEFINITION 2.3.33. A Grothendieck �brationP : E ! B, equivalent to� P for a

pseudo functorP: Bop ! Grpd, is said to bea category �bred in groupoids .

So, we deduce that

A pseudo functor P: Bop ! Cat gives rise to a category �bred in groupoids

if and only if

it factors through the embedding Grpd ,! Cat of (2; 1)-category of groupoids

into the 2-category of (small) categories.

Categories �bred in groupoids have an easier description than categories �bred

in categories. We do not need to concern ourselves with the cartesianness of

the lifts, since every lift is automatically cartesian due to Proposition 2.3.32.

THEOREM2.3.34. P : E ! B is category �bred in groupoids if and only if

(CFG 1) For every arrowf : V ! U in B and every objectX in E sitting aboveU,

there is an arrowef : Y ! X with P( ef ) = f .

(CFG 2) Given a commutative triangle inB, and a lift ef of f and a lifteg of g, there is a

unique arrowh: Y ! Z such thatef � h = eg andP(h) = h.

Z

X

Y

eg

9!h

ef

7!

W

U

V

g

h

f
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REMARK2.3.35. By taking nerves we get quasi-categoriesN (E) andN (B), we can

express the two lifting conditions in above as horn-�lling conditions below:

� 1[1]

i
��

//N (E)

N (P )
��

�[2] //

9
;;

N (B)

� 2[2]

i
��

//N (E)

N (P )
��

�[2] //

9!
;;

N (B)

Because of theorem above categories pre�bred in groupoids and categories

�bred in groupoids are the same thing, and we only shall talk about the

latter.

REMARK 2.3.36. Note that a �bration is discrete iff in the left diagram in above the

diagonal �ller exists uniquely as well.

A �bration map between two categories �bred in groupoids Q: F ! C and

P : E ! B is a pair of functor L : F ! E and F : C ! B such that FQ = PL.

We can drop the condition that L preserves cartesian morphisms (De�nition

2.3.17) because of Proposition 2.3.32.

PROPOSITION2.3.37. Categories �bred in groupoids form a full sub-2-category

CFG of Fib. CFG inherits stability properties of �brations in Proposition 2.3.16:

categories �bred in groupoids are stable under composition and pullback along all

functors.

CONSTRUCTION2.3.38. For a �bration (resp. pre�bration)P : E ! B we associate

a categoryCore(P) : Ecart ! B �bred (resp. pre�bred) in groupoids. The category

Ecart is a subcategory ofE with the same objects but onlyP-cartesian (resp.P-

precartesian) morphisms between them. The functorCore(P) is P restricted to the

subcategoryEcart . It turns outCore(P) is a sub�bration ofP (i.e. a subobject in

jj Fib(B)jj
1
) and in fact it is �bred in groupoids: (CFG 1) holds by the fact that

P is a �bration and (CFG 2) is true due to Proposition 2.3.3. This construction

induces a 2-functorCore: Fib ! CFG which is right 2-adjoint to the embedding

2-functorCFG ,! Fib with identity unit. The counit gives the �bration inclusion

Core(P) ! P in Fib. Therefore,CFG is a core�ective sub-2-category ofFib.
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REMARK 2.3.39. The 2-adjunctionInc a Core induces a family of 2-adjunctions

parameterized over the baseB.

CFG(B) Fib(B)?

Inc

Core

Note in particular forB = 1, the left adjointCore gives the core groupoid of a cate-

gory which in turn in a categori�cation of core group of a monoid (i.e. the maximal

subgroup of the monoid).

REMARK 2.3.40. Every category �bred in groupoidP : E ! B is a groupoidal

object in the 2-categoryFib(B). This simply follows from the fact that every vertical

morphism inE is an isomorphism since it is both vertical and cartesian. Moreover,

CFG(B) is equivalent to the full sub-2-category of groupoidal objects ofFib(B).

2.3.6 Grothendieck �brations and the principle of

equivalence

Grothendieck �brations are not invariant under equivalences of categories, so

they are not a bicategorical notion as they violate the principle of equivalence.

(See A.2.) Given a Grothendieck �bration Q: F ! B and an equivalence

K : E ! F of categories, unfortunately Q � K : E ! B is no longer a �bration.

An easy way to see this is to take an indiscrete groupoidGwith more than one

objects and notice that 1 '�! Gis not a Grothendieck �bration.

Nevertheless a compositeP : E ! B of an equivalenceK : E ! F followed

by a Grothendieck �bration Q: F ! B has the following property: for any

object E of E and any morphism f : B ! PE we have aP-cartesian morphism
ef : f � E ! E together with an isomorphism P( ef ) �= f in B=PE and the unit

gives the vertical-cartesian factorisation of morphisms inE.

DEFINITION 2.3.41. Any functor R : F ! B with the above property is called a

weak �bration (akaStreet5 �bration akaabstract�bration).
5See [Str81].
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Weak �brations are the correct notion of �brations in bicategories as they

adhere to the principle of equivalence. One can associate to every weak

�bration an equivalent Grothendieck �bration, that is, every weak �bration

can be factored as an equivalence followed by a Grothendieck �bration.

The Proposition 2.3.14 has a parallel for weak �brations:

PROPOSITION2.3.42. A functorP : E ! B is a weak cloven �bration iff for every

objectE of E the induced slice functorsPE : E=E ! B=PE has a right adjointSE

which is fully faithful.

The proof is similar to the proof of 2.3.14 except one thing: the counit in this

case is an isomorphism instead of identity.

EXAMPLE2.3.43. Of course every Grothendieck �bration is a weak �bration. In be-

low, we list few examples of weak �brations which are not Grothendieck �brations.

(i) For a groupoidB, every functorP : E ! B is a weak �bration. By Proposition

2.3.42, we need to proveE=E ! B=PE has a fully faithful right adjoint. But,

this is evident sinceB=PE ' 1 sinceB is a groupoid and the unique functor

! : E=E ! 1 has a fully faithful right adjoint since the slice categoryE=E has

a terminal object.

(ii) This example appears in [Jan90] in the context of Magid's Galois Theory. Let

P be the composite

CRingop BA idem����! Boolop Spec
��! Stone

The functorP contravariantly takes a commutative ringR to its Pierce spec-

trum, i.e. the Stone space6 whose points are ultra�lters of the Boolean algebra

BA idem(R) of idempotents inR, and whose topology is generated by the basic

open setsOH = f F 2 Spec(BAidem(R)) j H 6� F g. The functorP is a weak

�bration of categories but not a Grothendieck �bration.

6Recall that a Stone spaceis a compact, Hausdorff, and totally disconnected topological space.
Any Stone space is homeomorphic to the spectrum of the Boolean algebra of its clopen
parts. See [Joh86] for more details about the famousStone duality.
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2.3.7 Few examples of categorical �brations

EXAMPLE2.3.44. (i) [Shu08] de�nes amonoidal �bration between monoidal

categories(E; 
 ; k) and (B; 
 0; k0) as a Grothendieck �brationP : E ! B

which is also a (strict) monoidal and the tensor product
 preservesP-cartesian

arrows. The codomain �bration of Example (ii) is a special case whereP is

a monoidal bi�bration and the base categoryB is cartesian monoidal. In such

cases, in addition to the external monoidal structure ofE, given by tensor prod-

uct 
 and unitk, there is an internal tensor product on �bres, denoted by� ,

which is strictly preserved by base change functors.

E1 EB EB � B

(!B )�

(!B )!

(� B )!

(� B )�

k

X

Y

X 
 Y� �
B (X 
 Y)

B B � B1
� B!B

In the case of cloven bi�bration(cod; c) : (B # B) ! B the �brewise/internal

tensor product inC=B is the �bre product: ifp: X ! B , andq: Y ! B , then

X � Y = X � B Y, andp � q = � � (p � q) since

X � B Y X � Y

B B � B
�

p � q p � q

(ii) A �bration P : E ! B is calledcartesian whenever the indexed functor

P: Bop ! Cat factors through the inclusionCatlex ,! Cat whereCatlex is

the sub 2-category of �nitely complete categories and functors. It turns out

the equivalent condition forP to be cartesian isE has all �nite limits andP

preserves them. (See [Joh02a, B.1.4.1]) This turnsP into a cartesian monoidal
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�bration. We remark that by Corollary A.9.2 in order to check thatP is carte-

sian we only need to check that the �bre categoryP(I ) has all �nite limits for

each objectI of B . Moreover,P is cartesian closed wheneverE is cartesian

closed andP preserves the exponentials. Again, this condition can equivalent

be expressed in term of indexed categoryP: P is cartesian closed iff each �bre

P(I ) is cartesian closed and reindexing along projections� I : I � J ! I has

a right adjoint. (This gives dependent products from which exponentials inE

are made.)

(iii) Every discrete (op)�bration is a Grothendieck (op)�bration. This easily fol-

lows from Proposition 2.3.14. Note that since in this case we do not have non-

trivial vertical morphisms, the unit� X therein is identity and so is the counit.

Therefore, a discrete (op)�bration induces isomorphisms on (co)slices.

(iv) One of the simplest non-discrete �brations is constructed as follows: consider

anI -indexed familyf Gi gi 2 I of groups whereI is a set. The groupoid
`

i 2 I Gi

is �bred over the discrete categoryI . Obviously, the �bres are not discrete

(set) but groups.

EXAMPLE2.3.45. Non-discrete �brations are commonplace in mathematics.

(i) For a suitable monoidal category(V; 
 ; I ), there is a categoryM od(V) of (left)

modules (See Appendix A.8), and there are forgetful functors

M od(V)

M on(V) V

Indeed,M od(V) is bi�bred (both �bred and op�bred) over the categoryM on(V)

of monoids inV. The most familiar special case of this construction is when

V is the monoidal category(Ab; 
 Z; Z) of abelian groups,M on(V) is the cat-

egory of rings, andM od(V) is the category of all pairs(R; M ) whereR is a

ring andM is anR-module. First, let us show that for any precartesian mor-

phism(f; � ) : (R; M ) ! (S; N) the morphism� of abelian groups must be an

isomorphism. Takey in N . Consider theR-moduleRhyi of formal elements

hr; y i wherer 2 R. Of course, it is an abelian group with the group structure
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inherited fromR. It is also anR-module with the scalar multiplication given

by r 0hr; y i = hr 0r; y i . Moreover, there is a morphism(f; i ) : Rhyi ! N in

M od whereihr; y i := f (r )y. Since(f; � ) is precartesian, the morphism(f; i )

can be lifted along it. This means there is a unique elementx in M such that

� (x) = y. Therefore,� is an isomorphism of abelian groups.

Furthermore, for anS-moduleN , any ring homomorphismf : R ! S has a

canonical cartesian lift with the codomain(S; N), namely(f; id) : (R; f N ) !

(S; N). Note that theR-modulef N has the same underlying group asN but

different scalar multiplication given byr � y := f (r )y wherey 2 f N . Also,

for an R-moduleM , any ring homomorphismf : R ! S has a canonical

opcartesian lift with the domain(R; M ), namely(f; � ) : (R; M ) ! (S; Sf 
 R

M ), where� (x) = 1 S 
 x. Note thatSf is regarded as a left-S-, right-R-

bimodule; the left action being the canonical action ofS on itself, and the

right action being the restriction of scalars action alongf .

The bi�brations structure gives the adjunctionf ! a f � : S M od ! R M od

wheref � , given by the formulaf � (N ) = f N , is known as therestriction of

scalarsfunctor whilef !, given by the formulaf !(M ) = Sf 
 R M , is known

as theextension of scalarsfunctor. Moreover,f � has a further right adjointf �

which is know as thecoextension of scalars.

R M od S M od
?

?

f �

f �

f !

Sincef � (N ) = f
�= f S 
 S N �= f � (S) 
 S N , natural in any leftS-module

N , we havef � �= f � (S) 
 S (� ), and therefore by tensor-Hom adjunction (See

A.17), we havef �
�= HomR(f � (S); � ). Thus, we havef � (M ) �= HomR(f � (S); M ),

natural inM . The left action ofS on f � (M ) is given bys � h : s0 7! h(s0s).

Curiously, the unit of adjunctionf � a f � is precisely the structure of scalar

multiplication of N as a leftS-module. The whole story above holds at the
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more general level of �brationsM od(V) ! M on(V), and even more gener-

ally within the framed bicategories of [Shu08].

The following example shows how powerful the universal property of cartesian

morphisms could be in codifying the substantial amount of coherence data of

a symmetric monoidal category.

(ii) Consider the categoryFin� of pointed �nite sets which is constructed as the

comma category(� # Set�n ) where� : 1 ! Set�n takes the only object of1 to

the terminal set. We present the objects ofFin� asm+ := ( f 0; : : : ; mg; 0), and

morphisms as� : m ! n where� �xes 0. In particular, de�ne� : 2+ ! 1+

by � (1) = � (2) = 1 , and � : 0+ ! 1+ the unique such morphism. By

the Bar construction (A.6.1) a symmetric monoidal category(V; 
 ; I ) can be

identi�ed with a pseudo functorBar : Fin� ! Cat whereBar (n+ ) := V� n

and� � = Bar (� ) : V� m ! V� n de�ned by the action

(c1; : : : ; cm ) 7! ( 

k2 � � 1 (i )

ck ) i =1 ;:::;n

In particular, � � (c1; c2) = c1 
 c2, and � � = I .7 Applying Grothendieck

construction toBar yields an op�bred categoryV
 overFin� which has as its

objects (possibly empty)m-tuples(c1; : : : cm ) for all non-negative integerm,

and as its morphisms pairs(�; f ) : (c1; : : : cm ) ! (d1; : : : dn ) where� : m+ !

n+ andf = ( f 1; : : : ; f n ) wheref i : 

k2 � � 1 (i )

ck ! di , for i = 1; : : : ; n, are

morphisms inV. Let's denote the resulting op�bration by� V : V
 ! Fin� .

Note that both morphisme� : (c1; c2) ! c1 
 c2 and e� : (c1; c2) ! c1, and
e� : (c1; c2) ! c2 are respectively opcartesian over� , � , and� all morphisms

from 2+ to 1+ with � � 1(1) = f 1; 2g, � � 1(1) = f 1g, and� � 1(1) = f 2g. Now,

the associator and unitors of monoidal categoryV and the coherence equations

are all encoded to the uniqueness of opcartesian lifts up to unique isomorphism.

For instance, there exists a unique vertical isomorphism� : (c1 
 c2) 
 c3 !

7By convention, we take empty tensor product to be the unit I of monoidal category.
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c1 
 (c2 
 c3) which makes the diagram below commute since obviously� �

(� + id) = � � (id + � ).

(c1 
 c2 ) 
 c3

(c1 
 c2 ; c3 )

(c1 ; c2 ; c3 )

c1 
 (c2 
 c3 )

(c1 ; c2 
 c3 )

e�
^� + id

�=

e�
îd + �

Similarly -but using different opcartesian morphisms- we obtain the left and

right unitors and their coherence equations. Where does the symmetry come

from? Consider theswitchendomorphism� : 2+ ! 2+ in Fin� which takes1

to 2 and2 to 1. Both morphismse� � e� ande� in V
 lie above� , since evidently

� � � = � . Therefore there is a unique vertical isomorphism� : c1
 c2 ! c2
 c1

such thate� � e� = � � e� . Observe that the op�bration� V is special in the sense

that the �breV

n +

is equivalent to then-fold product of �bre V

1+

. Therefore,

we have comparison equivalencesV

n +

'�! V� n which are calledSegal maps.

It can be checked that every op�brationP : C ! Fin� with the data of Segal

maps is equivalent to an op�bration of the form� V for some monoidal category

V. For symmetric monoidal categoriesV; 
 ; I and V0; 
 0; I 0 an op�bration

mapL : � V ! � V0 overFin� takes opcartesian morphisme� : (c1; c2) ! c1 
 c2

to opcartesian morphismL( e� ) : (L(c1); L(c2)) ! L(c1 
 c2) which lies over

� . Therefore, we have a unique opcartesian isomorphism� : L(c1) 
 0L(c2) !

L(c1 
 c2) which makes the diagram below commute.

(L(c1); L(c2)) L(c1) 
 0L(c2)

L(c1 
 c2)

e� 0

L (e� )
� (2.21)
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Similarly, we obtain� : I 0 ! L(I ) by opcartesianness ofe� 0. It is straight-

forward to verify that� and� equipL with a structure of a strong monoidal

functor. Therefore, we have

8
<

:
Strong symmetric monoidal functors

V ! V0

9
=

;
'

8
<

:
Op�bration maps

� V ! � V0 in Fib(Fin� )

9
=

;

Notice that only invertibility of� in diagram(2.21) relies on the fact thatL

preserves opcartesian morphisms not its existence. Indeed, we have

8
<

:
Lax symmetric monoidal

functorsV ! V0

9
=

;
'

8
<

:
Inert cartesian-preserving

morphisms� V ! � V0 in Cat=Fin�

9
=

;

By � V-inert morphism inV
 we mean a morphism, sayu, which lies over a

morphism� : m+ ! n+ with the property that� � 1(i ) is a singleton for any

1 � i � n.

(iii) The category of vector bundles over manifolds, the category of topological

spaces over sets, and the category of groupoids over sets are all exmaple of

�bred categories. The common phenomenon shared among them all is that

the base change functor is given by pulling back the given structure. For in-

stance, for the last example, given a groupoidY = ( Y1 � Y0) and a function

f 0 : X 0 ! Y0, we de�ne the lift f = ( f 1; f 0) of f 0 by the following pullback

of sets:
f � Y Y

B Y0 � Y0
f 0 � f 0

d0 � d1

(iv) The idea ofstackis a categori�cation of sheaves: given an indexed functor

X : Sop ! Cat and a covering familyf Ui ! Uji 2 I g in S, we would like to

see under what conditions we can glue �bre categoriesX(Ui ) together to get

X(U) up to an equivalence. This condition is known asdescent conditionand

is a generalisation of matching families for presheaves. The �brational view

of stacks is originally due to Grothendieck. See [Joh02a, B1.5] for a precise
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de�nition. In connection to non-abelian cohomology see [Moe02]. For a great

exposition in connection to the use of stacks in algebraic geometry see [Vis05].

2.4 Chevalley-style �brations internal to

2-categories

In [Str74] (and later in [Str80]), Ross Street develops an elegant algebraic

approach to study �brations, op�brations, and two-sided �brations internal to

2-categories (resp. bicategories).

In the case of (op)�brations the 2-category is required to be �nitely complete,

with strict �nite conical limits 8 and cotensors with the (free) walking arrow

category 2. Given those, it also has strict comma objects. Then he de�ned a

�bration (op�bration) as a pseudo-algebra of a certain right (resp. left) slicing

2-monad. In the case of bicategories they are de�ned via “hyperdoctrines” on

bicategories.

For (op)�brations internal to 2-categories, he showed [Str74, Proposition 9]

that his de�nition gave rise to Chevalley criterion for �brations.

Also, Street weakened the original Chevalley criterion of [Gra66], by allowing

the adjunction to have counit an isomorphism. Note that, even when we

can use the Chevalley style, there are questions about strictness to which we

shall deal with in §2.4.2. Is a certain counit of an adjunction an isomorphism

(as in [Str74]) or an identity (as in [Gra66]) and how do they relate to the

structure of pseudo-algebra? We will note that the relationship is not a direct

correspondence. In chapter 3 working in the 2-categoryCon, we shall revert

to the original requirement for an identity, and we shall call the involved

adjunction the strict Chevalley adjunction.

