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Abstract

There are two well-known topos-theoretic models of point-free generalized
spaces: the original Grothendieck toposes (relative to classical sets), and a
relativized version (relative to a chosen elementary topos S with a natural
number object) in which the generalized spaces are the bounded geometric
morphisms from an elementary topos E to S, and they form a 2-category
BTop/S . However, often it is not clear what a preferred choice for the base
S should be.

In this work, we review and further investigate a third model of generalized
spaces, based on the 2-category Con of ‘contexts for Arithmetic Universes
(AUs)’ presented by AU-sketches which originally appeared in Vickers’ work in
[Vic19] and [Vicl7].

We show how to use the AU techniques to get simple proofs of conceptually
stronger, base-independent, and predicative (op)fibration results in ETop, the
2-category of elementary toposes equipped with a natural number object, and
arbitrary geometric morphisms. In particular, we relate the strict Chevalley
fibrations, used to define fibrations of AU-contexts, to non-strict Johnstone
fibrations, used to define fibrations of toposes.

Our approach brings to light the close connection of (op)fibration of toposes,
conceived as generalized spaces, with topological properties. For example, ev-
ery local homeomorphism is an opfibration and every entire map (i.e. fibrewise
Stone) is a fibration.
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Introduction

What, then, is the topos-theoretic outlook?
Brie y, it consists in rejection of the idea that
there is a xed universe of "constant” sets
within which mathematics can and should be
developed, and the recognition that a notion
of 'variable structure’ may be more
conveniently handled within a universe of
‘continuously variable' sets than by the
method, traditional since the rise of abstract
set theory, of considering separately a domain
of variation (i.e. a 'topological space') and a
succession of constant structures attached to
the points of its domain.

— Peter Johnstone
From the introduction of Topos Theory
[Joh77]

At the heart of a historical evolution, both in understanding and formalization,
of the notion of spacelies the generalizing move to study spaces not only
by their open parts but also by bundles over that space. This had already
appeared, one could argue, in Riemann's work on Riemann surfaces in the
19th century.

Moving to the 20th century, it was one of Brouwer's critical ideas that checking

equality of two real numbers, represented by their decimal expansions, is
problematic and indeed for constructive reasons one has to work with open
intervals instead since it is possible to verify belonging to open intervals by an
algorithmic process. Equality of two real numbers is the limiting case achieved




only by in nite non-constructive means and thus it is illegitimate. This lucid
viewpoint led to further development by H. Weyl in Das Kontinuumand later
by A. Heyting, a student of Brouwer.

The further formalization of this idea led to discovery that open sets of a
topological space, being a special case of what is called a Heyting algebra,
form a model of intuitionistic propositional logic. In this view propositions
are modelled as open parts of a topological space. This is one of the most
signi cant early examples of mathematical trinitarianism. (See [Shul8] for
recent categori ed and homotopi ed analogue.) This discovery should be
regarded in the sequel of an older discovery by Boole and Venn in the 19th
century that a proposition can be seen as “linear manifold” and implication of
propositions as the incidence of linear manifolds ([Car01]).

In the context of algebraic geometry, the generalization from open parts
of a topological space to sheaves (aka bundles) over the space appears in
Grothendieck's work on étale cohomology. It was later shown that this move
corresponds to generalizing propositional geometric logic (internal logic of
locales) to predicate geometric logic (internal logic of Grothendieck toposes)
(IMR77], [VicO7]). In type theory (e.g. MLTT even without proof relevance

I.e. without identity types), a similar phenomenon occurs: the paradigm of
“types as propositions” is insuf cient, and dependent types are modelled by
brations (a particular kind of bundles).

Toposeswvere rst conceived as kinds of “generalised spaces” which would
provide a foundational frameworks for unifying various cohomology theories,
most notably sheaf cohomology ([AGV72]). It is therefore no surprise that
the rst de nition of topos was ‘topos as a category of sheaves'. For nice
spaces (more precisely "sober' spaces) this topos is as good as the space itself,
from topological point of view. According to its creators the notion of a topos
“arose naturally from the perspective of sheaves in topology, and constitutes

a substantial broadening of the notion of a topological space, encompassing
many concepts that were once not seen as part of topological intuition: : : As
the term “topos' itself is speci cally intended to suggest, it seems reasonable
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and legitimate to the authors of this seminar to consider the aim of topology
to be the study of toposes.” ([AGV72])

Although the intended models of axiomatic framework of Grothendieck toposes
were all geometrical, workers in category theory made further abstractions
which in retrospect happened to be extremely fruitful. As the historical nar-
rative goes William Lawvere worked on the axiomatic of the category of
categories and he collaborated with M. Tierney on nding new axioms for
toposes.

Having introduced the sub-object classi er, Lawvere discovered the notion of

elementary topos and Tierney discovered that a Grothendieck topology is the
same thing as a closure operator on the sub-object classi er. The idea that
topology can be formulated by the algebraic notion of closure operator was

a new understanding that was achieved by a logical formalization of toposes
which had geometric roots and came from geometric intuitions. Moreover,

once the notion of topos was axiomatized, out of these axioms the new notion

of elementary toposvas born. It was observed their internal logic of elementary

topos is higher order intuitionistic. !

It was understood that the notion of elementary topos abstracts from the
structure of the category of sets; each elementary topos can be though of as a
universe of set-likeobjects [MR77], and elementary toposes can be assigned
an internal language (Mitchell-Bénabou language) which enables one to
reason about the objects and morphisms of a topos as if they were sets and
functions.

Through study of various models of theory of elementary toposes it became
clear that the abstraction is suf ciently general that elementary toposes en-
compass not only all Grothendieck toposes (such as the Zariski topos, the
topos of quasi-coherent sheaves, Crystalline topos, petit topos and gros topos,
Nisnevich topos, etc.) but also structured categories from mathematical logic
(e.g. effective toposes in connection with the theory of realizability).

10nly in retrospect by re ecting on the history of the subject and tracing back the original
ideas of Brouwer, Weyl, and Grothendieck this can be seen natural!




However, elementary toposes set to depart from the main intuition of “conti-
nuity as geometricity' of toposes. If we take the notion of elementary topos
as a kind of structured category (i.e. a cartesian closed category with power
object) then the a structure-preserving morphism of elementary toposes is not
geometric morphisms, but rather what is known as a “logical morphism'. This
obstructs the essence of toposes as generalized spaces.

One of the main ideas of toposes agjeneralized point-freespaces is that toposes
have natural inherent topologies and toposical constructions are performed
in continuous fashion. The discontinuities arise precisely from replacing
the space by its set of points. Note that by “point-free’ we do not mean
ignoring points, but rather to give them a re ned meaning. It means that
the points are de ned as models of a geometric theory, not as elements of
a set. Therefore the constraints of geometricity takes the centre stage of
dealing with spaces through the mediation of their point. A great number of
classical spatial construction, based onelements-of-a-setiew of points, via
arbitrary transformations of sets of points are deemed illegitimate in our way
of conceiving points of spaces.