8i.e. weighted limits with set-valued weight functors. They are ordinary limit as opposed to a
more general weighted limit.
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We do not wish to assume existence of all pullbacks since our main 2-category

Conin Chapter 3 does not have them. Instead, we assume our 2-categories

in this section to have all �nite strict PIE-limits [PR91]. All PIE limits exist in

Con. This is enough to guarantee existence of all strict comma objects since for

any opspanA
f
�! B

g
 � C in a 2-category K with (strict) �nite PIE-limits, the

comma object(f # g) can be constructed as an inserter off � A ; g� C : A� C � B .

Pullbacks are not PIE-limits, so sometimes we shall be interested in whether

they exist.

For all these reason, in the 2-categoryCon, we prefer to mainly work with the

Chevalley criterion (See chapter 3). Nonetheless, we will give an overview of

Street's characterisation using pseudo algebras. We �rst describe the Chevalley

criterion in the style of [Str74], and then go into details of Street's work which

connects Chevalley �brations to pseudo algebras.

SupposeB is an object ofK, and p is an object in the strict slice 2-categoryK=B.

By the universal property of (strict) comma object (B # p), there is a unique

1-morphism � 1 : (E # E) ! (B # p) satisfying @0(p)� 1 = d0(p # p), � 2� 1 = e1,

and � p � � 1 = p � � E .

(E # E)

(B # B) (B # p) E

B B

e1

(p#p)
� 1

d0

� 2

@0 (p) p

1

� p*

(2.22)

DEFINITION 2.4.1 (Chevalley). Considerp as above. We callp a �bration if the

morphism� 1 has a right adjoint� 1 with counit" an identity in the 2-categoryK=B.

Dually one de�nes (Chevalley)op�brations as 1-morphismsp: E ! B for which

the morphism� 0 : (E # E) ! (p # B) has a left adjoint� 0 with unit � an identity.

NOMENCLATURE. We shall call the adjunctions aboveChevalley adjunctions .
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Gray [Gra66] showed that Chevalley �brations in the 2-category Cat of (small)

categories correspond to cloven Grothendieck �brations. We give an illustrated

and elementary discussion of this in below.

In the case wherep is carrable, the comma objects(p # B) and (B # p) can be

expressed as pullbacks along the two projections from(B # B) to B .

REMARK 2.4.2. A consequence of the counit of the adjunction� 1 a � 1 being the

identity is that the adjunction triangle equations are expressed in simpler forms; we

have� 1 � � 1 = id � 1 and� 1 � � 1 = id � 1 .

Using the tools developed in the next section, we shall prove that@0(f ) is a

(Chevalley-style) �bration for any morphism f in K (See 1.9.36). An implica-

tion of this result is that any morphism f : A ! B in K can be approximated

by a �bration: the 2-morphism idf factors through the comma 2-morphism � f ,

and this yields a unique morphism i(f ) : f ! @0(f ) in K=B with � 2 � i (f ) = 1 A

and � f � i (f ) = id f

A (B # f ) A

B B
f

i (f )

1

� 2

@0 (f ) f

1

� f *

Indeed � 2 a i (f ) with identity counit. In particular, i (f ) is fully faithful. If

B is groupoidal then @0(f ) � � 1(f ) = � f and @1(f ) � � 1(f ) = id are invertible

and therefore � 1(f ) is invertible. Hence, the adjunction � 2 a i (f ) is indeed

an adjoint equivalence with identity counit. Therefore, any functor with a

groupoid codomain is equivalent to a �bration.

EXAMPLE2.4.3. Let's takeK = Cat to be the strict 2-category of categories, func-

tors, and natural transformations. First and foremost, for a functorP : E ! B, the

comma category(B # P) is given as a category whose objects are of the form shown
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in the left diagram and and whose morphisms are of the form of right diagram in

below, wheree 7! b1 indicates thatp(e) = b1.

e

b0 b1

p

f

e

e0

b0 b1

c0 c1

p

~h1

p
f

h0

h1

g

A functor F : A ! B is approximated to a �bration@0(F ) wherebyi (F ) : F !

@0(F ) is given by the functorial assignmenta 7! hF (a); idF a ; ai . The unit of ad-

junction i (F ) a � 2 is given by component-wise byhb; � : b ! F (a); ai
h�; id i
���!

hF (a); idF a ; ai .

In the next part we shall overview the construction of �brations as pseudo

algebras of the slicing 2-monad introduced originally in [Str74] with one small

difference: since we primarily work with �brations (instead of op�brations)

we emphasize on co-KZ-monads (instead of KZ-monads).

2.4.1 A swift review of pseudo algebras and KZ

2-monads

In this part by a 2-monad we mean a strict 2-monad: it consists of a strict

2-functor T : K ! K, and strict natural transformations � : T2 ) T and

� : IdK ) T satisfying unit and associativity laws strictly. A strict 2-monad

is precisely aCat-enriched monad. As with the case with monads, 2-monads

provide us with the right tools to discuss 2-dimensional universal algebra.

Many examples of 2-monads are concerned with studying 2-categories with

additional structures, such as �nite limits and colimits.

We saw in Chapter 1 that the theory of 2-categories really goes beyond the

theory of Cat-enriched categories, not merely with respect to the size of 2-

categories but more importantly due to the existence of weak morphism of

2-categories (i.e. pseudo and lax) and weak notions of limits and colimits.
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Same phenomenon occurs with 2-monads: passing to 2-dimensional monads,

we are faced with several choices of algebra morphisms of 2-monads. For

instance, the notion of pseudo algebrafor a 2-monad is a weakening of the

notion of algebra for a monad: a pseudo algebra isweakly associative and

weakly unital. For a precise de�nition of pseudo algebras and their morphisms

see Appendix A.10.

As an example consider thelist (aka free monoid) 2-monad on Cat. It is de�ned

by List (C) =
`

n2 N
C� n , and a functor F : C ! D induces canonical functors

F � n : C� n ! D � n on components by F � n (c1; : : : ; cn ) = ( F (c1); : : : ; F (cn )) .

With the obvious action on functors and natural transformations, List is a 2-

monad on Cat with unit iC being the inclusion of elements of C as one-element

lists in List (C) and the multiplication being the concatenation of lists into a

single list. A strict List -algebra is precisely a strict monoidal category while

a pseudoList -algebra is anunbiased monoidal category9. In both cases, the

tensor product is given by the structure map 
 : List (C) ! C.

Even if we restrict to strict algebras there are still three notions of morphisms

between them: strict, pseudo, and lax.

To illuminate this point, we give the world's simplest example of a 2-monad:

consider the 2-categoryCat, and let the 2-monad T : Cat ! Cat take a category

to its free completion with a terminal object(i.e. T(C) is C together with a

freely added terminal object). A strict algebra of T is a category with a

marked terminal object, and a strict algebra homomorphism is a functor

which preserves the marked terminal object up to equality, while a pseudo

homomorphism of algebras preserves the marked terminal object only up

to a speci�ed isomorphism. A colax homomorphism of algebras is simply a

functor while any lax homomorphism of algebras is automatically a pseudo

homomorphism.

9It includes an n-ary tensor product c1 
 c2 
 : : : 
 cn for all n � 0 (for n = 0 , the tensor gives
the unit I = () ), with associativity isomorphisms ((c1 
 c2) 
 () 
 (c3)) �= (c1 
 c2 
 c3),
etc. satisfying appropriate axioms. The biased (aka the usual de�nition of monoidal
category) and unbiased are indeed equivalent and the proof of equivalence uses a non-
trivial coherence theorem.
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In the case of the list 2-monad, a lax homomorphism of pseudo algebras is

a lax monoidal functor, and an oplax homomorphism is an oplax monoidal

functor. The various notions of algebras and homomorphisms of algebras has

been systematically studied in various places, perhaps most notably in the

celebrated paper [BKP89]. For instance, it is proved therein that for a �nitely

complete 2-categoryK and a 2-monad T : K ! K, the 2-category Algps(T) of

algebras and pseudo homomorphisms has all PIE-limits as well as inverters

and co-tensors. Moreover the forgetful 2-functor Algps(T) ! K creates these

limits.

There is a certain symmetry between lax morphisms and colax morphisms of

algebras, and, following [Kel74a], this is known as doctrinal adjunction. Given

an adjunction f a u in a 2-category K, there is a bijection

8
>>>><

>>>>:

TA TX

A X

a

T u

x

u

�u+

9
>>>>=

>>>>;

'

8
>>>>><

>>>>>:

TX TA

X A

x

T f

a

f

f̂ *

9
>>>>>=

>>>>>;

between lax algebra homomorphisms(u; �u) from a to x and colax algebra

homomorphisms (f; f̂ ) from x to a. This bijection is obtained by the operation

of mating (§ A.7) using the counit " : fu ) 1A of adjunction f a u, and the

unit T(� ) : 1T X ) T(u)T(f ) of adjunction T(f ) a T(u).

Generally we are more interested in certain structured 2-categories, and we

ask ourselves what are the monads whose algebras provide those structures.

Usually it is the algebras which we care more about, but �nding the 2-monad

itself is not always straight-forward.

A good motivation for the following de�nition is the well-known example of

free cocompletion(under a certain class of diagrams) 2-monad. consider the

2-monad T : Cat ! Cat whereby T(C) is the free cocompletion of C under

a given class of colimits and the algebrasT(C) ! C are the categories with

chosen colimits of that particular class (for example �nite coproducts) and the

strict morphisms of algebras are the functors which not only preserve these

colimits, but also preserve the chosen colimits. Then the pseudo morphisms
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of algebras are the functors preserving the colimits in the usual sense. Now,

for any diagram D of that particular class in C, we get a unique morphism

colimT(F (D)) ! F (colim D) by the universal property of colimits. This is

the idea behind the lax idempotent monads. Any structure arising from an

algebra of such monad is necessarily unique up to unique isomorphism. They

are called “property-like structures” [KLW97].

DEFINITION 2.4.4. A 2-monadT : K ! K is said to belax idempotent if given

any two (pseudo)T-algebrasa: TA ! A, b: TB ! B and a 1-morphismf : A !

B , there exists a unique 2-morphism�f : b � T f ) f � a rendering(f; �f ) a lax

morphism of pseudoT-algebras.

TA TB

A B

T f

a b

f

�f +

REMARK 2.4.5. Dually, reverse the direction of�f in De�nition 2.4.4, then we get

the notion ofco-lax idempotent monad.

Lax idempotency is aproperty of algebras of the 2-monad rather than the

2-monad itself. To see the difference, compare it to the analogous situation of

knowing a property of a group G versus a property of the category ofG-actions.

It turns out (See Theorem 2.4.11) that it can be de�ned purely in terms of

structure of monad itself without appealing to its algebras.

DEFINITION 2.4.6. A 2-monadT : K ! K is said to be aKZ- monad10 if m a i � T

with identity counit in the 2-category[K; K].

REMARK 2.4.7. Dual to the de�nition above, we de�ne a monadT to be aco-KZ-

monad by requiringi � T a m with identity unit.

In what follows the discussion takes place in the 2-category[K; K] = 2 Catstr (K; K)

and we choose our notations accordingly. Therefore, 2-morphisms are re-

ally modi�cations. Suppose T is a co-KZ-monad. In particular, the identity

10KZ: short for `Kock-Zöberlein'
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m � (i � T) = 1 is the unit of this adjunction. Moreover, the identity 2-morphism

and its mate � : i � T ) T � i

T T

T T2

1

1

T �i

id + m

T T

T T2

1

1 i �T

T �i

� + (2.23)

satisfy the equations

m � � = id 1T

� � i = id (T �i )� i

(2.24)

The �rst equation follows directly from the left triangle equation of adjunction

i � T a m whereas the second equation in above follows from the right triangle

equation of adjunction i � T a m together with the equation (i � T) � i = ( T � i ) � i

which in turn expresses the naturality of i .

THEOREM 2.4.8. Let T be a KZ-monad, andA an object ofK. There is a one-to-

one correspondence between the pseudoT-algebras onA and the left adjoints to unit

iA with invertible counit. Dually, there is a one-to-one correspondence between the

pseudo algebras of a co-KZ-monad and the right adjoints to unit of the monad with

invertible unit.

Proof. We give the proof of the theorem for the case of co-KZ-monads. We �rst

establish that any pseudo algebraa: TA ! A is a right adjoint to iA :

TA A?

iA

a
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The (invertible) unit of adjunction above is given by � : 1 ) aiA (Recall that

� is part of the data of pseudo algebra(A.20) ). Here is the putative counit11

using the mate � A introduced in diagram (2.23).

TA T2A TA

A

T � � 1+T i A

i T A

� A
T a

1

a i A

(2.25)

To prove the adjunction triangle equations, we need the following lemma

whose proof is given in the Appendix A.10.

LEMMA 2.4.9. Suppose(a; �; � ) : TA ! A is a pseudo algebra for a KZ-monad

T : K ! K. We have

TA T2A TA A

T � � 1+T i A

i T A

� A
T a a

1

= TA A
TA

A� � 1+
a

i A a

1

(2.26)

We prove the triangle identities of adjunction with the proposed unit and

counit:

a � (T � � 1 � (Ta � � A )) � (� � a) = ( � � 1 � a) � (� � a) { by Lemma 2.4.9 }

= id a { factoring out a}

Also,

((T � � 1 � (Ta � � A )) � iA ) � (iA � � ) = ( T � � 1 � iA ) � (iA � � ) { � A � i A = id }

= ( iA � � � 1) � (iA � � ) { 2-naturality of i : 1 ) T }

= id i A { factoring out i A }

11The dual of this situation, i.e. unit in the case of KZ-monad, is calculated in page 112 of
[Str74].
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REMARK 2.4.10. For a (co-)KZ-monadT, any object admits at most one pseudo

T-algebra structure, up to unique isomorphism. So a (co-)KZ-monad is a nicely-

behaved 2-monad whose pseudo algebras are `property-like'.

Indeed, the theorem above ensures that

THEOREM2.4.11 ([Str74],[Koc95]) . Any KZ-monad (resp. co-KZ-monad) is lax

idempotent (resp. co-lax idempotent).

Proof. Given algebrasa: TA ! A and b: TB ! B of a (co-)KZ-monad and a

morphism f : A ! B in K, the mate of identity 2-morphism iB � f = T f � iA

exhibits f as a (co)lax morphism of algebras.

In [Str74], we also see a converse of the theorem above.

LEMMA 2.4.12. SupposeT : K ! K is a co-KZ-monad and suppose a objectA, a

morphisma: TA ! A, and an iso 2-morphism� : 1 ) a � iA are given inK, and

furthermore,� � 1 satis�es pasting equality(2.26) . Then, we have:

(i) � is the unit for an adjunctioniA a a whose counit" is given by(T � � 1) � (Ta�

� A ) (composite 2-morphism in diagram(2.25) ).

(ii) The 2-morphism� : a � Ta ) a � mA , obtained by taking thee double mate of

� A � iA = id , is an iso 2-morphism.

T2A TA

TA A

T i A

i T A id * i A

i A

!

T2A TA

TA A

T a

mA a

a

� +

The double mate is obtained by �rst using the unit ofiT A a mA and the counit

of iA a a, and secondly by using the unit ofiA a a and the counit ofT iA a Ta.

(iii) The 2-morphism� enriches(A; a; � ) with the structure of a pseudoT-algebra.
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2.4.2 Fibrations as pseudo-algebras of slicing

co-KZ-monad

Let K be a representable 2-category. Recall thatK=B is the strict slice 2-

category over B (See Construction 1.4.13). Consider the strict 2-functor

@0 : K=B ! K=B which takes an object(E; p) to its lax pullback ((B # p); @0(p))

along the identity morphism 1B , that is

(B # p) E

B B

� 2

@0 (p) p

1

� p* (2.27)

is a comma square inK.

REMARK 2.4.13. If p is carrable then the 2-morphism� p can be obtained by the

pasting of pullback ofp alongd1 : (B # B) ! B and the generic comma square for

B .

(B # p) E

B B

� 2

@0 (p) p

1

� p* =

(B # p) E

(B # B) B

B B

� 2

p̂
p p

d1

d0 1

1

� *

The action of @0 on morphisms is given as follows: if f : (E 0; p0) ! (E; p) is a

morphism in K=B, then de�ne @0(f ) to be the unique morphism induced by the

universal property of comma object (B # p). Therefore, � 2 � @0(f ) = f � � 0
2 and

@0(p) � @0(f ) = @0(p0). Similarly if � : f ) g is a 2-morphism in K=B, then we

have a unique induced 2-morphism@0(� ) : @0(f ) ) @0(g) with � 2 �@0(� ) = � � � 0
2

and @0 � @0(� ) = id @0 (p0) .

PROPOSITION2.4.14. The 2-functor@0 : K=B ! K=B is a co-KZ-monad.

Proof. The unit i : id ) @0 at component (E; p) is given by the unique arrow

i(p) : E ! (B # p) with property that @0(p) � i (p) = p, � 2 � i (p) = 1 E , and
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moreover � p � i (p) = id p, all inferred by the universal property of comma object

(B # p).

E (B # p) E

B B

1

i (p)

p

� 2

@0 (p) p

1

� p*

It also follows that � 2 a i (p) with identity counit. Indeed, i (p) is v in Proposi-

tion 1.9.34, when f = 1 and g = p. From there, we also get the unit � 1(p) of

adjunction with @0(p) � � 1(p) = � p.

The multiplication m: @2
0 ) @0 at component (E; p) is given by the unique

arrow m(p) : (B # @0(p)) ! (B # p)

(B # @0(p)) (B # p) E

B B B

�� 2

m(p)

@0 (@0 (p))

� 2

@0 (p) p

1

� @0( p)

1

� p (2.28)

with the property that @0(p) � m(p) = @2
0(p), � 2 � m(p) = � 2 � �� 2, and moreover,

� p � m(p) = ( � p � �� 2) � � @0 (p) , all derived by universal property of comma object

(B # p). Now, it follows that i � @0 a m with unit being identity.

EXAMPLE2.4.15. In this example we shall see examine the special case of above

situation for the 2-monad@0 : Cat=B ! Cat=B. First recall from the Example

2.4.3 that for a functorP : E ! B, the objects of(B # P) are of the formhf; ei

wheref : b ! Pe is a morphism inB. The functor@0(P) takes a pairhf; ei to

b0 = dom( f ), and� 2 : (B # P) ! E is simply the second projection; it takeshf; ei to

e. The uniti (P) : E ! (B # P) takes an objecteof E to the objecthidP (e) ; ei (below,

on the left) and� 1(P) : 1(B#P ) ) i (P) � � 2 induces a functor(B # P) ! 2 t (B # P)
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which takes an objecthf; ei of (B # P) to the morphism depicted in below on the

right.

e

P(e) P(e)

P

e

e

b0 b1

b1 b1

P

P
f

f

Also, the functors�� 2 and the multiplicationm(P) are given by the following actions:

e

b0 b1 b2f g

7!

e

b1 b2g

;

e

b0 b1 b2f g

7!

e

b0 b2g� f

Finally, Observe that functors@0(i (P)) : (B # P) ! (B # @0(P)) (on the left) and

i (@0(P)) : (B # p) ! (B # @0(P)) (on the right) are given as follows:

e

b0 b1f

7!

e

b0 b1 b1f

;

e

b0 b1f

7!

e

b0 b0 b1f

The counit ofi@0(P) a m is illustrated on the left hand side in below, and the mate

2-morphism� appears as a natural transformations where� P : i (@0(P)) ) @0(i (P)),

which is the whiskering of this counit with@0(i (P)), is illustrated on the right hand

side.

e

e

b0 b0 b2

b0 b1 b1

P

P
gf

f

f g

g=1
 

e

e

b0 b0 b1

b0 b1 b1

P

P
f

f

f
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Now going back to the case of a general 2-categoryK, we would like to see

what a pseudo algebraa: @0(p) ! p in K=B looks like. The fact that a is a

morphism in K=B provides us with a morphism a which makes the diagram

(B # p) E

B
@0 (p)

a

p
(2.29)

commute. Moreover, being a co-KZ-monad,@0 generates an adjunctioni (p) a a

whose unit is the invertible 2-morphism � : 1 ) a � i (p) by remark 2.4.10. The

counit " of this adjunction is given by @0(� � 1) � (@0a � � p). Whiskering with � 2

yields a 2-morphism � 2 � " : a ) � 2 Observe thatp � (� 2 � " ) = � p and p � � = id p.

E (B # p) E

B

1

i (p)

p

a

� 2

@0 (p)

p

�

� 2 �"

(2.30)

The example below shows that a pseudo algebra of@0 : Cat=B ! Cat=B is

exactly a cloven Grothendieck �brations.

EXAMPLE2.4.16. Let a: @0(P) ! P be a pseudo algebra for the 2-monad@0. By

commutativity of diagram(2.29) we know thatP(ahf; ei ) = dom( f ) (below, the

left diagram). As observed in above, we get an invertible lift� (e) of identity idP (e)

(below, the right diagram).

ahf; ei

b0 b1

P

f

e ahidP (e) ; ei

p(e) P(e)

P

� (e)

P

In addition, the invertible natural transformation� (P) : a � @0(a) ) a � m(P) pro-

vides us with an isomorphismahf; ahg; eii
�=�! ahgf; ei , for any pair of composable

morphismsf : b0 ! b1 andg: b1 ! b2 in B, and anye in E over b2. Notice that
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@0(a) � @0(i (P))hf; ei = hf; ahidb1 ; eii , and@0(� )hf; ei may be illustrated as in be-

low.
e

ahidb1 ; ei

b0 b1

b0 b1

P

� (e)

P
f

f

(2.31)

Now, the coherence conditions of weak unicity and weak associativity of A.10.1,

translated to the special situation of this example, are expressed by the commutativity

of diagrams of morphisms inE.

ahf; ei ahf; ahidb1 ; eii

ahidb0 ; ahf; eii ahf; ei

� a

a@0 (� )

id � @0( i ( P ))

� i ( @0( P ))

ahf; ahg;ahh; eiii ahgf; ahh; eii

ahf; ahhg; eii ahhgf; ei

� @2
0 ( a)

a� a � m ( @0( P ))

� @0( m ( P ))

More speci�cally, the above commutativities occur in the �breEb0 . Finally, we are

interested in calculating the counit of adjunctioni (P) a a. The counit, computed in

the diagram(2.25) , gives us the liftef = � 2 � " = � 2 � (@0� � 1 � (@0a � � P )) of f . The

picture below illustrates the counit" : i (P) � a ) Id(B#P ) at the componenthf; ei .

ahf; ei

ahidb1 ; ei

b0 b0 e

b0 b1

b0 b1

P

� 2 (@0a(� ))

P

� 2 (@0 � � 1 )

f

P
f

f

It remains to prove thatef is P-cartesian. One couldan try to prove this directly.

However, we prove this in a more general setting in Example 2.4.21.

REMARK 2.4.17. Instead of notationahidP (e) ; ei , which has certain redundant data,

we shall from now on use the notationahei .
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2.4.3 Chevalley criterion

Supposep is a object in K=B. Recall the situation in De�nition 2.4.1: we have

a unique morphism � 1 : (E # E) ! (B # p) satisfying @0(p)� 1 = d0 � (p # p),

� 2� 1 = e1, and � p � � 1 = p � � E .

The lemma below will be crucial in certain calculations of 2-morphisms in the

proof of proposition 2.4.19. Recall that � 0 : iE � e0 ) 1(E #E ) is the counit of

adjunction iE a e0, and � 1 : 1(E #E ) ) iE � e1 is the unit of adjunction e1 a iE

(Remark 1.9.36). Also, � 1(p) is the unit of � 2 a i (p) (Proposition 2.4.14).

Furthermore, by the triangle equations of adjunction, we have e0 � � 0 = id e0 ,

e1 � � 1 = id e1 , and � 2� 1(p) = id � 2 .

In K = Cat, we have � 0(u) = hid; ui : ide0 ! u, � 1(u) = hu; idi : u ! ide1 , and

� 1(p)hf; ei = hf; idei .

LEMMA 2.4.18. In the situation above, we have

(i) � 1iE = i (p)

(ii) � 2� 1 � � 0 = � E

(iii) @0(p)� 1 � � 0 = id @0 (p)� 1

(iv) � 1(p) � � 1 = � 1 � � 1, which is best expressed diagrammatically:

(E # E) (B # p)
E

(B # p)� 1 (p)*
� 1

� 2 i (p)

1

= (E # E)
E

(E # E) (B # p)� 1*

e1 i E

1

� 1

(v) (� 1(p) � � 1) � (� 1 � � 0) = i (p) � � E

Proof. The �rst of these equations holds due to the facts that � 2� 1iE = e1iE =

id = � 2i (p), @0(p)� 1iE = pe0iE = p = @0i (p), and the 2-dimensional universal
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property of comma cone (B # p). The second equation holds sincee1 � � 0 = � E .

For the third one observe that @0(p)� 1 � � 0 = pe0 � � 0 = id pe0 = id @0 (p)� 1 . Using

the equations � 2� 1 � � 1 = id e1 and @0(p)� 1 � � 1 = p � � E , we get the following

equations.
� 2 � � 1(p) � � 1 = id � 2 � 1 = id e1 = � 2 � � 1 � � 1

@0(p) � � 1(p) � � 1 = � p � � 1 = p � � E = @0(p)� 1 � � 1

Hence, by the 2-dimensional universal property of(B # p) we obtain � 1(p) � � 1 =

� 1 � � 1. The last equation follows from the penultimate one and the �rst one:

(� 1(p) � � 1) � (� 1 � � 0) = � 1 � (� 1 � � 0) = � 1 � iE � � E = i (p) � � E

PROPOSITION2.4.19. Given morphism� 1 : (E # E) ! (B # p) as de�ned before,

we have a bijection

8
<

:
pseudo-algebras

(a; �; � ) of @0 atp

9
=

;
'

8
<

:
Chevalley adjunctions

� 1 a � 1

9
=

;

Moreover, the pseudo algebra is normal (i.e.� is identity.) if and only if the counit

" : � 1 � � 1 ) 1(B #p) is the identity 2-morphism.

A major part of the proof we are about to give is present in [Str74] in a much

denser form. However the last statement of the proposition and its proof is

new.

Proof. Given a pseudo algebraha: @0(p) ! p; �; � i , we construct a right adjoint

� 1 and show that the counit of adjunction is isomorphism. Note that the

unit � 1(p) of adjunction � 2 a i (p) de�nes a unique morphism k : (B # p) !
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2 t (B # p) with d0
0k = 1 (B #p) and d0

1k = i (p)� 2, and � 0 � k = � 1(p). De�ne

� 1 : = ( a # a) � k.

2 t (B # p)

(B # p) E

(E # E) (B # p)

(B # p) E

(a#a)

d0
i

� 1 � 1

� 2

k

� 1

i (p)

ei

� 1
a

� 2

(i = 1; 2)

We note that

e0� 1 = e0(a # a)k { de�nition of � 1}

= ad0
0k { de�nition of (a # a)}

= a { de�nition of k}

(2.32)

This establishes that� 1 is indeed a morphism in K=B from pe0 to @0(p), since

pe0� 1 = pa = @0(p). Also, a diagram chase shows that the front square in the

diagram above commutes:

� 2� 1� 1 = e1� 1 { de�nition of � 1}

= e1(a # a)k { de�nition of � 1}

= ad0
1k { de�nition of (a # a)}

= ai (p)� 2 { de�nition of k} (2.33)

We also note that

@0(p)� 1� 1 = d0(p # p)� 1 = pe0� 1 = pa = @0(p)

� p � (� 1� 1) = p � � E � � 1 = pa � � 0
(B #p) � k = pa � � 1(p) = @0(p) � � 1(p) = � p

(2.34)

Equations (2.33) and (2.34) , and the de�nition of @0(ai (p)) altogether prove

that

� 1 � � 1 = @0(ai (p)) = @0(a) � @0(i (p))
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and we propose the counit " : � 1 � � 1 ) 1 to be given by @0(� � 1) which is

invertible. 12 This guarantees that the counit lives in K=B since p� 2 � " =

p� 2 � @0(� � 1) = p � � � 1 � � 2 = id p� 2 , and @0(p) � " = @0(p) � @0(� � 1) = id @0 (p) .

Moreover, the de�nition of @0(� ) implies that � p � " = � p. Now, we propose the

unit; de�ne the 2-morphism � : 1 ) � 1 � � 1 to be the unique 2-morphism with

e0 � � = ( a� 1 � � 0) � (� � e0)

e1 � � = � � e1

(2.35)

Note that the vertical composition of 2-morphisms in (2.35) is possible since

ai (p)e0 = a� 1iE e0 which holds in virtue of Lemma 2.4.18. Of course in order

for equations above to de�ne the a 2-morphism � at all, e0 � � and e1 � � must

be compatible. The compatibility is checked in below.

(� E � � 1� 1) � (e0 � � ) = ( � E � (a # a)k� 1) � (e0 � � ) { de�nition of � 1}

= ( a� 0
(B #p) � k� 1) � (e0 � � ) { de�nition of (a # a)}

= ( a� 1(p) � � 1) � (e0� ) { de�nition of k}

= ( a� 1(p) � � 1) � (a� 1 � � 0) � (� � e0) { substituting e0 � � }

= a(( � 1(p) � � 1) � (� 1 � � 0)) � (� � e0) { factoring out a}

= ( ai (p) � � E ) � (� � e0) { Lemma 2.4.18}

= ( � � e1) � � E { exchange rule}

= ( e1 � � ) � � E { substituting e1 � � }

Perhaps, it is illuminating to see what the unit � , constructed in above, looks

like in the case of K = Cat. Indeed, for a morphism f : e0 ! e1 in (E # E), � (f )

is given as follows:

e1 ahe1i

e0 ahp(f ); e1iahe0i

f

�e 0 (f ) a� 1 � 0 (f )

�e 1 (f )

� 1 � 1 (f )

12When K = Cat, @0(� ) is illustrated in diagram (2.31).
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Here is a proof that the unit � and counit " satisfy triangle equations of

adjunction. We �rst show that � 1�� 0�� 1 = @0(a)�� p, expressed diagrammatically

as

(B # p) (E # E)
E

(E # E)� 0+ (B # p)
� 1

e0 i E

1

� 1
= @0(p) @2

0(p) @0(p)

@0 (i (p))

i @0 ( p)

� p

@0 (a)

First we verify that the domain and codomain of the involved 2-morphisms

match. Indeed, � 1iE e0� 1 = i (p)e0� 1 = i (p)e0� 1 = @0(a)i (@0(p)), and as we

observed earlier � 1 � � 1 = @0(a)@0(i (p)). Now, using Lemma 2.4.18, observe

that

� 2 � (� 1 � � 0 � � 1) = � E � � 1 = a� 1(p) = a�� 2 � � p = � 2 � @0(a) � � p

@0(p) � (� 1 � � 0 � � 1) = id pe0 �� 1 = id = @2
0(p) � � p = @0(p)@0(a) � � p

To prove the �rst identity, we notice that

@0(p)�[(" �� 1)� (� 1�� )] = [ @0(p)�(" �� 1)]� [@0(p)�(� 1�� )] = (id @0 (p) � 1)� (pe0�� ) = id @0 (p)� 1

where the last identity follows from the fact that pe0 � � = id pe0 = id R(p)� 1 .

Similarly, we have

� 2 � [(� � � 1) � (� 1 � � )] = ( � � 1 � � 2� 1) � (e1 � � ) = ( � � 1 � e1) � (� � e1) = id � 2 � 1

Therefore, (� � � 1) � (� 1 � � ) = id � 1 . To prove the second identity, (� 1 � � ) � (� � � 1) =

id� 1 , we �rst prove the following lemma: Using lemma above we have,

e0 � [(� 1 � � ) � (� � � 1)] = ( a � � ) � ((a� 1� 0) � (�e0)) � � 1

= ( a � R(� � 1)) � (aR(a) � � p) � (� a)

= ( � � 1a) � (� a)

= id e0 � 1
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The penultimate equality comes from equality of pasting diagrams 2.26. Simi-

larly, using the fact that e1� 1 = ai(p)d̂1, we get

e1 � [(� 1 � � ) � (� � � 1)] = ( ai (p)d̂1 � � ) � (� �e1� 1) = ( ai (p)� � 1d̂1) � (� �ai (p)d̂1) = id e1 � 1

The last identity is by the exchange law of horizontal-vertical composition of

2-morphisms. From these two equations we deduce the second adjunction

identity.

Conversely, suppose we are given a Chevalley adjunction, that is to say a right

adjunction � 1 of � 1 over B :

B

(E # E) (B # p)?
� 1

� 1
@0(p)pe0

� "

(2.36)

such that the counit " is an isomorphism, @0(p)� 1 = pe0, pe0� 1 = @0(p),

@0(p) �" = id @0 (p) , and pe0 � � = id pe0 . We de�ne the pseudo-algebraa: (B # p) !

E as the compositee0� 1. Note that pa = pe0� 1 = @0(p)� 1� 1 = @0(p). We

proposee1 � � � iE for � : 1 ) ai(p). First we prove that � � iE is invertible and

thence � is invertible. We have the following pasting equality13:

(E # E) (E # E) (E # E)

E (B # p) (B # p) E

1

� 1
e1� 1

1

i E

i (p) 1

� 1

� 2

i E
� 1+� +

"+

=

(E # E) (E # E)

E E

1

i E

1

i Eid +

13This equality in fact lies over B . Also, all of triangles and squares without a designated
2-morphism commute.
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E (E # E) (E # E)

(B # p) (B # p) (B # p) (E # E)

� 1 � 1 i E

i (p)

1

� 1

i E e1
� 1

1� 1

1

1

i (p)� 2

� 1

� 1

� (p)

" � =

E

(E # E)

� 1 i (p) � 1 i (p)

The �rst pasting equality is deduced from the adjunction triangle equalities

and the second one is deduced from the Lemma 2.4.18. Therefore,

(iE � 2" � i (p)) � (� 1 � � 1� 1iE ) � (� � iE ) = id i E

(� � iE ) � (iE � 2 � " � i (p)) � (� 1 � � 1� 1iE ) = id � 1 i (p)

This proves that � � iE is indeed an iso 2-morphism. To be more explicit,

whiskering with e1 unveils the inverse of � :

� � 1 = ( e1iE � 2 � " � i (p)) � (e1 � � 1 � � 1� 1iE ) = � 2 � " � i (p)

Indeed, � � 1 is the counit of composite adjunction in below:

E ? (E # E) ? (B # p) ? E

i E � 1

e0 � 1

� 2

i (p)

It is straightforward to show that � � 1 satis�es the pasting equality of diagram

(2.26). So, Lemma 2.4.12 completes the proof.

REMARK2.4.20. Notice that we have proved that� = e1 � � � iE is invertible regard-

less of invertibility of" .

EXAMPLE2.4.21. We now return to prove our promise at the end of Example 2.4.16.

We would like to show that~f , obtained by whiskering� 2 with counit ofi (P) a a, is

indeed cartesian. Here, we appeal to the bijection

Hom(B#P )(� 1(g); hf; e1i ) �= Hom(E#E)(g;� 1hf; e1i )
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natural ing: d0 ! d1 in (E # E) andhe1; f i in (B # P). This bijection states that any

diagram of the form on the left hand side, where the square in base commutes and

u1 lies aboveh1, can be extended to the diagram on the right hand side via a unique

morphismfh0.

d1

e1

P(d0) P(d1)

b0 b1

P

u1

P
P (g)

h0 h1

f

 

d0 d1

ahe1; f i ahe1i e1

P(d0) P(d1)

b0 b1 b1

g

eh0

u1

� � 1
e1

h0
f

Takingg to be identity we obtain the usual condition which expresses cartesian prop-

erty of lift ~f . Also, one can easily show that unique morphismfh0 overh0 is calcu-

lated by the expression(e0� 1hh0; h1; ki ) � (a� 1� 0(g)) � (�e0(g)).

We have the following bijections:

8
<

:
cleavages

of p

9
=

;
�=

8
<

:
pseudo algebras

(a; �; � ) of R at p

9
=

;
�=

8
<

:
right adjoints of � 1

with isomorphism counit

9
=

;

It follows that any two cleavages of p are isomorphic in a unique way.

CONSTRUCTION2.4.22. The situation inCat can be encapsulated as follows: The

forgetful 2-functorU : clvFib(B) ! Cat=B is 2-monadic: thefree �bration of

a functorP : E ! B is the �bration @0(p) : (B # p) ! B . In general, a cleavage

(aka �bration structure) onP is uniquely (in fact unique up to unique isomorphism)

determined by a pseudo algebra structure for 2-monad@0 = UF. Strict algebra

structures of@0 correspond to normal splitting �bration structures onP.

clvFib(B)

Cat=B

a UF

@0

We also note that for a categoryB the domain functordom: (B # B) ! B is

the free Grothendieck �bration on identity functor1: B ! B, that is dom =
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@0(Id) . The situation above generalizes 1-categorical case where for anS-internal

categoryC = ( C1 � C0), the forgetful functordFib(C) ! S=C0 taking( : X !

C0; � : X  � d1 C1 ! X ) to  is monadic and the category of discrete �brations is

the category of algebras for the corresponding monad.

2.5 Fibrational objects for 2-functors

Our discussion of the Johnstone criterion in §2.6 will involve a use of cartesian

morphisms and 2-morphisms for a 2-functor, and the present section discusses

those. It is important to note that, although our applications are for 2-functors

between 2-categories, the de�nitions we use are the ones appropriate to

bicategories.

[Her99] generalizes the notion of �bration to strict 2-functors between strict

2-categories. His archetypal example of strict 2-�bration is the 2-category

Fib of Grothendieck �brations, �bred over the 2-category Cat of categories

via the codomain functor cod : Fib ! Cat. This result can be generalized

to a 2-�bration cod : Fib(K) ! K where K is a 2-category andFib(K) is the

2-category of internal Chevalley-style �brations in K. Later [Bak12] in his

talk, and [Buc14] in his paper developed these ideas to de�ne �bration of

bicategories. Bakovic even de�ned a notion of �bration internal to general tri-

categories and proved that �brations of bicategories are the internal �brations

in the tricategory Hom .

Borrowing the notions of cartesian 1-morphisms and 2-morphisms from their

work, we reformulate Johnstone (op)�brations in terms of existence of cartesian

lifts of 1-morphisms and 2-morphisms with respect to the codomain 2-functor.