For example, some type theoretic constructions such as function types and

-types, corresponding respectively to the categorical notions of exponentials
and dependent products, are intrinsically discontinuous if understood as con-
structions on sets (discrete spaces). The technical issue in the internal logic
of toposes is that these constructions are not geometric, that is they are not
preserved by inverse image functors of geometric morphisms (See 8§2.1). When
performed brewise on dependent discrete spaces they are unfortunately not
preserved by substitution which is a real drawback particularly when it comes
to formulating principles such as induction.

Topos theory also provide arelative and local foundation for mathematics. In
relative topos theory we see a presenting structure in an elementary topos as
a bounded geometric morphismp: F ! E, where F is the topos of sheaves
over E for the space presented by the structure. Indeed, for suchp, one obtains
a canonical E-indexed topos F whose underlying topos isF and the indexed
category is given byF(l) := F =p |, for each objectl in E. Therefor, p makes

Chapter 0 Introduction




F into an E-topos. This is crucial in Johnstone's approach in development of
relative topos theory ([Joh02a]).

Moreover, xing any elementary topos S , geometric theories give rise to spaces
relative to S .2 The way it works is that one associates to every geometric
rst order theory T the classifying® topos S [T] whose category of points is
the category of S -models of T. There is ageneric(unique up to canonical
isomorphism) model of T in S [T] which is universat any model M of T in
an S -topos E is classi ed, up to a unique equivalence, by a unique geometric
morphismgy : E! S [T]overS .

The reader familiar with universal algebra may recognize the similarity to the
construction of free algebra (which also yields the presentation of algebras
by generators and relations). A well-known example is the Lindebaum-Tarski
algebra (in this case a frame) Lt of a propositional geometric theory T. A
frame morphisms Lt ! A is exactly a model of T in A, and therefore the
point of locale [T] corresponding to L + are models of T. Conversely, any locale
X is the classifying locale of some propositional geometric theory. The same
is true for any Grothendieck topos E over S : there is a geometric theory T
which classies E, thatis E' S [T] over S . We usually call such a theory, the
“theory of points of E". This is in line, for instance, with taking the geometric
propositional theory of completely prime lters of a locale as the theory of
its points. Indeed, any propositional geometric theory presents a locale by
generators and relations. Other examples are theory of groups, theory of rings,
theory of local rings, theory of torsors, etc.

This spells out the meaning of word "generalized' when we view toposes as
generalized spaceshat the theory of their points is rst order geometric as
opposed to merely propositional (i.e. no sorts, and therefore, no variables,
terms or quanti ers, no function symbols, and the predicate symbols are all

2If we take S to be the Boolean topos of sets, then we recover classical mathematics in which
the axiom of choice and the law of excluded middle are valid. However, for non-Boolean
toposes, such as toposes of sheaves, the situation is more interesting: the internal logic of
generic topos is intuitionistic. In this light one can see classical mathematics as the limiting
case of intuitionistic mathematics, and the law of excluded middle as a unifying principle.
31t classi es models of T in all S -toposes by the geometric morphisms landing inS [T].




nullary). What in set theory appears as various proper classes (e.g. of sets, or
of groups) become here generalized spaces (object classi er topos, the group
classi er topos), and as such universes of various kinds appear.

A crucial fact is that two theories T and Tare S -equivalent* precisely when
the categories of their models are equivalent in that their classifying toposes
S [T] and S [T are equivalent. For example, consider the geometric theory
That consisting of only one sortN, a nullary function symbol z: N (i.e. a constant
symbol) and a unary function symbol s: N ! N subject to the following
(geometric) axioms:
z=90N) N ?
(M) = s(N) " mpn:n M=N

>‘n:N_ n:Sn(Z)
n2N

where s'(z) stands for the term s(::: (s(2)) :::) with n occurrences ofs.

Relative to any base elementary toposS , equipped with the natural number
object (nno) N, the theory above and the empty theory are equivalent: In any
model of T inany S -toposp: E! S, the sort N is interpreted as an object
that is isomorphic to the nno p N in E, by a unique isomorphism under which
the constant z corresponds to the natural number O, and the function symbol s
corresponds to the successor operation op N.

This indeed shows that the notion of equivalence of theories depend on the kind
of in nite structures the base topos supports, and therefore, the equivalence
of theories is “relative' to the base topos>

Therefore, Grothendieck toposes (i.e.Set-valued sheaf toposes over sites) and
relative toposes (i.e. the 2-categoryBTop=S of bounded toposes over a xed
baseS with nno) offer two models of point-free generalized spaces. BTop=S
is studied in [Joh02a, §B.4].

4Or to put it differently, as far as S is concerned.

SWhereas this observation seems to go against the formal/de nability account of structural
properties, it does yield support to the invariance account of structural properties, rst
proposed by Felix Klein.
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A third model is put forward in [Vic19] and [Vicl7]is contexts for Arithmetic
Universes They form a (strict) 2-category Con

In what sense are “contexts for Arithmetic Universes' models of generalized
point-free spaces? Well, the structures of AUs parallel (relativized) Giraud's
characterization of relative Grothendieck toposes, except that AUs have only
nitary fragment of geometric logic, and instead of in nitary disjunctions being
supplied extrinsically by a base topos (e.g. the strucuture of small-indexed
coproducts), we have sort constructors for parametrized list object that allow
somé® in nities to be expressed intrinsically. The goal is to see to what extent
AUs can replace Grothendieck toposes as models of spaces. In this approach,
geometric theories are replaced by AU-contexts, kind of thought of astypesof
type theoryof AUs, presented by sketches ([Vic19]), and geometric morphisms
are replaced by AU-functors, corresponding to the inverse image functors. AU-
contexts provide a base-independent model for generalized point-free spaces
in the sense that they form a 2-categoryConwhich gets embedded into GTop,
the 2-category of all relative toposes over all bases, via their classifying AUs.

We emphasize that throughout this dissertation all elementary toposes are
assumed to have nno, and we rely on it in a crucial way. Without nno, we

would not be able to construct the object classi er topos, a key player in

making the model of AU-context of point-free generalized spaces work. Note
that existence of nno is sometimes referred to as “axiom of in nity” for toposes

analgous to the same axiom in ZF set theory ([Bla89]).

In Chapter 4, we show how to use the arithmetic universe (AU) techniques
of [Vic17] to get simple proofs the stronger, base-independent (op) bration
results in ETop, the 2-category of elementary toposes with nno, and arbitrary
geometric morphisms.

More precisely, for an extension mapU: T,y ! Tgin Con and a model M of
To in S, an elementary topos with nno, there is a geometric theory T,=M,

6But not all! Nonetheless, we have enough in nities to develop point-free continuum for the
purposes of calculus and real analysis.




of models of T; whose To-reduct is M, and so we get a classifying topos
p: S [T;=M]! S ([Vicl7]). The main result of [HV19] then states

if U is an (op) bration in Con using the Chevalley criterion,

then pis an (op) bration is ETop, using the Johnstone criterion.

The main novelties of our approach from other previous work are manifold:
rst, avoiding the use of impredicative structures of toposes (because of
the subobject classi er and the power-objects) which makes our methods
compatible with arithmetic universes.

Secondly, achieving the results for all toposes uniformly and independent of
their base. This guarantees that the results are valid for all toposes over all
bases including non-Boolean bases and thus they are full constructive. This
approach promises a way to develop a rich theory of brations and op brations

of toposes over various elementary toposes which are not classical such as the
effective topos.

Third, the brations of contexts are much easier to work with since they enjoy
certain strictness property at the level of models and also are all nitary in
terms of their construction. All existing 2-limits and colimits in Conare strict
whereas they are weak (i.e. they are bicategorical limits) in BTop=S and
Gl op.

Above all, we argue that our approach is conceptually stronger than [Joh02a]:
if we are to prove a geometric morphismp: E! S in ETopis a bration
(resp. op bration) we have to show the existence of a lifting structure for every
geometric morphism from A to S , and for every geometric transformation
between any such two geometric morphisms. However, ifp arises from a
bration of AU-contexts U: T, ! Tg (as in Theorem 4.2.2) we only need to
check the (strict) lifting structure along the generic codomain (resp. domain)
map T!0 ' To. Crucially, this lifting structure is strict which in practice
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makes the problem of veri cation of tracking coherence data (of the involved
pullbacks) much easier.

The results presented in this thesis should be seen in a bigger context of the
programme of adapting classical reasoning to constructive reasoning, while at
the same time reducing a priory impredicative principles in certain systems to
predicative ones (See [Mai05a], [Mail0a], [MV12]).

0.1 The outline of the thesis

We end this introduction by giving a road map of chapters.

The rst chapter is a self-contained and suf ciently general introduction to
the well-established theory of 2-categories and bicategories. Although it is
written in an expository manner, certain points were emphasized as they serve
a foundation for the later developments for the next chapters. It serves to
provide the concepts and structures needed in the rest of the thesis. However,
for our expert reader the only essential parts to the story of the thesis are §1.6,
and the Construction of “display sub-2-category' in 8§1.4.

One of the underlying principles of this chapter is that categorical notions and
constructions are best expressed in the language of 2-categories; this principle
is known as formal category theory

However, there is another principle which is dominant in the later chapters,
particularly in Chapters 3 and 4: in many situations, the correct way to
organize a collection of mathematical objects is not as objects of a category
but as points of a generalized space. Notions from category theory can be
transferred to objects of a more general kind, and in particular generalized
spaces, by collecting the generalized spaces into 2-categories.

These two principles are actually not in con ict for the abstraction involved
in the de nition of 2-category is general enough so that the “formal study of

0.1 The outline of the thesis




10

categories" can be applied to structures other than pure categories, for instance
toposes (as generalized spaces). This idea is a vital part of the main results.

Another important motif in writing this chapter has been the observation
that the two models of generalized spaces, namely the 2-categoryConof AU-
contexts (Chapter 3) and the 2-category GTop of Grothendieck toposes (81.6)
exhibit different 2-dimensional properties: the former is strict and the latter
has interesting bicategorical properties (81.6). For us, the delineation of the
2-categorical and bicategorical features has been crucial in discussing various
notions of 2-limits in §1.9.

In Chapter2, following the principle of formal category theory, we review
two distinct styles to study Grothendieck (op) brations in 2-categories and
bicategories. We call them respectivelyChevalley-styleand Johnstone-style
Using the construction of display sub-2-category from Chapter 1 we give
a cogent and novel reformulation of Johnstone-style brations in terms of
brational objects. The utility of this reformulation is that it repackages lots
of coherence data in the de nition of Johnstone-style brations, arising from
bipullbacks involved in that de nition, into the universal property of cartesian
morphisms of a certain bration of bicategories.

For the reader already familiar with the theory of Grothendieck brations, we
suggest to skip most parts except §2.4, §2.5, 82.6. In Chapter 3, we present the
third model of generalized spaces, that is the 2-categoryConof AU-contexts
(83.3) and study its features. We quickly review the main aspects of the theory
of AU-contexts, our AU analogue of geometric theories in which the need for
in nitary disjunctions in many situations has been satis ed by a type-theoretic
style of sort constructions that include list objects (and an nno). The contexts
are “sketches for arithmetic universes” [Vic19], and we review the principal
syntactic constructions on them that are used for continuous maps and 2-
morphisms. We also introduce the notion of bration of contexts (83.4) and in
the next chapter we prove that they beget brations of toposes.
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As an original contribution, we shall use this reformulation in obtaining -
brations and op brations in the 2-category ETop of elementary toposes from
Chevalley-style brations of AU-contexts in Chapter 4.

Finally, in Chapter 5 we shall consider some further examples, potential appli-
cations, and few conjectures concerning new avenues for future research. We
shall state these conjectures and give a sketch of a potential proof. We warn
that the discussion will be more impressionistic than scienti c. One such appli-
cation concernsbag toposesBag spaces originally appeared as “bagdomains”,
was in [Vic92] in the context of directed complete posets (dcpos). In a series
of papers ([Joh92], [Joh93], [Joh94]) Johnstone gave a characterization of a
bag topos’ B ag(E) as a 2-categorical partial product of E and the op bration
S[O]! S |[O] of object classi er, among other things. Indeed, to take a
proper account of specialization (already essential in the dcpo case) it relies on
the fact that sets (discrete spaces) are op brations. Some colimits of toposes
(e.g. coproducts, lifting, scones) can be then be constructed from bag toposes.
We state few conjectures which put a research path forward to construct partial
products of AUs from bag context.

"Given a spaceE, B ag(E) is the space whose points are bags of points (i.e. set-indexed
families of points) of E. To use type theoretic notations, it would roughly be expressed
as .y i) E, where U is a universe of discrete spaces. In this sense it is an analogue
of powerdomain. When E has one point B ag(E) is equivalent to the object classi er.
Furthermore, Johnstone's 2-categorical generalization made it possible to vary the type of
the indexing object; initially, it was considered a set, but it could very well be a a category;,
or a spectral space.

0.1 The outline of the thesis 11







2-Categorical preliminaries

In this chapter we give a concise and self-contained review of the theory of 2-
categories and bicategories which constitutes a scaffolding of the next chapters.
In particular, 81.2 explains the passage from 2-categories to bicategories which
involves a certain weakening of unit and composition structures.

Elementary toposes and Grothendieck toposes (over a xed base or otherwise),
which are the main objects of our interest, actually form 2-categories but
a mixed 2-categorical and bicategorical approach is most suitable to them.
The need for such an approach is discussed in 81.6 at a greater length: one
such need is that the existing limits and colimits of diagrams of toposes are
bicategorical. In 81.9, we give a comprehensive and self-contained review of 2-
categorical and bicategorical limits (aka weak limits) with a special focus on the
delineation between the two. Most signi cant for us is the well-known class of
PIE limits; the 2-category Conof AU-contexts' (the most signi cant 2-category
for us in Chapter 3) has PIE limits. In 81.4, we introduce the construction of
“display sub-2-category' which shall be essential in later developments in our
new characterization of Johnstone brations in terms of brational objects of
the codomain 2-functorin §2.6.