This reformulation will be essential in giving a concise proof of our main result

in Chapter 4. Johnstone's de�nition is quite involved and this reformulation

effectively organizes the data of certain iso 2-morphisms as part of structure

of 1-morphisms in the 2-category GTop of “Grothendieck toposes over varying

base”. This approach simultaneously makes it fairly painless to mix bounded

and unbounded geometric morphisms. It uses the 2-functorcod to ETop

(§1.6), so that the �bre GTop(S ) is equivalent to BTop/ S . Our formulation
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uses the cartesian 1-morphisms and 2-morphisms for this 2-functor, and we

review the theory of those, in its bicategorical form.

We introduced the display 2-categoryKD and its `upstairs-downstairs' notation.

In this chapter we shall denote a chosen bipullback of a bicarrable morphism

x : x ! x in K by

f � x x

y x

f

f � x x

f

H
f +

where the 2-morphism
H
f is an iso 2-morphism.

DEFINITION 2.5.1. SupposeP : X ! B is a 2-functor.

(i) A 1-morphismf : y ! x in X is cartesian with respect toP whenever for

each objectw in X the following commuting square is a bipullback diagram in

2-categoryCat of categories.

X(w; y) X(w; x)

B (Pw; Py) B (Pw; Px)

f �

Pw;xPw;y

P (f ) �

�=

This amounts to requiring that, for every objectw, the functor

hPw;y ; f � i : X(w; y) ! P(f )� #�= Pw;x

should be an equivalence of categories, where the category on the right is the

isocomma. (Note that the image ofX(w; y) has identities in the squares, not

isos.)

(ii) A 2-morphism� : f ) g: y ! x in X is cartesian if it is cartesian as a

1-morphism with respect to the functorPyx : X(y; x) ! B (Py; Px).
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The following lemma, which proves certain immediate results about cartesian

1-morphisms and 2-morphisms, will be handy in the proof of Proposition 2.6.10.

The statements are similar to the case of 1-categorical cartesian morphisms

(e.g. in the de�nition of Grothendieck �brations) with the appropriate weak-

ening of equalities by isomorphisms and isomorphisms by equivalences. They

follow straightforwardly from the de�nition above, however for more details

see [Buc14]. In what follows, in keeping with the nomenclature of 2.3.1, we

regard vertical 1-morphisms (resp. vertical 2-morphisms) as those 1-morphisms

(resp. 2-morphisms) in X which are mapped to identity 1-morphisms (resp.

2-morphisms) in B under P.

LEMMA 2.5.2. SupposeP : X ! B is a 2-functor between 2-categories.

(i) Cartesian 1-morphisms (with respect toP) are closed under composition and

cartesian 2-morphisms are closed under vertical composition.

(ii) Supposek : w ! y andf : y ! x are 1-morphisms inX . If f andfk are

cartesian thenk is cartesian. The same is true with 2-morphisms and their

vertical composition.

(iii) Identity 1-morphisms and identity 2-morphisms are cartesian.

(iv) Any equivalence 1-morphism is cartesian.

(v) Any iso 2-morphism is cartesian.

(vi) Any vertical cartesian 2-morphism is an iso 2-morphism.

(vii) Cartesian 1-morphisms are closed under isomorphisms: iff �= g then f is

cartesian if and only ifg is cartesian.

REMARK 2.5.3. We unwind the essential surjectivity and fully faithfulness condi-

tions on the functorhPw;y ; f � i in the de�nition above to give a more explicit and

elementary description of cartesian 1-morphisms. A 1-morphismf : y ! x in X is

P-cartesian if and only if the following conditions hold.
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(i) For any 1-morphismsg: w ! x andh: P(w) ! P(y) and any iso-2-morphism

� : P f � h ) Pg, there exist a 1-morphismh and iso-2-morphisms� : P(h) )

h and� : fh ) g such thatP(� ) = � � (P(f ) � � ). In this situation we call

(h; � ) aweak lift of h. If � is the identity 2-morphism then we simply callh a

lift of h.

(ii) Given 1-morphismsh; h0: w � y, and 2-morphisms� : P(h) ) P(h0) and

� : fh ) fh 0 satisfyingP(f ) � � = P(� ), there exists a unique 2-morphism

� : h ) h0such thatf � � = � andP(� ) = � .

w

y x

h

g

f

Pw

Py Px
Ph

h

Pg

P f

�

P

�

�

w

y x

h
h0 fh

fh 0

�

�

f

� 0

Pw

Py Px

P(h)
P(h0) P(fh )

P(fh 0)

P f

�

P �

P

(2.37)

Also, in elementary terms, a 2-morphism � : f 0 ) f 1 : y � x is cartesian iff

for any given 1-morphism e: y ! x and any 2-morphisms � : e ) f 1 and

 : P(f 0) ) P(e) with P(� ) = P(� ) �  , there exists a unique 2-morphism

over  such that � = � �  .
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�

�
��

f 0

%%

f 1

yy

�
5=

 19 �
%-

y

x

7!

�

�
��

P f 0

%%

P f 1

yy

P �
5=

 19 P �
%-

Py

Px

REMARK 2.5.4. De�nition 2.5.1 may at �rst sight seem a bit daunting. Nonetheless

the idea behind it is simple; We often think ofX as bicategory overB with richer

structures (in practice often as a �bred bicategory). In this situation,f : y ! x being

cartesian in means that we can reduce the problem of lifting of any 1-morphismg

(with same codomain asf ) along f (up to an iso 2-morphism) to the problem of

lifting of P(g) along P(f ) in B (up to an iso 2-morphism). The latter is easier

to verify sinceB is a poorer category thanX. The second part of de�nition says

that we also have the lifting of 2-morphisms alongf and the lifted 2-morphisms are

coherent with iso-2-morphisms of lifting structure. This implies the solution to the

lifting problem is unique up to a (unique) coherent iso 2-morphism.

REMARK 2.5.5. Note thatf : y ! x beingP-cartesian for a 2-functorP does not

imply f is cartesian with respect to the underlying functorjjPjj
1

of P, since the lifts

in the 2-categoryX exists only up to an iso 2-morphisms. Howeverf is cartesian in

the classifying category ofX (Construction 1.4.4).

DEFINITION 2.5.6. Let P : X ! B be a 2-functor. We de�ne an objecte of X to be

�brational iff

(B1) everyf : b0 ! b= P(e) has a cartesian lift,

(B2) for every objecte0 in X, the functor

Pe0;e : X(e0; e) ! B (P(e0); P(e))

is a Grothendieck �bration of categories, and

(B3) cartesian 2-morphisms inX between morphisms with common codomaineare

closed under whiskering on the left with any morphism.
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P is a 2-�bration if every object of X is �brational. It is also noteworthy that

conditions (B2) and (B3) together make the 2-functor P� ;e : Xop ! (Cat#Cat)

lift to P� ;e : Xop ! Fib for every object e of X.

REMARK2.5.7. Our de�nition of �bration of bicategories differs from [Buc14, Def-

inition 3.1.5] in only one criterion: the latter requires the whiskeringon both sides

to preserve cartesian 2-morphisms. The main motivation behind this is to achieve

Grothendieck construction on bicategories. Since in this chapter and the rest of this

thesis we have no use of such construction we only suf�ce to the weaker version of

our de�nition. Incidentally, our weaker condition also appears in [Her99] which is

arguably the �rst time a de�nition for the concept of 2-�bration14 was ever proposed.

PROPOSITION2.5.8. A morphism inKD is cod-cartesian if and only if it is a bip-

ullback square inK.

y x

y x

y x

H
f +

f

y

f

x

f

cod

(2.38)

Before giving the proof there is one step we take to simplify the proof.

LEMMA 2.5.9. Supposeh: w ! y is a morphism inK. Any weak lift (h0; � ) of

h w.r.t. cod can be replaced by a lifth in which � is replaced by the identity 2-

morphism. Therefore, conditions (i) and (ii) in Remark 2.5.3 can be rephrased to

simpler conditions in which� is the identity 2-morphism.

14Although a strict de�nition unlike our case!
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Proof. De�ne h = h0, and
H
h = ( � � w)�

H
h0 :

w y

w y

H
h0 +

h0

h

h0

w y

�

Then h = hh;
H
h ; hi is indeed a lift of h. Moreover, if � 0 is a lift of 2-morphism

� : f � h ) g as in part (i) of Remark 2.5.3, then obviously � 0 = � � (f � � ),

and it follows that � = ( �; � ) is a 2-morphism in KD from f � h to g which lies

over � .

Proof of Proposition 2.5.8.We �rst prove the `only if' part. Suppose that

f : y ! x is a cartesian 1-morphism in KD . For each objectc of K, let us

write WCone(c; x; f ) for the category of weighted cones (in the pseudo- sense)

from c to the opspan (x; f ), in other words pairs of 1-morphisms g: c ! x

and h: c ! y as in diagram below, and equipped with an iso 2-morphism
H
g : x � g ) f � h. We have chosen the notation so that if we de�ne g = f � h,

and if we allow c also to denote the identity on c as object inKD , then g: c ! x

is a 1-morphism in KD .

Then for each c we have a functor Fc : K(c;y) ! WCone(c; x; f ), given by

h 7! (f � h; y � h), with the iso 2-morphism got by whiskering
H
f , and we must

show that eachFc is an equivalence of categories.

First we deal with essential surjectivity. Since f is cartesian we can lift h

and the identity 2-morphism f � h = g to a 1-morphism h: c ! y in KD with
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isomorphism � = ( �; id) : f � h ) g, where we have used Lemma 2.5.9 to obtain

h as a lift rather than a weak lift.

c

c

x

y x

y

H
f +

H
h +

fh

g

fh

xy

�

To prove that Fc is full and faithful, take any 1-morphisms h and h
0
in K. In

the diagram above we can de�ne h = y � h and
H
h the identity 2-morphism on

h to get a 1-morphism h: c ! y in KD , and similarly h0: c ! y.

Now suppose we have 2-morphisms� : yh ) yh
0
and � : f h ) f h

0
such that

they form a weighted cone over f and x, i.e. they satisfy compatibility equation

(f � � ) � (
H
f � h) = (

H
f � h

0
) � (x � � ).

If we de�ne � = f � � , then that equation tells us that � = ( �; � ) is a 2-morphism

from fh to fh 0 in KD . Now the cartesian property tells us that there is a unique

� : h ! h0 over � such that f � � = � , and this gives us the unique� : h ) h
0

that we require for Fc to be full and faithful.

Conversely, suppose thatf and y exhibit y as the bipullback of f and x

as illustrated in diagram (2.38) . We show that f : y ! x is a cartesian 1-

morphism in KD , in other words that, for every w, the functor Gw = hPw;y ; f � i

in De�nition 2.5.1 is an equivalence.
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To prove essential surjectivity, assume that a 1-morphismg: w ! x in KD is

given together with a 1-morphism h: w ! y and an iso 2-morphism� : f h ) g

in K.

w y x

w y x

H
f +

H
h +

� +
h f

w

f

y x

g

g

h

The iso 2-morphism  := ( � � 1 � w)�
H
g : xg ) gw ) f hw factors through

the bipullback 2-morphism with apex y, and therefore it yields a 1-morphism

h: w ! y and iso 2-morphisms
H
h : y � h ) h � w (making a 1-morphism

h: w ! y in KD ) and � : f � h ) g such that
H
f and

H
h paste to give � (x � � ).

From this we observe thath := hh;
H
h ; hi is a lift of h and � := ( �; � ) is an iso

2-morphism from fh to g over � as required for cartesianness.

To show that Gw is full and faithful, suppose we have 1-morphismsh; h0: w !

y. If � : h ) h0 and � : fh ) fh 0 with f � � = � , we must show that there is a

unique � : h ) h0 over � with f � � = � .

We have 2-morphisms� : f h ) f h
0

� = (
H
h 0� 1)( � � w)(

H
h ) : yh ) hw ) h0w ) yh,

and moreover

(
H
f � h

0
)(x � � ) = ( f �

H
h 0� 1)( fh 0)H(x � � ) = ( f �

H
h 0� 1)( � � x)( fh )H = ( f � � )(

H
f � h).

It then follows from the bipullback property that we have a unique � : h ) h
0

such that y � � = � � w (so we have a 2-morphism� : h ) h0over � ) and f � � = � ,

so f � � = � as required.
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2.6 Johnstone-style �brations refashioned

Another de�nition of (op)�bration �rst appeared in [Joh93]; see also [Joh02a,

B4.4.1] for more discussion. Johnstone's de�nition does not require strictness

of the 2-category nor the existence of comma objects. Indeed, it is most

suitable for weak 2-categories such as various 2-categories of toposes where

we do not expect diagrams of 1-morphisms to commute strictly. Moreover,

although this de�nition assumes the existence of bipullbacks, in fact we only

need bipullbacks of the class of 1-morphisms one would like to de�ne as

(op)�brations. This enables us to generalize some of Johnstone's results from

BTop (where all bipullbacks exist) to ETop (where bounded 1-morphisms are

bicarrable).

We have adjusted axiom (i) (lift of identity) in Johnstone's de�nition so that

the (op)�brations we get have the apposite weak properties. That is to say,

unlike Johnstone's de�nition, we require lift of identity to be isomorphic,

rather than equal to identity.

Johnstone's de�nition is rather complicated, as it has to deal with coherence

issues. We have found a somewhat simpler formulation, so we shall �rst look at

that. It is simpler notationally, in that it uses single symbols to describe two lev-

els of structure, “downstairs” and “upstairs” (See Construction 1.4.12). More

signi�cantly, it is also simpler structurally in that it doesn't assume canonical

bipullbacks and then describe the coherences between them. Instead it bor-

rows from the techniques and results of last section on use of cartesian liftings

as bipullbacks. This enables us to show (Proposition 2.6.10) that the Johnstone

criterion is equivalent to the �brational property of De�nition 2.5.6.

DEFINITION 2.6.1. SupposeK is a 2-category. A 1-morphismx : x ! x in K is a

Johnstone-style �bration if the following two conditions hold.

(i) x is bicarrable.

(ii) Any 2-morphism� : f ) g: y � x has a lifting 1-morphismr � : xg !

x f , and a lifting 2-morphism� : f � r � ) g, together with an invertible 2-
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morphism
H
r � : x f � r � ) xg, wherex f : x f ! x f = y andxg : xg ! xg = y

are respectively bipullbacks ofx alongf andg.

xg x

x f x

y x

y x

r �

g

xg

x
f

x f

x

�

H
r � + g

f

�

(2.39)

To proceed further in completing the de�nition, we �rst simplify this by takingD to

be the class of all bicarrable 1-morphisms inK and working inKD . (We could equally

well work with D any class of display 1-morphisms inK, as in Construction 1.4.12.)

Thus we have cartesian 1-morphismsf : x f ! x andg: xg ! x, and avertical

1-morphismr � : xg ! x f (xg = y = x f , andr � is the identity).

The data is subject to the following axioms:

(J1) � = ( �; � ) make a 2-morphism inKD of the form wherer � is vertical andf

andg are cartesian.

xg x

x f x

r �

g

f

� (2.40)

(J2) Suppose we have two composable 2-morphisms� : f ) g and� : g ) h in K

wheref ; g; h : y ! x; we write := � � � . Let �; �; ; r � ; r � ; r  be as above.
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Then there exists a vertical iso 2-morphism� �;� : r � � r �
�= r  in KD such that

� � (� � r � ) =  � (f � � �;� ).

xh

xg

x f x

r �

r 

h

r � g

f

�

�

� �;�

We can phrase this condition by saying that� provides a vertical iso 2-morphism

between the composition of lifts and the lift of composition.

(J3) For any 1-morphismf : y ! x the lift of the identity 2-morphism onf is

canonically isomorphic to the identity 2-morphism on the liftf via a vertical

iso 2-morphism� f : 1x f ) r id f in KD such thatf � � � 1
f is the lift of identity

2-morphismidf .
x f

x f x

1
fr id

f

� f

(J4) The lift of the whiskering of any 2-morphism� : f ) g: y � x with any

1-morphismk : z ! y is isomorphic, via vertical iso 2-morphisms, to the

whiskering of the lifts.

In the following diagram, the right hand square is as usual,f 0andg0are carte-

sian lifts of f k andgk, and the 1-morphismskf andkg are overk and the

vertical iso 2-morphisms� and� are got from cartesianness off andg. Then

the condition is that there should be a vertical iso 2-morphism (overk) in the
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left hand square, which pastes with the others to give the lift� 0: f 0r � 0 ) g0of

� � k.

xg0 xg x

x f 0 x f x

r � 0

kg

g0

r �

g

kf

f 0

f

�=

�= �

�= �

�

(J5) Given any pair of vertical 1-morphismsv0 : y ! x f andv1 : y ! xg, any 2-

morphism� 0 : f � v0 ) g � v1 over� factors through� uniquely, that is there

exists a unique vertical 2-morphism� : v0 ) r � v1 such that the following

pasting diagrams are equal.

y x f

xg x

v1

v0

f

g

� 0 =

y x f

xg x

v1

v0

f

g

r �

�

�

REMARK 2.6.2. Dually, op�brations are de�ned by changing the direction ofr � .

For each� : f ) g, we require a 1-morphism̀� : x f ! xg and a 2-morphism

� : f ) g`� with the axioms modi�ed accordingly. The letters` andr used here

correspond to Street's 2-monads@1 and@0 in §2.4.2 (In Street's notation they areL

andR).

PROPOSITION2.6.3. A �bration p: E ! B is also an op�bration precisely when

every 2-morphism� induces an adjunctioǹ� a r � . In this situation we callp a

bi�bration .

Proof. The unit and counit of adjunction are respectively obtained by choosing

(1x f ; ` � ; � ) and (r � ; 1xg ; � ) for (v0; v1; � 0) in axiom ( J5) above. Conversely,

given the left adjoints ` � , the op�bration structure of p is exhibited by the

2.6 Johnstone-style �brations refashioned 177



composition of 2-morphism � � ` � : f r � ` � ) g`� and f � � � : f ) f r � ` � for each

2-morphism � : f ) g.

Both Chevalley-style �brations and Johnstone-style �brations can be con-

sidered as two �avours of the notion of representable �bration. For a mor-

phism p: E ! B in a 2-category K, consider the 2-natural transformation of

category-valued representable presheavesK(� ; p) : K(� ; E) ) K(� ; B). Then

we have:

• If K has comma objects, thenp is a Chevalley-style �bration in K iff

K(� ; p) is a Grothendieck �bration (in the sense of De�nition 2.3.7), i.e.

for any object X of K, K(X; P ) is a Grothendieck �bration of categories,

and K(X; p) ! .

• If p is bicarrable in K, then p is a Johnstone-style �bration in K iff K(� ; p)

is a weak �bration (in the sense of De�nition 2.3.41).

Now, we describe how Johnstone-style (op)�brations can be obtained from

Chevalley-style (op)�brations. If K has pullbacks of p, then these can be

considered the �bres of p. Suppose we have� : g ! f between B 0 and B.

Then by the representable de�nition � � f � p has a cartesian lift � 0: g0 ! p� f :

f � E E

B 0 B

p� f

g0

f � p p

f

g

� 0

�

(2.41)

g0 now gives us a morphism from f � E to g� E, in other words a morphism

between the �bres over f and g but in the opposite direction to that of � . This

brings us closer to the “indexed category” view of �brations, with 2-morphisms

between base points (f and g) lifting to maps between the �bres ( f � E and

g� E).