We begin in 81.0 introducing the ideas behind the de nition of 2-category
by explaining the link to formal category theory In 81.8 (and also in 8A.7)
we shall give a avour of the view of 2-categories as a framework for formal
category theory in action. Few basic concepts of category theory and facts
about them are done intrinsically to 2-categories. These section are not meant
to serve as an encyclopedia, but rather as a keyhole perspective as an opening
to the vast playground of formal category theory within 2-categories.

1AU is short for Arithmetic Universe.
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The main references that have been consulted for writing this chapter are
[BENG7], [Gra74], [Str72], [BKP89], [Kel89], [GPS95], [PR91], [Joh02a],
[Lacl0a], [Lac10b], and [Gurll]. There are handful others to which we shall
refer in the relevant individual sections.

1.0 Introduction

Before getting into the business of de ning 2-categories, bicategories and their
morphisms in the next sections, we would like to engage the reader with a
broader picture of higher category theory which as its building block includes
2-categories and bicategories but it paints much more. Although this thesis
does not need higher categories other than 2-categories and bicategories, a
short discussion of higher categories in below sheds light on 2-categories and
bicategories themselves.

Higher category theory can be seen under two different lights: rst as a
generalization of homotopy types of spaces, and second, as a higher analogue
of the notion of category. In the rst case, the inspiring force has been the
homotopy hypothesisoriginally due to Grothendieck (e.g. in Pursuing Stacks)
which roughly asserts that (weak) higher groupoids should classify homotopy
types. The weak higher structures in fact has been the hardest part in providing
a fully algebraic de nition of higher groupoids which model homotopy types
of spaces. Higher categories generalize higher groupoids in that the paths (or
better known as morphisms) between objects and higher paths between paths
have a direction and are not necessarily invertible. If we regard morphisms
as physical processes of some kind, it is quite natural to not require their
invertibility; after all some processes lose information and are not revertible.
That is essentially why categories are more commonly found than groupoids
in mathematics, and in applications to sciences.

Another way to arrive at higher categories from categories is the idea ofproof
relevance To make this clear, we give an example here. In a certain category
(i.e. a model of rst order theory of categories), we can reason about equality
of morphism. For instance, we have the following rules:
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] f:g,g:|\f;g;|f:|.

[ ]
—h
]

g, dom(h) =cod(g) tgn h f=h ¢

.
>
1

k, dom(f) =cod(h) "¢hx f h=f Kk
From these we can deduce
f = g;h=k;dom(h) =cod(f) "tgnxk h f =k g

We can go beyond themere fact of equality of two morphisms, and also
keep track of process of proving equality of morphisms. For instance two
morphisms f and g can be proved to be equal by knowing thatf = f, h,
h=1f;, fo,g=k fg,andk = f, f;. The proof of equality of f and g uses
the associativity law of category where all this morphisms are situated. If we
update our knowledge by getting extra data that f is an identity morphism,
then we get a different proof using the unit law of the category and the last
rule above. The main idea of proof relevance applied to this situation is that
we should go beyond the strucuture of categories to be able to speak about
different proof of equality of morphisms. An equality proof f = g can be
regarded as a (bidirectional and invertible) morphism from f to g. The proof-
relevance view leads one to go beyond groupoid and to the realm of higher
groupoids, and in fact this move is at the core of conception ofh-level of types
in homotopy type theory (HOTT).

However, to be more general, we might not want to impose the condition that
the proofs of equality of morphisms are either bidirectional or invertible. In
fact, we might even think of these morphisms as reduction processes than
proofs. So, if morphisms are conceived of as general processes, then the
reduction processes might be regarded as processes between processes. In
the parlance of higher 2-category theory they are called2-morphisms We can
think of 2-categories as categori cation of categories. The 2-categories can
be weak in that the unit and associativity laws of morphisms hold only up

to invertible 2-morphisms (aka iso-2-morphisms). Following Bénabou, they
are referred to as bicategories in the literature of higher category theory. We
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shall reserve the term 2-category for strict 2-categories where the unit and
associativity laws of morphisms hold strictly.

Of course, there is nothing that stops us here: similarly, we might be interested
in keeping track of reduction (or equality) of certain 2-morphisms from other
ones. Pursuing this idea to its end, we get 3-categories which additionally
possess 3-morphisms between 2-morphisms.

Repeating the process leads to the concept of-categories and as a “colimit” of
this process we obtainl -categories which consist ofk-morphisms for every
k =0;1,2;:::. However, the simplicity of this picture is deceiving and the
details have been omitted. In general, it not straight-forward to replace the
“structural equalities" which are part of the theory of categories by higher
morphisms.

In this chapter we shall give an expository account of 2-category and bicategory
theory. By no means, our account will be comprehensive. For the most part,
we shall include what is essential for the plan of thesis. As such, we emphasize
on the issues of strictness, pseudoness, and laxness, and the corresponding
notions of representability to which they give rise. Accordingly, we review
construction of weighted limits and colimits with several important examples;
they are primarily viewed as 2-dimensional generalizations of ordinary limits
and colimits of category theory.

In 81.3, itis argued that strict 2-functors are the most well-behaved morphisms
of 2-categories when it comes to existence of various limits and colimits.
However, it is sometimes useful to have pseudo functors between various
2-categories of toposes. Also, the essential tool of relative topos theory is that
of indexed categories which are essentially pseudo functors to the 2-category
Cat of locally small categories. As such we shall be concerned with pseudo
functors in this chapter.

In 8A.6 we review the well-known facts that every bicategory is biequivalent

to a 2-category, and that every pseudo functor is pseudo naturally equivalent
to a strict 2-functor. What's more, many 2-categories of toposes are indeed
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strict in that they are strictly unital and associative. So, a natural question is
that why do we need to talk about bicategories in this chapter?

The reason is, and this is particularly crucial for us, that many phenomena,
such as limits and colimits, in various 2-categories of toposes are bicategorical.
The analogue of categorical limits and colimits for bicategories is given by
the notion of weighted limits and colimits. They are only determined up to
equivalence, but in the 2-categoryCatthere is a canonical choice.

We ocassionally make use of the theory of enriched categories, especially in
the cases where enriched de nitions and constructions are more cogent and
concise than the elementary description in terms of objects, morphisms, and 2-
morphisms. Although, the important point to bear in mind is that all enriched
notion used in this chapter with regard to bicategories can be carried out in
elementary terms. This means we are not bothered by size issues (e.g. that the
2-category of categories is notCat-enriched).

A word on notations: throughout the rest of this paper and particularly in
this chapter, we organize categories and 2-categories themselves into various
categories and 2-categories (of larger size) based on different notions of
morphism between them which will be de ned in 81.3. The table 1.1 can be
used as a notation guide.

We have notexplicitly imposed size constraints on categories as objects dat
Note that in absence of any smallness conditions, categories, functors, and
natural transformations do not form a 2-category (de ned as a Cat-category)
since for categoriesC and D, the functor category [C; D] is not necessarily
small, e.g. takeC= 1 and D = Set. Indeed, we have a meta 2-categoryCAT of
(possibly large) categories, functors, and natural transformations. The genuine
2-category Catin the table above is in fact the 2-category consisting of small
categories, and by “'small' here we mean internal to an elementary base topos
S, e.g. Set. We apply the same standard for all other terms in the table above.
In few places, we will allow ourselves to use the cartesian closed structure of
Cat, and we will be explicit about that. However, CAT does not admit such a
structure.

1.0 Introduction 17




18

Symbol

Meaning

Cat

B I C:atstr
BiCat

B I c:a.t|ax
Cat

2 Cat

Icon
2 Cat

Gray

Hom

Category of categories and functors
Category of bicategories and strict 2-functors
Category of bicategories and pseudo functors
Category of bicategories and lax functors

2-Category of categories, functors and natural
transformations

2-Category of 2-categories, strict 2-functors, and strict2-natural
transformations

2-Category of 2-categories, pseudo functors, and strict2-natural
transformations

Sesquicategory of 2-categories, strict 2-functors, and lax natural
transformations

2-Category of 2-categories, lax functors, and icons

3-Category of 2-categories, strict 2-functors, strict 2-natural
transformations, and modi cations

Tricategory of 2-categories, strict 2-functors, pseudo natural
transformations, and modi cations

3-Category of 2-categories, pseudo-functors, pseudo natural
transformations, and modi cations

Tricategory of bicategories, pseudo functors, pseudo natural
transformations, and modi cations

Fig. 1.1.: A notation guide to various (weak) n-categories of (weak) k-categories

We shall usejj( )jjl to denote the truncation of a 2-category to its underlying
category by forgetting all 2-morphisms (See 1.4.3). For instancejj2 Catgy jj1
is the category of (small) strict 2-categories and strict 2-functors between
them, and jj 2 Catysgjj L is the category of strict 2-categories and pseudo functors
between them. For a relationship of various categories of (small) bicategories

see 1.7.

A closer look at the table above shows several interesting irregularities:
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» There is no 2-category or even a bicategory having bicategories as its
objects. This is not accidental and the reason for it appears in Remark
1.3.6.

» Passing from2 Caty, to 2 Catj,x we do not get a 2-category but a weaker
strucuture of “sesquicategory' ([Ehr63], [Str96]). Like a 2-category, a
sesquicategory has objects, morphisms, and 2-morphisms. Like a 2-
category, it possesses a strictly associative and unital composition of
morphisms, a strictly associative and unital vertical composition of 2-
morphisms, and whiskering of 2-morphisms with 1-morphisms on both
sides. Unlike a 2-category, this whiskering does not satisfy theexchange
law (See Appendix A.4).

» Passing from2 Catj,« to Icon we do get a 2-category again, but we are
forced to consider not all “lax natural transformations', but special kinds
of them called “icons'. We shall see more icons in 8§1.3.

1.1 What is a 2-category?

Whereas category theory provides a framework to organize collection of math-
ematical objects into categories and study them within those category, purely
in terms of objects, morphisms, and their compositions, 2-category theory
gives us a framework to study categories themselves in a formal manner.
Along this idea, the rst essential observation is that whatever de nition of
2-categories we propose, one thing is clear: categories, functors, and natural
transformations should form the archetypal example of such a de nition.

The theory of 2-categories has three sorts: a sort for objects, a sort for 1-
morphisms, and nally a sort for 2-morphisms. It also has partial operators for
various compositions of 1-morphisms and 2-morphisms together with unit and
associativity axioms which ensure these compositions are coherent. In order
to formally study categories, we should abstract away from their de nitions
as categories and treat them purely as objects of the 2-category of categories
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with certain essential properties which have to be distilled into laws or axioms
to ensure that a certain 2-category behaves in those essential ways lik€at

This view is memorably summarized by Gray in [Gra74] which states that

The purpose of category theory is to try to describe certain general
aspects of the structure of mathematics. Since category theory is
also part of mathematics, this categorical type of description should

apply to it as well as to other parts of mathematics.

As it is the case with the study of categories, we do not study a 2-category in
isolation, but rather we put the real importance on morphisms of 2-categories,
that is the ways in which a certain 2-category relates to other2-categories.

To give a concrete example consider the theorem concerning the uniqueness
of adjoints up to a unique isomorphism. A standard categorical proof of this
fact goes as follows: supposeR: A ! X is a functor which has a left adjoint.
We want to show that any two left adjoints of R are (naturally) isomorphic.
AssumeL;L% X! A are both left adjoints of R. Then

A(LX;A) = X(X;RA) = A(L%X;A)

and these bijections are naturalinX 2 X and A 2 A. By Yoneda lemma,L and
L%are naturally isomorphic. A 2-categorical proof should be expressed only
by objects (categories), 1-morphisms (functors), and 2-morphisms (natural
transformations). As such, we should not really be using objects of categories
like above. Recall that an adjunction of categories can be purely expressed in
terms of unit, counit, and two equations (known as the triangle equationg; for
any object X of X, the left hand side diagram commutes and for any objectA
of A the right hand side diagram commutes.

LX) 222 LRL (x) R(A)

\ l L and R(A)l \ (1.1)
1

L(X) RLR(A) +— R(A)
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One can express these equations without reference to the objects of and A
and only by equations involving natural transformations.

A S

Therefore, for left adjoints (L; ; ) and (L% ¢ 9 of functor R: A! X, one
readily checks that the natural transformations (L% (L 9, from L to L° and
(L) (L?), from L to L, are inverses of each other and thereforel and L°,
are isomorphic.

><<7)>
I
pu)
l/ﬂ\
*~_
P

-~
H”H

In fact, as we shall see the adjoint situationf a u in 2-categories are in a sense
one of the most general form of expressing universal properties of morphisms:
liftings, extensions, cartesian properties, brations, etc. can be expressed in
terms of adjoint pairs.

Consider the example of a category equipped with terminal object. In standard
category theory, a categoryCis equipped with a terminal object 1 is expressed
by the universal property of the limit over the empty diagram. How do express
this purely 2-categorically? We observe the structure of a terminal objectT
of Cis equivalent to a (fully faithful) right adjoint T of the unique functor
I:C! 1 (where 1 is the terminal category.) In the above discussion we
showed how the structure of adjunction is inherently 2-categorical. Therefore,
in any 2-category K with a terminal object 1 (which is in here representably
de ned by the equivalence K(X; 1) * 1, for every object X in K), we de ne an
object equipped with a terminal pointo be a right adjoint t of Ix : X ! 1. The
left equation in (1.2) gives no new information and the right equation simply
saysthat t=id;.

So we conclude that in a 2-category with a terminal object 1, an object equipped
with a terminal point consists of (X;t: 1! X; :1x ) t !x) satisfying

t =id;. In K= Catthis is exactly a category equipped with a terminal object.
In K = BTop this is a pointed topos. Of course the dual structure gives the

1.1 Whatis a 2-category?
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notion of an object equipped with an initial objectit is a left adjoint i a !x,
and therefore, it can be described by the triple (X;i: 1! X; i !x ) 1x)
satisfying i =id;

The main lesson of this and many other similar observations is that by writing
the constructions of category theory in the language of 2-categories, not only do
we get useful generalization to other, sometimes vastly different, 2-categories
than Cat, but also we understand the essence of the very same categorical
constructions in a deeper and more categorical way.