CONSTRUCTION2.6.4. In Propositions 2.3.14 and 2.3.42 we characterized the struc-

tures of Grothendieck �bration and Street �bration of categories respectively as the
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right inverse right adjoint and the fully faithful right adjoint to the induced functors

on slice categories. In the construction below, originally due to Johnstone in [Joh93],

we obtain the structure of Johnstone �brationx : x ! x in K astheunit semi-oplax

right 2-adjoint �x � of the 2-functor� x : K . x ! K . x (See Construction 1.4.13).

The basic idea here is that we consider the 2-morphism� : f ) g of K as morphism

h1; � i : g ! f in the lax slice 2-categoryK . x and� : f ) g of K as morphism

hr � ; � i : g ! f in the lax slice 2-categoryK . x. Out of the structure of �bra-

tion of x we construct a pseudo functor�x � : K . x ! K . x which takes object

f : a ! x to its bipullback alongx, i.e. f : x f ! x. Moreover, it takes the vertical

morphismh1; � i to hr � ; � i . Using the fact that in lax slices we have factorization

of 1-morphisms into vertical followed by strict morphisms, we de�ne�x � on general

morphisms ofK . x by the action below:

b a

x

h

g f

�
=

b b a

x

1

g
f h

h

p

�
=

7!

xg x fh x f

x

r �

g
�fh

h

f

�
�(=
�

Therefore,�x � hh; � i = hh � r � ; � � (� f ;h � r � i ). The action of�x � on 2-morphisms is

slightly more involved: given a 2-morphism� : hh; � i ) h h0; � 0i in the 2-category

K . x, we obtain the following 1,2-morphisms by the �bration property ofx.

x fh 0

xg x f x cod7��!

x fh

r (� 0)

r (� )

h0

fh 0

h

fh

fr (f � � )
�
�

1

==)
cf ��

==)

�=

�=

b

b a x

b

1

1

h0

f h0

h

f h

f1= �
=)

=

=

By pasting 2-morphismsf � � and� � 1
� 0;f �� we get a 2-morphismfhr (� ) ) fh 0r (� 0),

namely(f � � ) � (fh � � � 1
� 0;f �� ), and moreover, by cartesian property of morphismf ,

this 2-morphism uniquely factors throughf to a 2-morphismdf � � : hr (f � � ) ) h0,

shown in the diagram above. Pasting� � 1
� 0;f �� and df � � yields the desired 2-morphism

�x � (� ). Alternatively, by the 2-dimensional universal property of bipullback ofx f ,
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the 2-morphism�x � (� ) is uniquely determined by a pair of 2-morphisms�x � (� )0 and
�x � (� )1 depicted as

xg x

a x
f

x
x f �x � hh0; � 0i x f �x � hh; � i

f �x � hh0; � 0i

f �x � hh; � i
�x � (� )0

�x � (� )1

which furthermore satisfy the compatibility condition expressed by the commutativ-

ity of the diagram of 2-morphisms inK in below.

f x f �x � hh; � i f x f �x � hh0; � 0i

xf �x � hh; � i xf �x � hh0; � 0i

f � �x � (� )0

H
f � �x � hh;� i

H
f � �x � hh0;� 0i

x � �x � (� )1

= (2.42)

We propose�x � (� )0 and �x � (� )1 to be the dashed 2-morphisms which make the dia-

grams below commute.

x f x � hh; � i x f x � hh0; � 0i

hxg h0xg

H
r � �

H
h

�x � (� )0

H
r � �

H
h0=

� �xg

fh � r (f � � ) � r (� 0) fh 0 � r (� 0)

fh � r (� ) fh 0 � r (� 0)

f � x � hh; � i f � �x � hh0; � 0i

fh �� f � � ;� 0

(f �� )�r (� 0)

=

�= �=

x � (� )1

=

Note that
H
r � �

H
h and

H
r � �

H
h 0are invertible.15 It can be readily checked that�x � (� )0

and �x � (� )1 satisfy the compatibility condition of diagram(2.42) . Therefore, they

constitute a unique 2-morphism�x � (� ) : �x � hh; � i ) �x � hh0; � 0i with x f � �x � (� ) =
�x � (� )0 andf � �x � (� ) = �x � (� )1.

15The notation � is introduced in Construction 1.4.12.
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We now show the pseudo functoriality of�x � . Consider morphismshh; � i : g ) f

andhk; � i : f ) e in K . x. The �brational property ofx gives us the following

morphisms and vertical iso 2-morphisms.

x f

xg

xek

x fh

xekhxe

=

=
�=

�=

�=
hf

�x
� hh

; �
i

r � r(�
�

(�
�h

))
r �

hek

r � �h�x
� hk

; �
i

ke

�x
� hk

h; �
� (�

� h
)i

(kh)e

Since by de�nition, �x � (hk; � i � h h; � i ) = ( kh)e � r (� � (� � h)) , therefore, we have

�x � (hk; � i � h h; � i ) �= �x � hk; � i � �x � hh; � i

We have� � �x � (f : y ! x) = x � f , and the counit" of the 2-adjunction� x a �x �

is given at the componentf by hx f ;
H
f � 1i . For a morphismhh; � i g ! f in K . x,

we have a iso-square, on the left hand side below, inK . x, and the corresponding

diagram inK is drawn on the right hand side, where�̂ is � � (� h;f � r � ) and� h;f is

the canonical iso 2-morphism between cartesiancod-morphisms.

� x �x � (g) g

� x �x � (f ) f

hxg ;
H
g� 1 i

hh� r � ;�̂ i

hx f ;
H
f � 1 i

hh;� i(
H
r �

�
H
h

)�
1

xg y

x

x f

y0

H
f
(=

x��̂
( ==

xg

xg h

x fhr �

fxfg

(
H
r �

�
H

h
)

This proves the pseudo naturality of the counit" . The unit, however, is only lax

natural.
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REMARK 2.6.5. We presented the construction above in a manner that it is now

straightforward to see that the right adjoint pseudo functor�x � indeed factors through

KD . x whereD is the chosen class of display morphisms.

K . x ? K . x

KD . x cyl �= (K) . x
x � dom

� x

�x �

EXAMPLE2.6.6. Let's takeCat to be the 2-category of (small) categories, functors

and natural transformations. Here we show that a Johnstone �bration inCatis indeed

a weak �bration of categories (See §2.3.6). LetP : E ! B be a Johnstone �bration

in Cat. Let 1 be the terminal category,e 2 E and� : b ! Pea morphism inB. The

latter can be viewed as a natural transformation� : b ) Pe. The bipullbackEb has

as objects all pairshx 2 E; � : Px �= bi , and as morphisms all morphismsh: x ! x0

in E making the triangle

Px Px0

b
�

P h

� 0

commute. Similarly, the bipullback categoryEP e can be described. Notice that

he;idP ei is an object ofEP e. Applying r � to it yields an objectx in E with an

isomorphism� : Px �= b. Axiom (J1) impliesP(� ) = � � � . The 2-morphism�

is the lift of � and the axioms (J4) and (J5) state that this lift is cartesian. Axioms

(J2) and (J3) give coherence equations of lifts for identity and composition.

EXAMPLE 2.6.7. Let Poset be the 2-category of posets and monotone maps with

specialization order as 2-morphisms. There is (at most one) 2-morphism between

(monotone) mapsF; G: E � B wheneverF (e) � G(e) in B for everye 2 E. A

mapP : E ! B of posets is a Johnstone-style �bration iff

(i) for all pairs a; b 2 B with a � b and everye 2 E with P(e) = b there is a

canonical elementea 2 E with P(ea) = a andea � e,

(ii) ea is the largest element with property (i), and
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(iii) for all elementsc � b � a in B , and any elemente with F (e) = a, we have

(eb)c
= ec.

EXAMPLE2.6.8. SupposeB
f
�! D

g
 � C is an opspan in a 2-categoryK equipped

with bicomma objects and bipullbacks. We prove that �rst projection morphism

p:
�
f # g

�
! B of comma object is a �bration inK. We note that by takingf

to be identity morphism we obtain a bicategorical analogue of free �bration in 2-

categories (See 2.4.22). To see why, take arbitrary 1-morphismsh; k : A � B and

a 2-morphism� : h ) k. First, we construct 1-morphismr � and 2-morphism� as

shown in diagram below.

k�
�
f # g

�

h�
�
f # g

� �
f # g

�
C

A

A B D

r � k

pk

h

ph p

q

g

�

�= �
k

h

f

�

Bipullbacksh�
�
f # g

�
andk�

�
f # g

�
may be identi�ed with comma objects(f h) #

g and (f k) # g, respectively. We de�ne 2-morphism� : f hpk ) gqk to be the

following composite of 2-morphisms:

f hpk
f :� :pk +3fk pk

f �(
H
k) � 1

+3f pk � �k +3gqk

We invoke the universal property of comma object
�
f # g

�
to obtain a morphism

m: k�
�
f # g

�
!

�
f # g

�
corresponding to 2-morphism� , and iso 2-morphisms
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� 0 : hpk
�= pm and� 1 : qm �= qk in such a way that they make the following pasting

diagrams equal.

k�
�
f # g

�

f # g C

B D

m

hpk

qk

� 0

� 1

q

p g�

f

=

k�
�
f # g

�

C

B D

hpk

qk

g

�

f

Therefore we have� = ( g � � 1) � (� � m) � (f � � � 1
0 ). We can now usem and� � 1

0 and

universality of pullbackh�
�
f # g

�
to get our desired morphismr � : k�

�
f # g

�
!

h�
�
f # g

�
together with an iso 2-morphism

H
r � : ph � r �

�= pk . Additionally, we

obtain an iso 2-morphism� : h � r �
�= m.

k�
�
f # g

�

h� (f # g) f # g

A B

r �

pk

m

H
r � +

� *

h

ph pH
h +

h

Now, each ofm andk, when composed withp andq, yield a comma cone over span

hf ; D; gi , and moreover the resulting comma cones are compatible in the sense that

the following diagram commutes:

f pm f pk

gqm gqk

f :

�: m �: k

g:� 1
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where := (
H
k )� 1 � (� � pk) � � 0. Observe that(� � k) � (f �  ) = � � (f � � 0) =

(g� � 1) � (� � m). So there must be a unique 2-morphism� : m ) k such thatp� � = 

andq � � = � 1. � := � � � is indeed a lift of� which completes the ingredients of

�bration p.

Our goal now (Proposition 2.6.10) is to show that, for the 2-functor cod : KD !

K, a 1-morphism x : x ! x in K is a Johnstone-style �bration iff it is a �bra-

tional object in KD in the sense of De�nition 2.5.6.

LEMMA 2.6.9. Supposex in KD is a Johnstone-style �bration in the sense of De�ni-

tion 2.6.1. Letf , g and� be as in the de�nition, giving rise tof : x f ! x, g: xg ! x

and� : f r � ) g, and letu : z ! xg be any 1-morphism inKD . Then the whiskering

� � u : f r � u ) gu is cartesian.

Proof. First, we deal with the case where u is vertical. Note that this also

shows that � itself is cartesian.

Suppose 0 : e0 ) gu is a 2-morphism in KD such that cod( 0) = 
0

= � � � in K.

We seek a unique 2-morphism� 0 : e0 ) f r � u over � such that (� � u) � � 0 =  0.

Let e: xe ! x be a cartesian lift of e0, obtained as a bipullback. Then we

can factor e0, up to a vertical iso 2-morphism, as ev where v is a vertical

1-morphism. We can neglect the iso 2-morphism and assumee0 = ev. Also, let

� : e � r � ) f and  : e � r  ) g be lifts of � : e = e0 ) f and  := 
0
: e ) g

obtained from the �bration structure of x.

From axiom (J2) we get an iso 2-morphism � �;� : r � � r � ) r  .

xe
x f

xg z

x

�=
r � r �

e f g

r 
u

v

� �
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Using axiom (J5), the unique � 0 : ev ) f r � u that we seek amounts to a unique

vertical � 0 : v ) r � � r � � u such that the diagram on the left below pastes with

� � u to give  0 : ev ) gu. Bringing in � � ; � , this amounts to �nding a unique

vertical � 1 : v ) r  � u such that the equation on the right holds, and this is

immediate from axiom ( J5).

z xe

x f x

r � u

v

e

f

r �

� 0

�

=

z xe

x f x

r � u

v

e

f

� 0

z xe

xg x

u

v

e

g

r 

� 1



=

z xe

xg x

u

v

e

g

 0

Now we prove the result for general u. We can factoru up to an iso 2-morphism

askv, where v is vertical and k is cartesian. Because of Lemma 2.5.2 (i),(v)

we might as well assume thatu = kv. Axiom (J4) implies that, up to an iso

2-morphism, � � k can be obtained as the lift of � � k. We can thus apply the

vertical case, already proved, to see that(� � k) � v is cartesian.

PROPOSITION2.6.10. A morphismx : x ! x in D is a Johnstone-style �bration

(in the sense of De�nition 2.6.1) iff it is a �brational object inKD .

Proof. By Proposition 2.5.8, we know that condition ( B1) is equivalent to

bicarrability of x. Now supposex is a Johnstone-style �bration.

To show (B2), assume that g0 : y ! x and � : f ) g
0
: y � x is a 2-morphism

in K. We aim to �nd a cartesian lift of � .

Let f : x f ! x and g: xg ! x be cartesian lifts of f and g
0
, so g = g

0
, and

suppose the Johnstone criterion gives them structure� : f r � ) g. Then we

factor g0 through g and obtain a lift v of 1y and an iso 2-morphism � : gv ) g0
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in KD . Pasting � and � together we get a 2-morphism � 0 := � � (� � v), lying

over � , from f 0 := f r � v to g0 in KD .

y

xg

x f x

v

g0

r � g

f

�

�

Note that � 0 is indeed cartesian. This is because� is a an iso 2-morphism,

and therefore it is cartesian by Lemma 2.5.2(v), � � v is cartesian according

to Lemma 2.6.9, and also vertical composition of cartesian 2-morphisms is

cartesian.

For (B3), let � 0 : f 0 ) g0 : y ! x be any cartesian 2-morphism inKD , and let

k : z ! y any 1-morphism in KD . We will show that the whiskered 2-morphism

� 0 � k is again cartesian. First, letf : x f ! x and g: xg ! x be cartesian lifts of

f
0

and g
0
, and let � : f r � ) g be got from � 0 in the usual way. Then we factor

f 0 and g0 up to vertical iso 2-morphisms as� : f 0
�= f � u and � : g0

�= g � v,

where u, v are vertical. De�ne � 0
0 = � � � 0 � � � 1. Obviously, � 0

0 is cartesian and

� 0 � k is cartesian if and only if � 0
0 � k is cartesian. By axiom (J5) of �bration,

we get a (unique) vertical 2-morphism � such that (� � v) � (f � � ) = � 0
0. By

Lemma 2.6.9 � � v is cartesian and it follows that f � � is cartesian since� 0
0 is

cartesian. Now the 2-morphism f � � is both vertical and cartesian and thus

it is an iso 2-morphism, according to Lemma 2.5.2(vi). So, our task reduces

to proving that (� � v) � k is a cartesian 2-morphism, and this we know from

Lemma 2.6.9.

Conversely, supposex : x ! x is a �brational object in KD . We want to extract

the structure of Johnstone-style �bration for x out of this data. First of all

according to (B1), x is bicarrable. Suppose� : f ) g is any 2-morphism in K.

Let g be a cartesian lift of g obtained as a bipullback of g along x in K. By (B2)
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� has a cartesian lift � 0: f 0 ) g. Factor f 0, up to an iso 2-morphism  , as f � r �

where r � is vertical and f : x f ! x is cartesian. From� 0 and  we obtain a

cartesian 2-morphism � : f � r � ) g which satis�es axiom ( J1).

xg

x f

x

�= r � f

f 0

g

� 0

(2.43)

To show (J2), take a pair of composable 2-morphisms� : f ) g and � : g ) h.

Carrying out the same procedure as we did in diagram(2.43) , we obtain

cartesian 2-morphisms� : f � r � ) g and � : g � r � ) h, and also  : f � r  ) h

lifting  = � � . By (B3), the 2-morphism � � (� � r � ) : f r � r � ) h is cartesian.

Therefore, there exists a unique vertical iso 2-morphism� : f r � r � ) f r  such

that  � � = � � (� � r � ).

xh

x f x

r � r �

r  f r � r �

f r 

�

f

Since f is cartesian, Remark 2.5.3 (ii) yields a unique vertical iso 2-morphism

� �;� : r � r � ) r  such that f � � �;� = � . Thus, (�� ) � (f � � �;� ) = � � (� � r � ).

For condition ( J3), if � = id , then � is both cartesian and vertical, and hence

an isomorphism. Now we can use Remark 2.5.3(ii) with � � 1 for � and an

identity for � to get � : 1x f ) r � as well as an inverse for it. It has the property

required in ( J3).
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Now we prove condition ( J4), using the notation there, and we wish to de�ne

the isomorphism in the left hand square. We �nd we have two cartesian lifts

of � 0 � k to gkg. The �rst is the pasting

� � 1� 0(� � r � 0) : fk f r � 0 ) gkg.

This is cartesian by Lemma 2.5.2(i),(v), being composed of isomorphisms and

the cartesian � 0. The second is� � kg, cartesian because� is cartesian and,

according to (B3), its whiskering with any 1-morphism is cartesian. These two

cartesian lifts must be isomorphic, so we get a unique iso 2-morphism between

fk f r � 0 and fr � kg, over f idk , that pastes with � , c and � to give � 0. Now we

use Remark 2.5.3(ii) to get a unique isomorphism in the left hand square of

the diagram with the required properties.

Finally, we shall prove (J5), which is similar to ( J4). Assume vertical 1-

morphisms v0 and v1 and a 2-morphism � 0 over � as in the hypothesis of

axiom (J5). We use the cartesian property of the 2-morphism� � v1 to get a

unique vertical 2-morphism � : fv 0 ) f r � v1 such that (� � v1) � � = � 0. By the

cartesian structure of the 1-morphism f , we can factor � as f � � for a unique

vertical 2-morphism � with f � � = � . Hence, (� � v1) � (f � � ) = � 0.

REMARK 2.6.11. The proof above is rather long and technical. So, we thought our

reader may appreciate a summary of various dependencies ofB andJ conditions.

The following table shows how the various structures in a Johnstone �bration relates

to structures (B1)-(B3). That is whichB 's we need to prove eachJ .

De�nition 2.6.1 De�nition 2.6.10

x is carrable (B1)

Axiom (J1) (B1), (B2)

Axiom (J2) (B1), (B2)

Axiom (J3) (B1), (B2), (B3)

Axiom (J4) (B1), (B2), (B3)

Axiom (J5) (B1), (B2), (B3)

On the other hand, the table below shows that whatJ 's we need to prove eachB:
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De�nition 2.6.1 De�nition 2.6.10

(B1) x is carrable

(B2) (J1), (J3), (J5)

(B3) (J1), (J3), (J4), (J5)
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3Theories and contexts

In this chapter, we present the third model of generalized spaces, that is the

2-categoryConof AU-contexts (§3.3) and study its features. We quickly review

the main aspects of the theory of AU-contexts, our AU analogue of geometric

theories in which the need for in�nitary disjunctions in many situations has

been satis�ed by a type-theoretic style of sort constructions that include list

objects (and an nno). The contexts are “sketches for arithmetic universes”

[Vic19], and we review the principal syntactic constructions on them that are

used for continuous maps and 2-morphisms.