In the presentation of this chapter, we shall rely on a modicum of enriched
category theory. For an extensive treatment of enrichment see [Kel82]. The
idea is that an enriched category is a category in which the hom-functors take
their values in some monoidal category(V; ;1) instead of (Set; ;f?g), and
composition is formulated by the monoidal structure of V. A concise account
of all which we shall assume about enriched category theory can be found in
[Lur09, Appendix A.1.4]. Although in this thesis we only need enrichment in
the monoidal category of (small) categories, the use of enrichment in general
goes much further beyond than that. To give but one example,graph-enriched
categories (whereby hom-sets are graphs instead of sets) are extensively studies
in the theory of rewriting. The objects are types, the vertices of hom-graphs
are terms, and the edges of hom-graphs are term-rewrites which describe the
process of computation ([SM17], [BW19]).

DEFINITION1.1.1. A 2-category is aCat-enriched category, whe@at is the carte-
sian closed monoidal category of small categories and functor&-fukctor be-
tween 2-categories is@at-enriched functor.

If Kis a 2-category andx and y are two objects of K (i.e. elements of the
underlying class of objects ofK), then we depict an object f of the hom-
category K(x;y) by a 1-cellf : x ! 'y, and a morphism of the hom-category
K(x;y) by a 2-cell
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However, we call f a 1-morphism and a 2-morphism instead of calling
them 1-cell and 2-cell respectively, as is customary in some of the literature of
higher category theory. We follow the principle of not naming concepts based
on a certain model in which those objects are represented especially when there
are other models whereby those same concepts get different names: For 2-
categories, other thanpasting diagramspictured by cells of various dimensions,
there are string diagramswhich are planar dual to cellular pasting diagrams.
Objects are depicted as regions, 1-morphisms as lines/wires separating regions,
and 2-morphisms as nodes (or boxes) separating (or connecting) lines (or
wires). For more on string diagrams we refer the reader to the appendix A.5.

1.2 From 2-categories to bicategories

It happens that the structure of 2-categories andCat-enriched categories and
particularly 2-functors is too strict and fails to deal with many interesting
practical cases. For example, algebras, bimodules, and bimodule morphisms
form a bicategory, not a 2-category, because tensor product is associative and
unital only up to a non-trivial isomorphism.

Notice that this situation is the categori ed version of strict monoidal categories
and monoidal categories. Even though strict monoidal categories are easier to
work with they often are too strict and non-interesting in practice; for instance
the monoidal category Vechin of complex nite dimensional vector spaces over
the eld of complex numbers C is a monoidal category which is not strict
monoidal. Nonetheless, by the coherence theorem of Mac Lane we know
that every monoidal category is equivalent to a strict monoidal category. (For
formulation and proof see [ML98] and [JS91].) A similar coherence theorem

exists for 2-categories and bicategories.

1.2 From 2-categories to bicategories
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The notion of bicategory is a weakening of notion of 2-category; we haveweak
unital and associativity of 1-morphisms. To see this more clearly, suppose is
a 2-category. By de nition, the diagram

K(X;y;Z; W) L o, K(x;z; w)
Cy;z;w 1J JCX:Z:W (13)

KX Y;W) —om— KOGw)

commutes?, and this precisely expresses the associativity law of composition of
1-morphisms and horizontal composition of 2-morphisms. It means that for any
1-morphismsf : x! y,g:y! z,andh:z! w,wehave(h g f =h (g f)

and, furthermore, for any 2-morphisms , ,and of the form
f 9 h
TR TR T *
X \l_l/r y y \l_lj z z \ﬂoj w
fo g° h

we have ( )=( ) . The structure of a bicategory requires that the
strict equality in the associativity law of 1-morphisms above to be weakened to
an (speci ed) iso-2-morphism natural in arguments f; g;h. This can be done
by requiring that diagram (1.3) commutes up to a natural isomorphism  ,.y.,.w

for all objects x;y;z;w. Therefore, we have (f;g;h):(h g) f =h (g f)
and also, the diagram below of iso-2-morphisms commutes.

(h 9 f """ (gf)

() J J () (1.4)

0 0 0
(h° @) 25 h® (g 9
Similarly, one weakens the unital law so that for any 1-morphism f : x I 'y
there exists an iso-2-morphism ,,(f): f 1, = f and ,,(f):1, f =1,
naturally in x;y;f. In the literature the 2-morphism s referred to as the

“associator”, as the “right unitor”, and as the “left unitor”. They are required

to satisfy the familiar coherence conditions. For a full list of coherence laws of
bicategories see Appendix 8A.1. For external references we refer the reader

2We use the shorthand notation K(x1; X2;:::;Xn) for K(Xn 1;%n)  ::: K(Xo;X1).
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to [Bén67] and [Lei98]. A historical discussion of bicategories appears at the
nal section of this chapter.

A good exercise, which helps one to parse the list of coherence axioms of a
bicategory, is to show that the notion of bicategory is a categori cation of the
notion of monoidal category, i.e. a bicategory with one object is the same thing
as a monoidal category, and moreover, for every objectA in a bicategory K,
the endomorphism category Endg(A) = K(A;A) is a monoidal category. The
following are the paradigmatic instances of bicategories which we use again
and again to justify certain bicategorical formalizations of various categorical
concepts.

ExaAMPLE 1.2.1. For a monoidal categor§V; ;I1; ;; ) there is an associated
bicategory V which has only one objectand V( ; ) := V. The identity mor-
phism is given by the unit ', andthe composition of! Y s given by

1Y The 2-morphisms are morphisms\fthe vertical composition is given

by their categorical composition and their horizontal composition is given by tensor-
ing. The bicategory V is referred to aslelooping(and sometimes suspension)\of
In this way, bicategories naturally generalize monoidal categories.

ExamPLE1.2.2. From any topological spacé we can extract a bicategory, indeed
abigroupoid ;X . An object is a poink of X, a 1-morphisms is a pafit x ! 'y

in X (i,e.amapp: 1 ' X wherel is the unit interval with its standard Euclidean
topology.) and a 2-morphism is a homotopy class of paths (i.e. a clag$] where

h:1 1! X iscontinuous witth(0; 0) = h(0; 1) andh(1;0) = h(1;1). The equiv-
alence class above is de ned with respect to the homotopy reldiipon: h, iff there
existsahomotopid: 1 | | ! XwithH( ; ;0)=hgandH( ; ;1)= hy).
Paths can be composed, however, as we do not quotient by the relation of homotopy,
such composition is not associative. Associativity is only up to isomorphism: for
paths; ; we have ( )" ( ) by continuous re-parametrization.
We note that 1-morphisms in ,X are equivalences (weakly invertible) and all
2-morphisms are (strictly) invertible. Any bicategory in which all 1-morphisms are
equivalences and all 2-morphisms are invertible is called a bigroupoid. A bigroupoid
is strongif 1-morphisms are strictly invertible. Bigroupoids are groupoid-enriched
(akatrack categories). [Rob16] shows that ,X is indeed a topological bicategory.
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ExAMPLE1.2.3. There is a bicategoryop , of topological spaces. Here the ob-
jects are topological space, 1-morphisms are continuous maps, and 2-morphisms are
equivalence classes of homotopies. In a similar way, one constructs the bicategory
of pointed-topological spaces.

Some 2-categorical de nitions go through bicategories without much change.
For example the de nition of an adjoint pair de ned in 81.1 in 2-categories
can be de ned in bicategories. An adjoint pair of morphism f au:y! xina
bicategory B is de ned by the following triangle equations (of 2-morphisms)

1.3 Morphisms of bicategories

For any particular mathematical structure, there is a category whose objects are
instances of that structure, and whose morphisms are the structure preserving
maps (aka homomorphisms) from one instance to the other. Examples are the
category M on of monoids, the category Grp of groups, the category CRing of
commutative rings, the category DistL at of distributive lattices, the category
M an of smooth manifolds, etc.

Similarly for the structure of category (with a cartesian rst order theory
consisting of two sorts), we have the category of categories and functors which
Is the underlying category of a 2-category, namely the 2-category of categories,
functors, and natural transformations. If the mathematical structure we begin
with is itself 2-dimensional, such as the structure of bicategory, then again we
can make the category of instances of that structure and structurepreserving
maps. However we should take care in what we mean by preservation here.
Since the notion of structural identity between 1-morphisms of a bicategory is
iIso-2-morphism rather than strict equality it is unreasonable to ask for a mor-
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phism of bicategories to preserve compositions of 1-morphisms up to equality.
In our paradigmatic examples 1.2.1 and 1.2.2, neither a monoidal functor
nor a continuous map of spaces preserve the composition of 1-morphisms in
bicategories Vand ,(X) up to equality. In both cases the compositions are
preserved up to a canonical iso-2-morphism. This is the main intuition behind
the concept of pseudo functor The details of its de nition is deferred to the
appendix.

In this section, we shall also look at the contrast with strict and lax morphism
of bicategories. However, for good reason which we will mention, pseudo
functors are the structure preserving morphisms of bicategories. It turns out
that bicategories and pseudo functors form a tricategory whose 2-morphisms
and 3-morphisms are respectivelypseudo natural transformationsand modi -
cations

Still we would like to have strict and particularly lax functors around. For any
structure, weaker notion of morphisms of structures than homomorphisms are
occasionally useful. For instance, any two elementary toposes can be glued
together along a cartesian functor to obtain another topos. Similarly, any two
2-categories of algebras of monads can be glued together along lax functors to
obtain a 2-category of algebras.

It is useful to continue our analogy between bicategories and monoidal cate-
gories. There are various notions of morphisms between monoidal categories:
strict monoidal functors, pseudo monoidal functors, and lax monoidal functors.
similarly, between bicategories, there arestrict 2-functors, pseudo functorsand
lax functors

A pseudo-functor of bicategories is a weaker notion than strict 2-functors
of bicategories in the sense that a pseudo-functor preserves composition of
morphisms only up to a chosen iso-2-morphism. A pseudo-functoiF: B! C
of bicategories assigns to any identity morphisml,: x ! x in B an iso-
2-morphism : 1y = F(14) and to every pair of composable morphisms
f:x! yandg:y! zin B, aniso-2-morphism 4: F(g) f(f) = F(gf).
These assignments are natural and they cohere with bicategorical structures of

1.3 Morphisms of bicategories
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B and C. See 8A.3 for a complete de nition of pseudo-functors including a
full list of coherence conditions. We shall refer to iso-2-morphisms , and
ascomparison (aka constraints ) 2-morphisms.

A strict 2-functor (cf. De nition 1.1.1) can be viewed as a pseudo-functor
whereby comparison 2-morphisms and are identity 2-morphisms. 1 Pseudo-
functors of bicategories are generalized tolax functors by dropping the con-
dition of invertibility of ,: 1« ) F(1x) and :F(g) F(f)) F(gf) forall
x in B g and all (composable) morphismsf and g. Reversing the direction of
comparison 2-morphisms yield the notion of oplax functors 2 of bicategories.
An oplax functor of the type B ! Cis the same thing as a lax functor of the
type B! C*°. An (op)lax functor of bicategories is hormal (resp. strictly
normal ) whenever the comparison 2-morphisms  are all iso (resp. identity)
2-morphisms .

REMARK 1.3.1. We recall two well-known observations on lax functors ([Bén67],

[Lacl0a)):
(i) Amonad in a bicategor is precisely a lax functot ! B.

(i) For a monoidal category and a seCy, a lax functorC: Cy™ ! Visa
V-enrichment structure on elements@f. Note thatC,™ is the indiscrete

category ofCy so that the unique funct@,™ ! 1 is fully faithful.

Cond _C v
1

Note thatC(x) = for all elementx 2 Cy, and we writeC(x;y) 2 V for the
value ofC at the unique morphism fromtoy in X, The lax constraints
give the (enriched) compositio@(y;z) C(x;y) ! C(x;z) and the unit
| 1 C(x;x). In particular a lax functoC: C"? ! Set, whereSet is

(1.5)

3Lax and oplax functors of bicategories generalize lax and oplax functors of monoidal
categories.
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the cartesian monoidal category of sets, is just a small category whose set of
objects is exactlyC,.

Consider two functors F; G: B C of categories and a natural transformation

: F ) G. For any morphismf : b! Pin B we get an identity of morphisms
in D,namelyG(f) = w F(f). In passing from categories to 2-categories,
we can weaken this condition by replacing the above identity with an iso-2-
morphism or even just any 2-morphism which placesG(f) .and o F(f)in
the same connected component. Of course this weakening must be compatible
with 2-categorical structures of domain and codomain of F and G and also
how strictly F and G preserve these structures. Detailed de nitions of various
well-known notions of 2-transformation of functors  of bicategories with their
coherence conditions are given in Appendix A.4. We have the following classes
of natural transformation between morphisms of bicategories:

fstrictg f pseudag f normal (op)laxg f (op)lax g (1.6)

DEFINITION 1.3.2. A 2-transformation (strict, pseudo, lax) F ) G:B ! C
is anequivalence 2-transformation whenever every morphism: Fx ! Gxis
an equivalence ig.

REMARK 1.3.3. We remark that there is quite some confusion in literature in us-
ing pre xes “op” and “co”. For instance, ‘lax' and “oplax' as attributes of functors

of 2-categories and bicategories are occasionally used in exactly opposite way we
just de ned. Same goes for their use as attributes of natural transformations (e.qg.
[Joh02a]). The terms “left lax” (for what we called lax) and “right lax” (for what
we called oplax) were introduced in [Str72]. Adding to this confusion, some people
have used "colax' instead of oplax particularly in the context of monoidal categories.
However, our main concern is not to introduce yet new terminology, but to maintain
consistency throughout the thesis. So, in our terminology we follow Benabou's origi-
nal choice ([Bén67]), as well as Leinster ([Lei98]), Borceaux, and most of Australian
writings (e.g. [Kel74b]).