We also introduce the notion of �bration of contexts (§3.4) and in the next

chapter we prove that they beget �brations of toposes.

This accomplishes �rst steps in ful�lling the bigger goal to see to what extent

AUs can replace Grothendieck toposes as models of spaces. In this approach,

geometric theories are replaced by AU-contexts, thought of as a kind oftypesof

type theoryof AUs, presented by sketches ([Vic19]), and geometric morphisms

are replaced by AU-functors, corresponding to the inverse image functors.

AU-contexts are presented by sketches in [Vic19]. We start by an overview

of �rst order geometric theories and their link to sketches for AUs which is

followed by a selective overview of AU-sketches.

The main references for this chapter are [AR94], [Joh02b], [Vic19], [Vic17],

and [HV19].
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3.0 Introduction

Arithmetic Universes (AUs) were introduced by André Joyal with the insight to

provide a categori�ed proof of the celebrated Gödel Incompleteness theorem.

This insight was communicated in his lectures ([Joy73b], [Joy73a]). What

initially remained of this insight and the alleged proof in written form was a

set of notes taken by Gavin Wraith. Although this signi�cant insight of Joyal

never appeared in a published format, it undoubtedly triggered attention and

research into Arithmetic Universes (See [Mai99], [Mai00], [Mai03], [Mai05b],

[Mai10a], [Mai10b], [MV12], [Vic19]).

What is the idea behind the notion of AU? A philosophical view of the Gödel

Incompleteness theorem is that it is a self-re�ective ability of a formal system

based on its expressiveness and its proof involves the famous arithmetization

argument. Joyal proposed an AU to be a structured category whose structure

is expressive enoughto allow the `internal type theory of the category' to build

a replica of the original AU inside itself, analogous to Gödel's arithmetization.

The rest of the argument then should use the machinery of internal language

to give a categorical incarnation of the Gödel sentence constructed from the

AU and its replica.

The `enough structure' in above has been proposed to be formalized as the

structure of a list-arithmetic pretopos : a category with �nite limits, stable

disjoint coproducts, stable effective quotients by monic equivalence relations

and parameterized list-objects.

Equivalently an AU is a �nitely extensive Barr-exact category with parametric

list objects. Note that an AU has all coequalizers, not just the quotients of

equivalence relations. This is because the list object allows one to construct

the transitive closure of any relations [Mai10a].

The theory of AUs is local, i.e. slices of AUs are AUs. Comma objects of AUs

are constructed as comma categories. Therefore, the comma construction is

created by the forgetful functor AU ! Cat [MV12].
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The above de�nition of AU parallels (relativized) Giraud's characterization of

relative Grothendieck toposes, except that AUs have only a �nitary fragment

of geometric logic, and instead of in�nitary disjunctions being supplied extrin-

sically by a base topos (e.g. the structure of small-indexed coproducts), they

have sort-constructors forparametrized list object that allow some in�nities

intrinsically: e.g. point-free continuum. AUs are presented via sketches in

[Vic19].

Sketches(French esquisses) were introduced by differential geometer Charles

Ehresmann, a student of Cartan, and forerunner of the Bourbaki seminar. He

later became a leading proponent of categorical methods and by 1957 he

founded the mathematical journal Cahiers de Topologie et Géométrie Différen-

tielle. Collectively, the development of sketches together with contemporary

work of Bill Lawvere and earlier work 1 of Halmos (e.g. Halmos's polyadic

algebras), Tarski (e.g. his work on cylindric algebras) and Birkhoff has come

to be understood under the umbrella term `categorical logic'.

The simplest kind of sketch is a directed multigraph possibly with loops.

Sketches can be underlying graphs of categories but in general they do not have

to. The point is that in sketches we do not have the structure of compositions

of arrows. Note that models of such sketches inSet cannot accommodate for

any nullary, binary, or higher arity operation nor any equations. A remedy is to

add more structure to the sketch such as �nite products. To express equations,

we add commutativities in some extension of our sketch. Starting with a sketch

T, we can specify a composition of two composable arrows by adding a third

arrow and a commutativity.

Also, to add higher arity operations one works with limit sketches. To still

add more structures such as those of regular theories one can work with

sketches with cocones. For the purpose of expressing structure of arithmetic

universes one has to work with sketches whose models can accommodate for

1These earlier work, sometimes refereed to as algebraic logic, arose from the effort of
formulating logical notions and theorems in terms of universal algebraic. It has been
argued in [MR11] that categorical logic is logic in an algebraic dressing.
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all operations that a generic arithmetic universe allows. Sketches for arithmetic

universes are dealt with in [Vic19].

3.1 A swift overview of (geometric) �rst

order theories

In the �rst part we begin by recalling the notion of syntactic category of a �rst

order theory. The idea here is that we would like to organise the data of T into

a category so that the models ofT in a category S correspond to the S-valued

functors from the syntactic categorySyn(T) and the elementary embeddingsof

models correspond to natural transformations between corresponding functors.

As we will see, the syntactic categorySyn(T) comes equipped with ageneric

model MT inside it, in such a way that a formula � is provable in T (as it

is customary we write T ` � for the provability relation) if and only if its

interpretation in Syn(T) is satis�ed by the model MT (as it is customary we

write MT j= � for the satisfaction relation).

We follow the approach of [Joh02b, p. D1.1], in fact as we shall see in the

next part that is necessary in order to deal correctly with geometric logic. We

warn the reader that there are some differences from traditional logic. Two

major differences from standard approaches are the use of contexts (which is

a natural way to make the logic sound for empty carriers), and that axioms

are presented by sequents2 � ` ~x  in context ~x, and are not the same as

sentences3.

Also, it is important to allow the logic, the fragment of �rst-order logic, to

vary. Wherever we feel it is necessary we shall point out these differences in

practice. Here is a simple example.

EXAMPLE 3.1.1. The theory of posets has one sortX and a binary relationR �

X; X (whereR(x; y) has the intended meaningx � y ) which satis�es the re�exivity,

2indicated by turnstile symbol ` and annotated with the context in which derivation takes
place

3i.e. formulae with no free variables
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the antisymmetry, and the transitivity axioms; they appear on the left hand side in

their traditional form while on the right hand side they appear in contexts.

(8x)R(x; x)

(8x; y; z)(( R(x; y) ^ R(y; z)) ) R(x; z))

(8x; y)(( R(x; y) ^ R(y; x)) ) (x = y))

> ` x R(x; x)

(R(x; y) ^ R(y; z)) ` x;y;z R(x; z)

(R(x; y) ^ R(y; x)) ` x;y (x = y)

For instance the axioms above are expressed in the so-called “Horn fragment”

of (geometric) �rst order logic (See Table 3.1). Notice that in geometric logic

(and its fragments) we do not have the operation of universal quanti�cation

over variables, nor do we have implications of formulae (e.g. such as the

transitivity axiom on the RHS4 of Example 3.1.1). The sequent style derivation

comes to our rescue. Also, for �rst order theories, (8x)� (x) 0 (9x)� (x),

however, we have (8x)� (x) ` c (9x)� (x) for some other variable c. Writing

down our axioms in sequent-style rei�es the importance of the contexts.

Another motivation for introducing contexts comes from the phenomenon

of enlarging its scope in the process of passing a variable across a logical

connective. For instance, in a single sorted �rst order theory, one can prove

that for formulae  and � ,

(� _ 9x ) () 9 x(� _  )

where x : X is not a free variable of � . Now, in any interpretation where

the domain of interpretation (i.e. interpretation of sort X ) is empty, the

equivalence above fails to satisfy which is bad news from the perspective of

soundness. To see this, consider the sentence above with� = 8y(y = y) and

 = ( x = x). In classical model theory of �rst order theories, the remedy is to

require non-emptiness of domain of interpretation. Without the use of contexts,

however, in categorical model theory where the the domain of interpretations

are objects of categories (possibly other thanSet) it is not always clear what

`non-emptiness' of an object means.

4Right Hand Side
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Finally, it is possible for a particular language to have sorts with no closed

terms. Using variables of this sort carries with itself a tacit existential assump-

tion, and therefore we should record each occurrence of such assumption by

bookkeeping the variables in the context in our inferences.

The full derivation rules for sequents-in-context are given in [Joh02b, p. D1.3],

and it is important to note that they are sound even for empty carriers.

In full �rst-order logic not every structure homomorphism is natural for all

formulae, and therefore, it's interesting to look at the restricted class of those

that are: these are the so-called elementary embeddings (aka elementary

morphisms). In geometric logic the problem doesn't arise, because structure

homomorphisms are natural for all geometric formulae. Since in this thesis

we are mostly concerned with geometric logic and its fragments we are not

paying as much attention to the elementary embeddings.

Brie�y, recall that a �rst order theory is a pair T = ( �; �) where � is a �rst

order signature, and � is the set of axioms5 of T. A �rst order signature �

comes with a set� of sorts and a setP = f Pi gi 2 I of predicates such that each

predicate has an arity which is just a sequence(X 1; : : : ; X n ) of sorts X i 2 � .

One usually writes P � X 1; : : : ; X n . See [Joh02b, p. D1.1.1 ] Let's call this the

spartan version.

One may add bells and whistles to this de�nition and include, in addition to

predicate (aka relation) symbols, function symbols (with arity) as well. Notice

that for any cartesian theory6 T there is a cartesian theoryT0 which is Morita

equivalent7 to T and does not have any function symbols. (See Example 3.1.2

and [Joh02b, Lemma D.1.4.9].) We take the liberty of using either style of

presentation depending on the context of discussion and also as a matter of

convenience. So a full presentation of a theory includes

5Traditionally, each axiom is a sentence (meaning a formula without any free variables)
which become valid sentences in every model of theoryT. For us, axioms are going to be
sequents, not formulae in general.

6The notion of cartesian theory will be de�ned in Remark 3.1.4.
7i.e. Two theories are Morita equivalent if their respective categories of models are equivalent.
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• P � X 1; : : : ; X n , for each predicate, and

• f : X 1; : : : ; X n ! X , for each function symbol.

Two special cases of proposition and constant symbols are included by consid-

ering empty arities in the above:

• P � 1, for each proposition, and

• c: 1 ! X for a constant symbol.

The example below contrasts the spartan and the embellished styles of presen-

tation.

EXAMPLE3.1.2. One can present the theory of groups (on LHS) with one sortG,

a ternary relation symbolM � G; G; G, where the intended meaning ofM (x; y; z)

is that z “equals the (binary) multiplication ofx any y”. It also comes equipped

with a constant symbol8 e: G. Altogether this structure should satisfy the following

axioms:

M (x; y; u) ^ M (y; z; v) ^ M (u; z; w) ` x;y;z;u;v;w M (x; v; w)

M (x; y; u) ^ M (y; z; v) ^ M (x; v; w) ` x;y;z;u;v;w M (u; z; w)

> ` x M (x; e; x) ^ M (e; x; x)

> ` x;y (9z) M (x; y; z)

M (x; y; z) ^ M (x; y; w) ` x;y;z;w (z = w)

> ` x (9y : G 9z: G) M (x; y; e) ^ M (z; x; e)

The fourth and �fth axioms say thatM is a functional relation.

8which can be regarded as a constant unary predicate.
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Alternatively, instead of ternary relation symbolM , we could have a function symbol

m : G � G ! G satisfying the following axioms:

> ` x;y;z m(m(x; y); z) = m(x; m(y; z))

> ` x m(x; e) = x ^ m(e; x) = x

> ` x (9y : G 9z: G) m(x; y) = e^ m(z; x) = e

It is often easier and clearer to use function symbols.

3.1.1 Fragments of �rst order theories

Before we present examples of some well-known theories, we would like to

explain some of the nomenclature pertaining to different fragments of �rst

order theories. The table below illustrates the hierarchy of different fragments

of �rst order theory 9. Each row shows that the axioms of the corresponding

fragment are formed by the marked logical operations; for instance, a theory

which has any of its axioms formed using implication is not geometric.

9First order refers to the fact that quanti�cation is over variable individuals rather than over
subsets or functions of them.
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binary truth exist. binary falsity neg. impl. univ. inf. inf.

conj. quant. disj. quant. disj. conj.

(^ ) (> ) (9) (_) (? ) (: ) () ) (8) (
W

) (
V

)

Horn X X

theories

Cartesian X X cartesian

theories

Regular X X X

theories

Coherent X X X X X

theories

(Full) �rst X X X X X X X X

order

theories

Geometric X X X X X X

theories

In�nitary �rst X X X X X X X X X X

order

theories

Fig. 3.1.: Fragments of �rst order theory

We give a few examples of theories using context-style axioms. In the next

sections, we give a different presentation based on AU-sketches.

EXAMPLE 3.1.3. The theory oflinear orders is obtained from that of posets by

adding the axiom below:

> ` x;y (R(x; y) _ R(y; x))
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Note that the theory of linear orders, unlike that of posets, is not a Horn theory. It is a

coherent theory. We can extend it to the theory of(strict) linear intervalsby adding

two constantst andb of sortX together with the following axioms:

> ` x R(b; x) ^ R(x; t )

(b = t ) ` ?

REMARK3.1.4. The word “cartesian” in the above table requires further explication.

We give an inductive de�nition of cartesian formulae �rst. SupposeT is (at least) a

regular theory. A formula is calledcartesian if it is either (i) atomic10, or (ii) �nite

conjunction of cartesian formulae, or(iii) of the form9y� where� (~x; y) is cartesian

and moreover the sequent

(� ^ � [z=y]) ` ~x;y;z (y = z) (3.1)

is provable inT. A sequent� ` ~x  is cartesian if both� and are cartesian.

A regular theoryT is cartesian if there is a well-founded partial ordering of its

axioms such that each axiom is cartesian relative to the subtheory, formed by the

axioms which precede it in the ordering. As indicated in the table above cartesian

theories lie between Horn and regular theories, but they are really closer to Horn

theories rather than to regular theories for the following reason: in models, the in-

terpretation of existential quanti�ers corresponds to forming images of projection

morphisms. By cartesianness, these morphisms are already monic and hence their

images are isomorphic to themselves. What we are doing really is to take images of

morphisms which are already known to be unique.

It is worth noting that Palmgren and Vickers ([PV07]) show that cartesian theories

are equivalent topartial Horn theories, i.e. Horn theories in a logic of partial terms.

EXAMPLE 3.1.5. The theory of “lattices equipped with prime �lters” can be pre-

sented with one sortL and predicatesP � L, Glb � L; L; L andLub � L; L; L

together with constantst : L , b : L. The intended meaning ofP(x) is “x is an

element of the prime �lter "P of the latticeL”, and we need appropriate axioms

expressingL as a lattice andP as a prime �lter ofL. Glb(a; b; c) exhibitsc as the

10Either of the form ~x = ~y or P(~x) for some predicateP.
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greatest lower bound ofa andbwhile Lub(a; b; c) exhibitsc as the least upper bound

of a andb. The constantt is the top element andb is the bottom element. The lattice

axioms are as usual, that is idempotency, commutativity, and associativity laws of

meet and join plus the identity laws fort andb with respect to meet and join, and the

absorption laws. The axioms (xii), (xiii) expressP as a �lter and the axioms (xiv),

(xv) say thatP is indeed a prime �lter.

(i) > ` a Glb(a; a; a)

(ii) > ` a Lub(a; a; a)

(iii) Glb(a; b; c) ` a;b;c Glb(b; a; c)

(iv) Lub(a; b; c) ` a;b;c Lub(b; a; c)

(v) Glb(b; c; d) ^ Glb(a; b; e) ^ Glb(a; d; f ) ` a;b;c;d;e;f Glb(e; c; f )

(vi) Lub(b; c; d) ^ Lub(a; b; e) ^ Lub(a; d; f ) ` a;b;c;d;e;f Lub(e; c; f )

(vii) > ` a Glb(a; t ; a)

(viii) > ` a Lub(a;b; a)

(ix) Glb(a; b; c) ` a;b;c Lub(a; c; a)

(x) Lub(a; b; c) ` a;b;c Glb(a; c; a)

(xi) Glb(a; b; c) ^ P(a) ^ P(b) ` a;b;c:L P(c)

(xii) Lub(a; b; c) ^ P(a) ` a;b;c:L P(c)

(xiii) > ` P(t)

(xiv) P(b) ` ?
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(xv) Lub(a; b; c) ^ P(c) ` a;b;c P(a) _ P(b)

REMARK 3.1.6. The theory of posets and groups are cartesian regular, while the

theory of linear orders is not regular. The theory of “lattices equipped with prime

�lters” is not cartesian. Similarly, the theory of local rings is not cartesian.

3.1.2 Homomorphism of theories

DEFINITION 3.1.7. There is a category of (�rst-order) geometric theories whose

morphisms are known astheory homomorphisms. For signatures� and� 0, a sig-

nature homomorphism F : � ! � 0 is an assignment to each sortX of � a

sort F (X ) of � 0, to each function symbolf : X 1; : : : ; X n ! Y a function sym-

bol F (f ) : F (X 1); : : : ; F (X n ) ! F (Y) of � 0, and to each relation symbolR �

X 1; : : : ; X n of � to a relation symbolF (R) � F (X 1); : : : ; F (X n ) of � 0. Note that

the above setup ensures thatF takes terms to terms and formulae to formulae while

keeping their corresponding contexts �xed.

For theoriesT = (� ; �) andT0 = (� 0; � 0), atheory homomorphism F : T ! T0

is a signature homomorphism which in addition takes an axiom� ` ~x  of T to an

axiomF (� ) ` ~x F ( ).

There are many obvious examples of theory homomorphisms: for instance the

forgetful homomorphism from the theory of monoids to the theory of groups,

or the inclusion of theory of groups in the theory of rings.

3.1.3 Interpretations and models

Interpretation of signature of a language

DEFINITION 3.1.8. Suppose we have a �rst order signature� , andS is a category

equipped with all �nite products. A� -structure (akainterpretation 11) M consists

of the data
11This is Tarksi interpretation and should be distinguished from BHK (Brouwer-Heyting-

Kolmogorov) interpretation where the interpretation of relation symbols is de�ned differ-
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(i) an assignment to each sortX 2 � an objectM [X ] of S,

(ii) an assignment to each sequenceX 1; : : : ; X n of sorts the productM [X 1] �

: : : � M [X n ] in Swhere the empty sequence[] of sorts is interpreted to be the

terminal object ofS, i.e. M [] = 1,

(iii) an assignment to each function symbolf : X 1; : : : ; X n ! X in � a morphism

M [f ] : M [X 1] � : : : � M [X n ] ! M [X ] in S, and

(iv) an assignment to each relation symbolR � X 1; : : : ; X n in � a subobject

M [R] � M [X 1] � : : : � M [X n ] in S.

DEFINITION 3.1.9. Suppose� is a �rst order signature andM andN are interpre-

tations of� in a categoryS. A � -morphism from M to N is an assignment to each

sort X 2 � a morphism� X : M [X ] ! N [X ] such that for every relation symbol

R � X 1; : : : ; X n in � , there is a (unique) morphism� R : M [R] ! N [R] which

makes the diagram

M [R] M [X 1] � : : : � M [X n ]

N [R] N [X 1] � : : : � N [X n ]

� R � X 1 � :::� � X n

(3.2)

commute and moreover, for every function symbolf : X 1; : : : ; X n ! X the diagram

M [X 1] � : : : � M [X n ] M [X ]

N [X 1] � : : : � N [X n ] N [X ]

M [f ]

� X 1 � :::� � X n

N [f ]

� X

(3.3)

commutes.

ently [Joh02b, Remark D.1.2.2]. BHK interpretation provides semantics of intuitionistic
logic.
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Notice that if we interpret our signature in the category of sets, then the

above commutativity condition 3.2 states that for every n-tuple (a1; : : : ; an ) 2

M [X 1] � : : : � M [X n ], we have

M j= R(a1; : : : ; an ) ) N j= R(� X 1 (a1); : : : ; � X n (an )) (3.4)

REMARK3.1.10. The commutativity condition(3.3) is a special case of(3.2) once

we describe the functionf instead by its graph relation. Recall that in any cartesian

category thegraph of morphism f : X ! Y is a subobject : Gr (f ) � X � Y

with the property that� := � X �  is an isomorphism andf = � Y �  � � � 1.

Y

Gr (f ) X � Y

X
�=

� X

� Y

f

Moreover, a square

X X 0

Y Y 0

h

f 0f

k

commutes iff there is a morphismg: Gr (f ) ! Gr (f 0) such that 0
0g = � Y  0g =

h� Y  = h 0 and 0
1g = � X  0g = k� X  = k 0.

REMARK 3.1.11. An immediate consequence of the above de�nition is thatM [R]

is a subobject of� 1 � : : : � � n )� N [R]. We will soon see that for a class of special� -

morphisms (elementary embeddings),M [R] �= (� 1 � : : : � � n )� N [R] as subobjects

of M [X 1] � : : : � M [X n ].

CONSTRUCTION3.1.12. For any categoryS, and a signature� , the � -structures

and� -morphisms form a category� -Str where the identity� -morphism and the

composition of� -morphisms is de�ned component-wise as identity morphism and

composition of morphisms inS.
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EXAMPLE3.1.13. A � -morphism� : I ! J for the theory of (strict) linear inter-

vals is a function which respects the order (commutativity of diagram(3.2) ) and

moreover, preserves the top and bottom elements (commutativity of diagram(3.3) ).

Interpretation of terms

Terms are interpreted as morphisms while formulae are interpreted as sub-

objects; given an interpretation M of signature � of a languageL as above,

we can interpret a term t of sort Y in a suitable context ~x = ( x1; : : : ; xn ) as a

morphism J~x:tKM : M [X 1] � : : : � M [X n ] ! M [Y], where x i : X i , for 1 � i � n.

Depending on the construction of term t, we de�ne its interpretations in

context ~x inductively as follows:

(i) When t is the unique term � of the unit sort 1, J~x:tKM is de�ned to be the

unique morphism M [X 1] � : : : � M [X n ] ! 1 in S.

(ii) When t is a constant term a: X , J~x:tKM is de�ned to be the composite

Q

1� i � n
M [X i ] M [X ]

1

J~x:t KM

M [a]

(iii) When t is the variable x i : X i , J~x:tKM is de�ned to be the i th product

projection � : M [X 1] � : : : � M [X n ] ! M [X i ],

(iv) when t is of the form f (t1; : : : ; tm ) for some function symbol f and some

terms t i : A i in a suitable context ~x = ( x1; : : : ; xn ), then J~x:tKM is de�ned

to be the composite

Q

1� i � n
M [X i ] M [A]

Q

1� i � m
M [A i ]

hJ~x:t 1KM ;:::;J~x:t m KM i

J~x:t KM

M [f ]
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Note that (ii) is just the nullary case of (iv). By an inductive argument on

construction of terms, we can easily prove the following important property

concerning interpretation of substitution of contexts. For instance the item (ii)

is when the context ~y in below is empty.

PROPOSITION3.1.14. Suppose a termt : A in a context~y = ( y1 : Y1; : : : ; ym : Ym )

is given, and~s = ( s1 : Y1; : : : ; sm : Ym ) is a string of terms, each in the suitable

context~x = ( x1; : : : ; xn ). ThenJ ~x:t[s1=y1; : : : ; sn=yn ] KM is interpreted as the

composite of arrows in below:

Q

1� i � n
M [X i ] M [A]

Q

1� i � m
M [Yi ]

hJ~x:s1KM ;:::;J~x:sm KM i

J ~x:t [s1=y1 ;:::;sn =yn ] KM

J~y:tKM

Interpretation of formulae

For the interpretation of terms in a category C all we needed was for C to be

�nitely complete. However, for the interpretation of some formulae, we need

more categorical structures depending on the range of logical operators (= ,? ,

9, 8, ) ,
W

,
V

). Since we are concerned with the geometric logic, we shall

focus on giving the interpretation to terms formed by = ; > ; 9;
W

; ^ .

Formulae are interpreted as subobjects; given an interpretationM of signature

� of a languageL, we will interpret a formula � in the context ~x as a subobject

J~x:� KM � M [X 1] � : : : � M [X n ]. We do this by induction on construction

of formula � . Note that in the case of interpretation of atomic formulae, we

need the category S of models to have all pullbacks (of monomorphims),

equalizers, and in the case of interpretation of existential quanti�cations to

have stable image factorizations. On the whole, regular categories suf�ce. For

in�nite joins, we need at least the structure of an in�nitary coherent category

(aka “geometric category”, e.g. in [Joh02b, D2.1]). Grothendieck toposes are

in�nitary coherent.
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(i) When � is an atomic formula of the form R(t1; : : : tm ) for a predicate/relation

symbol R � X 1; : : : X m and each t i is a term of type X i in context

~y = ( y1 : Y1; : : : ; yn : Yn ), for 1 � i � m, then J~x:� KM is de�ned by the

pullback

J~x:� KM M [R]

Q

1� i � n
M [Yi ]

Q

1� i � m
M [X i ]hJ~y:t 1 KM ;:::; J~y:t m KM i

(ii) When � is an atomic formula of the form (s = t) for terms s; t of sort A

de�ned in a context ~x, then J~x:� KM is de�ned by the equalizer

J~x:� KM
Q

1� i � n
M [X i ] M [A]

J~x:sKM

J~x:tKM

e

(iii) When � is > , then J~x:� KM is the top element of lattice Sub(M [X 1] � : : : �

M [X n ]).

(iv) When � is  ^ � , where  and � are de�ned in the same context ~x, then

J~x:� KM is de�ned by the pullback of subobjects J~x: KM �
Q

1� i � n
M [X i ]

and J~x:� KM �
Q

1� i � n
M [X i ].

(v) When � is  _ � , where  and � are de�ned in the same context ~x, then

J~x:� KM is de�ned by the union of subobjects J~x: KM �
Q

1� i � n
M [X i ] and

J~x:� KM �
Q

1� i � n
M [X i ]. In practice we work in situations where S is a
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pretopos: then the union of subobjects can be constructed as the image

of a morphism from a coproduct.

J~x:� KM _ J~x: KM

J~x:� KM + J~x: KM
Q

1� i � n
M [X i ]

In the case of a Grothendieck topos, this can be extended to in�nite

disjunctions since in�nite set-indexed coproducts exist.

(vi) When � is (9y) for some formula  in context ~x, and variable y of

sort Y, then the interpretation of � in context ~x is given by the image

of m � � 0, where m witnessesJ K~x;y as a subobject of the product
Q

1� i � n
M [X i ] � M [Y].

J~x; y: KM J~x:� KM

Q

1� i � n
M [X i ] � M [Y]

Q

1� i � m
M [X i ]

m  

� 0

Indeed, originally due to the great insight of Lawvere, there is a universal

property to the content of the existential derivation rules which can

be expressed by the adjunction9� 0 a � �
0 where the right adjoint is the

reindexing functor. For a locally cartesian closedS, we have the triple

adjoints � f a f � a � f (the top row of the following diagram) which
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induces the corresponding triple adjoints 9f a f � a 8f (the bottom row

of the following diagram) on the lattices of subobjects.

C=X ? C=Y

Sub(X ) Sub(Y)

� f

� f

f �

9f

8f

f �

Each inclusion functor on the sides has a left adjoint which is de�ned by

the image factorization.

Interpretation of sequents and models of theories

SupposeT is a �rst order theory with the signature � . For a � -structure M , we

say that M satis�es a sequent� ` ~x  whenever J~x:� KM � J~x: KM in the lattice

Sub(
Q

1� i � n
M [X i ]). Note that this is more than saying that every global element

of J~x:� KM is also a global element ofJ~x: KM , since there might not be enough

global elements: the condition of satis�ability of sequents is equivalent to

stating that every generalized element ofJ~x:� KM is also a generalized element

of J~x: KM .

An interpretation M is a model of T if every axiom sequent in the theory

is satis�ed by M . The category T -Mod (S) of models of T in S is a full

subcategory of� -Str . For any theory homomorphism F : T0 ! T1, we have a

functor F � : S-Mod (T1) ! S-Mod (T0) which is called the F -reduct functor:

it takes a model M to F � M where the latter is de�ned on sorts and formulae

by

J(� )KF � M := JF (� )KM

.
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Sometimes the reduct functor has a left adjoint: For instance, if both T0 and T1

are cartesian theories, then the reduct functor has a left adjoint. A special case

of this occurs when T0 is the empty theory, and the left adjoint to the reduct

functor gives the initial T1-model in the category S.

3.1.4 Model morphisms and elementary

embeddings

Let � be the signature for the theory of groups. A� -morphism between models

G and H is a group homomorphism f : G ! H , because of commutativity

of diagram (3.2) . However, the commutativity of this diagram does not

extend to all �rst-order formulae. To see this, consider the formula � (x) =

(8y; z)(R(x; y; z) () R(y; x; z)) . For a model G of T, G[� ] is the centre of G,

i.e. all elements of G which commute with every element of G. It is obvious

that � is not natural with respect to all group homomorphisms since elements

of the centre are not necessarily preserved by group homomorphisms. Here is

another example: take the formula � (x) = : (9y)(x = y + y). If a is an element

of G which is `not divisible by 2', then commutativity of (3.2) for � would mean

that f (a) could not be divisible by 2 in H . An arbitrary group homomorphism

need not have this property: e.g. the homomorphismi : Z4 ! Z12 of (cyclic)

groups with i (1) = 6 .

Note that in both examples above we have used logical operators () ; : ) which

are not geometric. It is worth noting that the commutativity of diagram (3.2)

does indeed extend to all formulae in geometric logic (See Proposition 3.1.20).

The rest of the commentary of this section is illustrating the extra stuff that is

needed if we go beyond the geometric logic.

To ensure naturality of all formulae with respect to model morphisms we can

build it into a stronger notion of morphism of structures/models. Perhaps

we should elaborate at this stage on signi�cance naturality other than its

categorical signi�cance. Consider the following question: Let T be a (fragment

of) �rst-order theory. Suppose that, for every (set) model M of T, we specify a
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subset fM � M . Under what conditions does there exist a formula � (~x) in the

language of T such that fM = M [� ] for every model M ?

We note that the existence of such formula gives a uniformity in choosing

the subsets fM � M . Therefore, at the very least, we need to demand that

the subsets fM have some relation to one another as the modelM “varies”.

To formulate this notion more precisely, we give the de�nition of elementary

embeddingof models. It will follow that if the answer to the question above

is yes, then for every elementary embeddingf : M ! N , we must have
fM = f � fN . So, we arrived at a necessary condition for the question above to

have an af�rmative answer.

DEFINITION 3.1.15. SupposeT is a �rst order theory andM andN are models ofT

in a cartesian categoryC. Consider a formula� in the context(x1 : X 1; : : : ; xn : X n )

in the language ofT. Let f : M ! N be a� -morphism of models ofT. Consider

the diagram below:

JM K~x:� M [X 1] � : : : � M [X n ]

JN K~x:� N [X 1] � : : : � M 0[X n ]

f 1 � :::� f n

(3.5)

The morphismf : M ! N is called

(i) elementarywhenever for every�rst-order formula � , the diagram above can

be completed to a commutative diagram. (Notice that any such morphism

M [� (~x)] ! N [� (~x)] that completes the diagram is necessarily unique.)

(ii) embedding whenever for everyatomic formula, the diagram above can be

completed to a pullback diagram inC. In this situation,f exhibitsM as a

substructure/submodelof N .

(iii) elementary embeddingwhenever for every�rst-order formula � in the lan-

guage ofT, the diagram above can be completed to a pullback diagram in

C.
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REMARK3.1.16. Note that the notion of "elementary" morphism of models is meant

to depend on the underlying logic. [Joh02b, p. D1.2.10] de�nes it only for homomor-

phisms between structures in Heyting categories, and we take that to mean it is with

respect to all �rst-order formulae. Most logicians would understand "elementary" as

conveying the restriction on arbitrary structure homomorphisms that allows natural-

ity for negation, implication, and the universal quanti�cation.

REMARK3.1.17. It is instructive to write down the conditions above in set notation:

(i) says that for every formula� as above and everyn-tuple(a1; : : : ; an ) 2 M [X 1] �

: : : � M [X n ], we have

M j= � (a1; : : : ; an ) =) N j= � (f (a1); : : : ; f (an )) (3.6)

(iii) says that

M j= � (a1; : : : ; an ) () N j= � (f (a1); : : : ; f (an )) (3.7)

And (ii) says the latter is only valid for atomic formulae.

REMARK 3.1.18. Any embedding and therefore any elementary embedding is a

monomorphism.

Proof. Apply de�nition (3.1.15) to the formula � (x; y) := ( x = y), where x; y

are some variables of a typeX . If T does not have any types (hence, no

variables) then existence of elementary embeddingf between M and N says

that f = id which is a monomorphism.

REMARK 3.1.19. For structures/models in a Boolean coherent category every ele-

mentary morphism is an elementary embedding.

The examples from the beginning of this section suggest that the requirements

in de�nition of elementary morphism may be too restrictive for morphisms of

models. However, if our underlying logic is geometric, it turns out there is no

such restrictiveness.

PROPOSITION3.1.20. Let Cbe (at least) a cartesian category. Any� -morphism of

models inCof a (at most) geometric theoryT is elementary.
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Proof. By induction of formation of geometric formulae and their interpreta-

tion. For more details see Lemma D.1.2.9 in [Joh02b].

3.2 Overview of sketches

Good expositions on theory of sketches are given in [BW05], [AR94, Chapter

1] and [Joh02b, p. D2]. We start by recalling the concept. We remark that

our de�nition follows that of [Joh02b, D2] more closely and is different than

de�nition of other two sources mentioned above. The technical difference

is that we de�ne a sketch by a directed graph and not a category; we needs

graphs because �niteness is important, and a �nite graph can generate an

in�nite category. Note that there is a forgetful functor from the category of

categories to the category of directed graphs which for a categoryC, gives its

underlying graph jCj. The free functor, the left adjoint to the forgetful functor,

gives us the free category of a directed graph: it has objects for the vertices of

the graph, it has morphisms for each generating edge in the graph together

with morphisms for formal compositions of them.

REMARK 3.2.1. SupposeC is a category which has morphismsf : a ! b and

g: b ! c andh = g � f : a ! c. SupposeF(jCj) is the free category over the

underlying graph ofC. In F(jCj), h 6= g � f .

Before de�ning sketches, we need to introduce some preliminary concepts:

DEFINITION 3.2.2. SupposeG is a directed graph andC is a category.

(i) A diagram of shapeG in C is a homomorphismd: G ! j Cj of graphs.

(ii) A diagram d: G ! j Cj is commutative whenever for any two paths12 in G

with the same source and same target, the two morphisms obtained inC by

composition along the two paths are equal.

12i.e. a walk in which all vertices (except possibly the �rst and last) and all edges are distinct;
it is given by a �nite strings of edges. This string could well be empty in which case the
composition along the corresponding path is assumed to be identity in the category.
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(iii) A diagramd: G ! j Cj is �nite wheneverG is a �nite.

(iv) A diagramd: G ! j Cj with an apexg0 2 G is a coneif for every vertexg

distinct fromg0 there is a unique edge fromg0 to g and no edge fromg to g0.

One can say from theviewpointof apex the diagram commutes. For a cone

(d: G ! j Cj; g0) with apexg0, we call the the diagram formed by deletingg0

and all outgoing edges fromg0 thebase diagramof d.

(v) Dually, a diagramd: G ! j Cj with an apexg0 2 G is acoconeif for every

vertexg distinct fromg0 there is a unique edge fromg to g0 and no edge from

g0 to g. Similar to the above, every cocone has a base diagram.

EXAMPLE3.2.3. Consider directed graphsG (left) andG0 (right) in below.

a

i

a b
j

Let C be a non-empty category with at least one non-identity endomorphism, say

f . Let d: G ! j Cj be the diagram speci�ed byd(a) = A andd(i) = f : A !

A. Observe thatd commutes if and only iff = id A . Now, consider the diagram

d0: G0 ! j Cj with d(a) = A, d(b) = A, andd(j) = f . Observe thatd0commutes.

DEFINITION 3.2.4. A limit sketch G is a tripleG = ( G; D; L ) whereG is a directed

graph,D is a speci�cation of a set of �nite diagrams inG, andL is a speci�cation

of a set of cones inG.

DEFINITION 3.2.5. A modelM of a sketchG in a categoryC is a graph homomor-

phismM : G ! j Cj such that

(i) For each diagramd: I ! G in D, the compositeM � d: I ! j Cj is a commu-

tative diagram.

(ii) For each cone(` : I ! G; i0) in L with apexi 0 2 I , the image underM �

` : I ! j Cj form a limit cone inCwith apexi 0 over the base of̀.

Note that if a sketch G does not have any cones, that isL is an empty speci�-

cation, then a model M of G in a category C is essentially the same thing as a
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functor F(G)
.

hDi ! C, where F(G) is the free category over sketchG and

hDi is the smallest congruence onF(G) which is generated by identi�cation of

all parallel arrows in F(G) constructed from edges inD. In the case the sketch

has cones, the story is a bit more complicated.

EXAMPLE3.2.6. In this example we sketch the theory of commutative monoids. We

denote the sketch byCM. The graphGCM is de�ned by four verticesa0; a1; a2; a3

and the following edges

a3

a2 a1 a0
p0

p1
o e

id � e

e � id

p0; 1

p0; 2

p1; 2

id � �

� � id

p0

p1

p2

�

id

The idea is thatpi andpi;j are meant to express various projections,� is meant to

express binary multiplication of monoid, ande the identity element with respect

to multiplication. To achieve this we must introduceD andL as speci�cation of

diagrams and cones to be interpreted in the models by commutativities and limits

cones according to De�nition 3.2.5.

TakeL to be the set of following cones (with respective apexa0; a2; a3 from left to

right).

a0

a2

a1 a1

a3

a1 a1 a1

p0 p1 p0

p1
p2

Thus for any categoryC with �nite limits, and any modelM of this sketch,M [a0]

must the terminal object ofC, andM [a2] �= M [a1] � M [a1], andM [a3] �= M [a1] �

M [a1] � M [a1] andM [pi ] will be the corresponding product projection morphisms

in C. ThereforeM [a1] � M [a1] �= M [a2] ��! M [a1] gives the binary multiplication

in C.
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The setD of diagrams is comprised of

a

id
a3

a1 a2 a1

p0 p1
p0;1

p0 p1

a3

a1 a2 a1

p1 p2
p1;2

p0 p1

where the �rst diagram ensures thatid must be interpreted as identity morphism in

Cand the two others express thatpi andpi;j are appropriately interpreted as product

projections. We also need to add two more diagrams toD in order to express the

equations of the unit involving edgesid � e; e� id. Additionally,

a3 a2

a2 a1

a3 a2

a2 a1

a3 a2

a1

a3 a2

a1

�

p0p0;1

� � id

�

p1p1;2

id � �

� � id

p2 p1

id � �

p0 p0

belong toD which express the role ofid � � and� � id, and

a3 a2

a2 a1
�

�id � �

� � id

expresses the associativity of binary product, and

a2 a2 a2

a2

a2 a1a1

a2 a2

a1� �
�

p1p0

p0p1

�

��

express the role of� as a switch operator and also the commutativity of the binary

product.
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REMARK 3.2.7. The sketch above is by no means the unique sketch which presents

the theory of commutative monoids; it is in fact the minimal such sketch. We could

have as well added edges such as! : a1 ! a0, other identity edgesid: a2 ! a2 and

id: a3 ! a3, etc. We also could have added more equations, by adding to the setD

diagrams like

a1

a2 a2

id� e e� id

�

Notwithstanding these additions, a models in any category (with �nite limits) would

remain the same which is exactly an internal commutative monoid.

3.3 The 2-category Conof AU-contexts

In this section we are going to give a brief summary of main aspects of the

theory of AU-sketches and AU-contexts as developed in [Vic19]. We give a

handful of examples, each illustrating some concept of the theory, but we shall

avoid repeating proofs of [Vic19]. The exact references to various results of

Vickers' paper are given so that the reader could �nd proofs of various claims

which appear in this section.

The observation underlying [Vic19] is that important geometric theories can be

expressed in coherent logic (no in�nite disjunctions), provided that new sorts

can be constructed in a type-theoretic style that includes free algebra construc-

tions. Models can then be sought in any arithmetic universe (list-arithmetic

pretopos), and that includes any elementary topos with nno; moreover, the

inverse image functors of geometric morphisms are AU-functors.

If a geometric theory T can be expressed in an `arithmetic way', then we can

compare its models in AUs and in Grothendieck toposes. One advantage of

working with AUs over toposes is, usually when working with toposes, in�nities

we use (for example for in�nite disjunction), are supplied extrinsically by base

topos S, however, the in�nities in AU hTi come from the intrinsic structures of

arithmetic universes, e.g. parametrized list object which at the least gives us
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N := List(1), Q, and R. In below, we illustrate some of the differences between

the AU approach and the topos approach. To see more details about expressive

power of AUs we refer the reader to [MV12].

Arithmetic Universes Grothendieck toposes

Classifying category AU hTi S [T]

T1 ! T2 AU hT2i ! AU hT1i S [T1] ! S [T2]

Base Base independent BaseS

In�nities Intrinsic; provided by List Extrinsic; got from S

e.g. N = List(1) e.g. in�nite coproducts

Results A single result in AUs A family of results by

varying S

The system developed in [Vic19] expresses those geometric theories using

sketches. They are, �rst of all, �nite-limit-�nite-colimit sketches: an AU-sketch

is a re�exive graph with designated commutativities, initial and terminal

objects, pullbacks and pushouts, and list objects. From these we can easily

construct, for example, the natural numbers N, the integers Z, and the rational

numbers Q.

A model of a sketchT in an AU A is a graph morphism into the underlying

re�exive graph of A which actualizes the designated universals in the AU. If

the AU is equipped with chosen limits, colimits, and list objects, then one can

distinguish between `strict' models and `models up to isomorphism'.

In general, non-strict models cannot be stricti�ed since the same node can be

marked as being part of different universals, which may be isomorphic, but

not equal in a given AU.

However, AU-sketches that are generated by successively adjoining universals

to the empty sketch (in particular without identifying nodes), do admit stricti-

�cation, as is shown in [Vic19]. These special sketches are called contexts and

they are the objects of a 2-categoryCon. In [Vic19] it is shown that Conadmits

218 Chapter 3 Theories and contexts



PIE-limits and embeds fully and faithfully into the opposite of the category of

AUs and strictly structure preserving functors.

An AU-sketch is a formalization of the sketches (discussed in §3.2), but �ne-

tuned for AUs. Any AU-sketch can be used as a system of generators (the nodes

and edges) and relations to present an AU. More precisely, we have various

structures for sorts and operations shown in the diagram below.

Upb

� 2

��
� 1

��

Ulist� 2oo � 0 //

e
��

c
��

U1

tm
��

G2
di (i =0 ;1;2) //G1

di (i =0 ;1) //G0
s

oo

Upo

� 1

OO

� 2

OO

U0

i

OO

(3.8)

Here, the elements ofG0, G1, and G2 are respectively callednodes, edges,

and commutativities .

In comparing with our presentation of �rst order theories in 3.1, nodes play the

role of the sorts, edges play the role of function symbols, and commutativities

enable us to write equations between terms. The operationsd0 and d1 (of

diagram (3.8) ) give domains and codomains of edges, respectively, whiles

introduces the identity edge for each node. From G1; G0; d0; d1; s, we get a

re�exive graph of nodes and edges. Atriangle in a sketch is given by edges

u; v; w such that d0(u) = d 0(w), d0(v) = d 1(u), and d1(v) = d 1(w). We depict

such a triangle asX u
//

w

%%Y v
//Z. The operationsd0; d2; d1 : G2 ! G1 stipulate

commutativetriangles
d0 (! )

//�
d1 (! )

  
d2 (! )

//, for any element ! : G2. We write uv � XYZ w

for the mere existenceof a commutativity with that triangle. By the unary

commutativity u � XY u0, we mean a commutativity s(X)u � XXY u0.

The elements of the other sorts areuniversals, and specify universal properties

of their subjects. For example, an element ofUpb is a pullback universaland

corresponds to a limit cone in a �nite limit sketch. Its subjects are the pullback

node and the three projection edges of the pullback cone. We obtain these
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by using the triangle projection operators � 1; � 2 (to get the two halves of

the pullback square), and further by node and edge projection operatorsdi .

Similarly, the operator tm takes ! : U1 to its subject node. We have a dual

situation for pushout and initial universals.

An element of Ulist is a list universal. Its subjects are the list object and the

two structure maps " and cons. It will also have indirect subjects, since it

needs terminal and pullback universals to express the domains of the structure

maps. More, precisely, for an element! 2 Ulist (aka a list universal), the terms

e(! ) and c(! ) are the primary structure morphisms " and consfor List(A(! )) ,

where A(! ) = d 1(d0(� 1(� 2(! )))) . The domains of the structure morphisms (1

and A(! ) � List(A(! ))) are limits, and � 0; � 2 supply universals to stipulate

them.Note that the terminal needed for a product is taken to be the special

case of pullback.

We commonly write the subjects, and those of the dependent limit universals,

e.g. in a diagram of the form

T " //L
oocons

oo
p1

P p2
//A . (3.9)

where the node T is terminal universal, edgesp1 and p2 are a product cone

making P a product (special from of pullback universal) A � L, and " and cons

are the structure morphisms to makeL a list object for A.

A homomorphism of AU-sketches preserves all structures: it is given by a

family of carriers for each sort that also preserves operators, and it maps nodes

to nodes, edges to edges, commutativities to commutativities and universals

to universals.

We shall need to restrict the sketches toAU-contexts . These are built up as

extensions of the empty sketch 1, each extension a �nite sequence ofsimple

extension steps of the following types: adding a new primitive node, adding

a new edge, adding a commutativity, adding a terminal, adding an initial,

adding a pullback universal, adding a pushout, and adding a list object. From

now on, we shall refer to an AU-context simply as acontext.

220 Chapter 3 Theories and contexts



REMARK 3.3.1. An important point about sorts of a context is equality between

them: it is an equality that refers to strictness. Any sort is equal to itself. Starting

from equal data, the derived sorts constructed in the same way from that data are

equal. For example, ifX = Y thenList(X) = List(Y).

For nodes, equality is witnessed by certain edges between them that, in any strict

model, will have to be interpreted as identity morphisms between equal objects. The

base case isidentity edgesof the forms(X) (for some nodeX) in the sketch. In-

ductively we also have the �llins for limits/colimits/list nodes de�ned over data for

which we already have such edges (e.g. consider extending by a pullback universal

over two opspans whose corresponding sorts are equal). Vickers ([Vic19]) proves

that these edges areunique, when they exist, and gives an equivalence relation on

nodes. The uniqueness here is up toedge equality: for two edges, equality is wit-

nessed by a commutative square (i.e. two commutativities) with the two given edges

and two identity edges. Existence of the equalities is decidable. If two nodes are in-

troduced in different ways then they are not objectively equal; otherwise by recursion

through the data from which they are constructed we can prove their equality.

Note that some of these simple extensions does not have any effect on (strict)

models since they do add nothing new to the (strict) models of the sketch in

arithmetic universes/toposes.

The following is an example of simple extension by adding a pullback univer-

sal.

EXAMPLE3.3.2. SupposeT0 is a context andX0 andX1 are two nodes in it. Consider

its equivalent extensionT1 = T0 + � T0 by a terminal node with

� U1 = f�g

� G0 = f tm( � )g

� G1 = f s(tm(� ))g

Here byT1 = T0 + � T0, we mean that for every sort� of sketchT, the set(T1)�

of elements of sort� can be expressed as a coproductT � + � � , with a coproduct

injectionT � ! (T1)� and that� � is astrongly �nite set(i.e. isomorphic to a �nite

cardinalf 1; : : : ; ng for somen 2 N).
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EXAMPLE3.3.3. SupposeT is a sketch that already contains data in the form of a

opspan of edges:
u1 // u2oo . Then we can make a simple extension ofT to T0by

adding a pullback universal for that opspan, a cone in the form

P
p2

�
//

p

��
p1

��
u2

��
u1

� //

Along with the new universal itself, we also add a new nodeP, the pullback; four

new edges (the projectionsp1; p2; p and the identity forP) and two commutativities

u1p1 � p andu2p2 � p. So, more precisely, what is added is� T:

� Upb =

8
>>>>><

>>>>>:

P
p2

�
//

p

��
p1

��
u2

��
u1

� //

9
>>>>>=

>>>>>;

� G2 = f p1u1 � p; p2u2 � pg

� G1 = f p1; p; p2; s(P)g

� G0 = f Pg

where� signi�es a commutativity.

An important feature of extensions is that the subjects of the universals (for

instance, P and the projections in the above example) must befresh – not

already in the unextended sketch. This avoids the possibility of giving a single

node two different universal properties, and allows the property that every

non-strict model has a canonical strict isomorph (e.g. if we were able to impose

an equality between two derived sorts such asList(X) and Y� Z it would violate

the canonical strict isomorph theorem).

The next fundamental concept is the notion of equivalence extension. This

is an extension that can be expressed in a sequence of steps for which each

introduces structure that must be present, and uniquely, given the structure in

the unextended sketch. Unlike an ordinary extension, we cannot arbitrarily

add nodes, edges or commutativities – they must be justi�ed. Examples of
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equivalence extensions are to add composite edges; commutativities that

follow from the rules of category theory; pullbacks, �llins and uniqueness

of �llins, and similarly for terminals, initials, pushouts and list objects; and

inverses of edges that must be isomorphisms by the rules of pretoposes. Thus

the presented AUs for the two contexts are isomorphic.

EXAMPLE 3.3.4. In the case of pullback universal, new edges arise as universal

structure edges and �llins.

• A simple extension for a pullback universal is also an equivalence extension.

• Suppose we have a pullback universal! 2 Upb where! is given as

P
p1

��

p

��

p2

�
//

u2

��
u1

� //

and� 1; � 2 are commutativities

v1

��

v

��

v2

�
//

u2

��
u1

� //

with equations

d2(� i ) = d 2(� i (! )) = ui

d1(� 1) = d 1(� 2) = v.

specifying that� 1; � 2 is another cone on the same data. Then our equivalence

extension has

� G1 = f w = hv1; v2i u1 ;u2
g

� G2 = f wp1 � v1; wp2 � v2g.
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• Suppose we have a pullback universal! 2 Upb as above, and edgesv1; v2; w; w0

with commutativitieswp1 � v1; wp2 � v2; w0p1 � v1; w0p2 � v2. Then our

equivalence extension has

� G2 = f w � w0g.

EXAMPLE 3.3.5. We construct theSierpinski context S by adding two nodesI

and1 where1 is a terminal node and a `mono' edgei : I � 1, where being mono is

expressed by two commutativitiessi � i and� 1
i;is � � 2

i;i in an equivalence extension

S0of S.13

I 1

Pi;i I
�

�
� 1

i;i

� 2
i;i

i

i

s

wherePi;i is the subject of a pullback universal ofi along itself.

Any sketch homomorphism between contexts gives a model reduction map

(in the reverse direction), but those are much too rigidly bound to the syntax

to give us a good general notion of model map. We seek something closer to

geometric morphisms, and in fact we shall �nd a notion of context mapthat

captures exactly the strict AU-functors between the corresponding arithmetic

universesAU hTi . A context map H : T0 ! T1 is a sketch homomorphism

from T1 to some equivalence extensionT0
0 of T0. In picture, it is given as an

opspan:

T0
E
b

//T0
0 T1

Foo

where F is a sketch extension morphism andE an sketch equivalence. We

think of a context map T0 ! T1 as a translation F from T1 into a context

equivalent to T0. We can say morphismsT0 ! T1 are models of T2 in “stuff

13The upper commutativity is being considered here to express� 1
i;i � � 2

i;i . The lower
commutativity already existed as derived data for i � i.
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derivable from T1". Still put in terms of classifying AUs and strict AU-functors

we get an opspan

AU hT0i
AU hE i

�=
//AU hT0

0i AU hT1i
AU hF ioo

SinceE is an equivalence extension,AU hEi is an isomorphism ([Vic19, Propo-

sition 18]). Each model M of T0 gives – by the properties of equivalence

extensions – a model ofT0
0, and then by model reduction along the sketch

homomorphism it gives a model M � H of T1.

Thus context maps embody a localization by which equivalence extensions

become invertible. Of course, every sketch homomorphism is, trivially, a map

in the reverse direction. Context extensions are sketch homomorphisms, and

the corresponding maps backwards arecontext extension maps. They have some

important properties, which we shall see in the next section. We emphasize

that context maps (1-morphisms in the 2-categoryConof AU-contexts) `go in

the geometric direction' rather than the algebraic one, i.e. if T is obtained from

S by adjoining new structure, then the corresponding extension map goes in

direction T ! S.

At this point let us introduce the important example of the hom context

T ! of a context T. We �rst take two disjoint copies of T distinguished by

subscripts 0 and 1, giving two sketch homomorphismsi 0; i1 : T ! T ! . Second,

for each node X of T, we adjoin an edge � X : X0 ! X1. Also, for each edge

u: X ! Y of T, we adjoin a connecting edge� u : X0 ! Y1 together with two

commutativities:

X0
� X

�
//

� u

  
u0

��

X1

u1

��
Y0 � Y

� //Y1

A model of T ! comprises a pair M 0; M1 of models of T, together with a

homomorphism � : M 0 ! M 1. In particular, a model of O! in a topos A is

exactly a morphism in A . We can de�ne diagonal context map � T : T ! T !

by the opspan(id; F ) of sketch morphisms whereF sends edges� X to s(X), � u
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to u and commutativities to degenerate commutativities of the form us(X) � u

and s(Y)u � u.

We de�ne a 2-morphism between context mapsH0; H1 : T0 ! T1 to be a map

H : T0 ! T !
1 which composes with the mapsi 0; i1 : T !

1 ! T1 to give H0 and

H1.

Finally, an objective equality between context mapsH0 and H1 is a 2-morphism

for which the homomorphism between strict models must always be an identity.

This typically arises when a context introduces the same universal construction

twice on the same data.

Let us explain the last point in more details: the (intensional) equality between

context maps f; g : T1 � T2 is formulated in [Vic19] by using a common

re�nement of equivalence extensions, and therefore, we can assume that they

are both sketch homomorphisms from T2 ! T0
1 where T0

1 is an equivalent

extension of context T1. Thus, every sketch ingredient inT2 is taken to one of

the same kind in T0
1.

We de�ne the equality in two stages. First, an "object equality" is for ingredients

already in T1 that serve to witness the equality between f and g. After that,

"objective equality" is for when those ingredients can be derived, using an

equivalence extension of T1.

From these material [Vic19] constructs the 2-category Con whose objects

are contexts, morphisms are context maps modulo objective equality, and

2-morphisms are 2-morphisms. It has all PIE-limits (limits constructible from

products, inserters, equi�ers). Although it does not possess all (strict) pullbacks

of arbitrary maps, it has all (strict) pullbacks of context extension maps along

any other map.

For instance in Con, the Sierpinski context S de�ned in Example 3.3.5 has two

global points ? ; > : 1 � S where the terminal context 1 has empty sketch.

These global points correspond to the sketch homomorphismsF; F 0: S � 10

where 10 is the extension of the terminal context by an initial node and a
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terminal node, and F and F 0 take the node I of the sketch of S to the initial

and terminal node of 10, respectively. It is easily checked that there is indeed a

2-morphism ? ) > analogous to the specialization order for the Sierpinski

space.

We now list some of the most useful examples of AU-contexts. For more

examples see [Vic19, §3.2].

EXAMPLE3.3.6. The contextO has nothing but a single node,X , and an identity

edges(X ) on X . A model ofO in an AU (or topos)A is a “set” in the broad sense

of an object ofA , and soO plays the role of the object classi�er in topos theory. The

classifying topos ofO is [Set�n ; Set] and with the inclusion functorInc: Set�n ,! Set

as its generic model. There is also contextO� which in addition to the generic node

X has another node1 declared as terminal, that istm( � ) = 1, and moreover, it has

an edgex : 1 ! X (This is the effect of adding a generic point to the contextO).

Its models are the pointed sets. This time we must distinguish between strict and

non-strict models. In a strict model,1 is interpreted asthe canonicalterminal object.

The classifying topos ofO� is the slice topos[Set�n ; Set]=Inc. The generic model of

O� in [Set�n ; Set]=Inc is the pair(Inc; � : Inc ! Inc � Inc) where� is the diagonal

transformation which renders the diagram below commutative:

Inc Inc � Inc

Inc

�

id � 2

There is a context extension mapU : O� ! O which corresponds to the sketch

inclusion in the opposite direction, sending the generic node inO to the generic

node inO� . As a model reduction,U simply forgets the point. Note that there is

another context map, however not an extension map,R : O� ! O corresponding to

the sketch map sending the generic node ofO to the terminal node inO� .

EXAMPLE3.3.7. The contextO! comprises two nodesX0 andX1 and their identi-

ties, and an edge� X : X0 ! X1. A model ofO! in an AU A is exactly a morphism

in A. We de�ne the diagonal context mapO ! O! by the opspan(id; F ) where

the sketch morphismF takes� X to s(X), � u to u and commutativities to degenerate

commutativities of the formus(X) � u ands(Y)u � u.
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