A pseudo functor from a 2-category K to Cat can be stricti ed to a strict
2-functor up to a (pseudo) natural equivalence.
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REMARK 1.3.4. Supposd-: K ! Catis a pseudo functor whek is a 2-category.
For each object of K, let F¢(c) be the category whose objects are pdfrx)
wheref : d ! cis a morphism irK andx is an object ofF (d), and a morphism
u: (f;x) ! (g9;y) in Fg(c) is given by a morphisnu: f (x) ! g (y) in category
F(c), wheref (x) := F(f)(x). The identity morphism and composition (c)
are trivially given by the identity and composition structureFifc). Also, Fs ex-
tends to astrict 2-functor onK: its action on a morphisrh: ¢ ! is given by
Fo(h)(F;x) = (hf;x), andF(h)((Fx ) * (g:y) = (hfix)t "™ (ng;y).
The action ofFs on 2-morphism : hy ) h; is given at the componelitf; x ) by
( f) (). Finally, : F) Fswith (x) = (id;x) establishes a pseudo natural
equivalence with quasi-inverse }(f;x ) = f (x).

There is a really powerful and more general approach which covers a wide
range of stricti cation results about bicategories and pseudo functors, and in
particular covers the case of remark above ([BKP89], [Pow89]). See appendix
A.6

REMARK 1.3.5. Any normal lax functor=: B ! C of bicategories can naturally
be modi ed to a strictly normal lax functof: B ! C. The functorf is de ned
exactly asF on objects and non-identity morphisms. We de Kél,) = 1g,,
and accordingly modify de nition o on 2-morphisms using invertible 1g, )

F (11). Thus, we get an equivalence pseudo natural transformaii@néc F where

« = id  for all objectsx of B, and

8
S Fay  Fwo (e 1ex)  0ff =1,

T by Fo otherwise.

Evidently ¥ is strictly normal.

From the structural point of view, the more appropriate morphisms of bicate-
gories are pseudo functors. For observe thaB has the structure of a bicategory
iff the representable B (X; ): B ! Cathas the structure of a pseudo functor,
and for a morphism f : X°! X in B, there is an induced pseudo natural
transformation f : B(X; )) B (X% ). For this reason, we shall sometimes
refer to pseudo functors of bicategories ashomomorphism of bicategories.
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Moreover, once we introduce the notion of limit for bicategories (at the appro-
priate generality they are weighted bilimits of 81.9) it is straightforward to see
that the representable homomorphismB (X; ) preserves bilimits.

However, we are still interested in strict 2-functors of 2-categories and bicat-
egories and they play an important role in Chapters 2 and 4. Additionally,
The strict 2-functors are generally better behaved than pseudo-functors and
lax functors with respect to (strict) limits and colimits. For instance, in the
category jj 2 Catgy, jjl, the pushout of span2 O 1 ' 2exists and is isomorphic
to the category 3. However, this does not hold in the category jj2 Catpsdjjl:
any such pushoutP must contain two arrows and their composite and it is in
general not uniquely decidable where to send the composite in some other
cocone categories: the coconeQ in below has three 1-morphisms and an
iso-2-morphism' : g° f%= h% Now, there is no unique pseudo-functor from
U:P! Qwith U g=glandU f = f% we can chooseU: P! Q with
U(g f)= ¢° f%andiso 2-morphism 4 beingid, or U°with UYg f)= h°
and iso 2-morphism 4 being"' .

P Q

Pseudo functors (resp. lax functors) of bicategories are composed strictly:
given pseudo functors(F; ; ): B ! Cand (G;; ):C! D, we dene
the composition G F: B ! D on objects and morphisms by successive
actions of F and G, thatis G F(x) = G(F(x)), G F(f) = G(F(f)), and
G F( )= G(F( )). The unit comparison is given by ( x = G(x) EFw
and the composition comparison is given by( g = G( rg)  F(f)F(g)-
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Hence, we write (G F; ; ) for the composite pseudo (resp. lax)
functor. With this composition we get a category BiCat (resp. BiCatj,) of
small bicategories and pseudo (resp. lax) functors. We have the following
chain of (non-full) subcategories:

B ic:a.tstr ( B I(:at ( B icatmax ( B Icat|ax (1.7)

REMARK 1.3.6. We note that unlike the situation with 2-categories of categories,
bicategories and pseudo functors do not from a 2-category or even a bicategory. The
reason is that independent of the choice of the kind of 2-transformation, be it strict,
pseudo, or lax, one fundamental issue persists and that is they do not have a strict
vertical composition. For any 2-transformations

@]

—
_/

and for any objeck of B, wehave y ( x x) = (x «x) x)IinC. There-

fore, the vertical composition of 2-transformations is weakly associative and as such
this forces us to arrive at thieicategory Hom of bicategories, homomorphisms,
pseudo natural transformations, and modi cations (See [Str80], [Lac1®ijm
constitutes the archetypal instance of tricategory structure. However, we shall not
de ne this structure. We refer the interested reader to [GPS95] and [GuHath

is enriched over bicategories. Observe that for any 2-catel§pthe bicategory
Hom (B ; K) is actually a 2-category evenBf is a bicategory.

REMARK 1.3.7. There is a sub-tricategoi@ray of Hom which consists of strict
2-categories, strict 2-functors, pseudo transformations, and modi catiorGray

the composition of morphisms is strictly associative and unital as well as vertical
composition of 2-morphisms. However, the interchange law holds only up to an
invertible modi cation. IndeedGray is a prototypical example d&ay-enriched
category wherézay is the closed monoidal category of 2-categories and strict 2-
functors with monoidal structure given by the Gray tensor prodyes. The under-
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lying category ofGray is given byjj2 Caty, j . Recall that for 2-categories and

K, theGray tensor producl 54 K is a “fattened up” deformation of the cartesian
productJ K in which the equality(f; 1)(1;g) = (1;9)(f; 1) is replaced by an in-
vertible* 2-morphism for any pair of morphisnis: x ! x%inJandg:y! y%in

K. The tensor product is given by the universal property expressed by the following
bijection

12 Cat i, (3 pst Ki L) = ji2 CatJj, (352 Catsa(K; L)

The closed structurfK; L] of Gray, as used in the bijection above, is given by the
hom 2-category Cat,sq(K; L). Note that analogous to the case of bicategories, for
every objectX of a tricategoryT , T (X; X ) is aGray-monoid®.

In [LacO7]itis proved that the tricatego@ray is not equivalent ttiHom . However,
any tricategory, includingdom , is equivalent to soméray-category [GPS95]. We
also note that there is an embedd®may (K;L) ! 2 Catysy(K; L) of 2-categories,
and for a strict 2-functoH : L ! L% post-composition by induces a strict 2-
functorH : Gray (K;L) ! Gray (K;L9. This observation is also true in any
Gray-enriched category. The same observation also shows tha? @htsq can not
be aGray-category.

Our interest in lax functors of bicategories comes directly through the way we
arrived at bicategories as a generalization (in this caseoidi cation ) of monoidal
categories. In fact, strong monoidal functorsF: (V; ;1)! (V% %19 arein
one-to-one correspondence with pseudo functors F: V! VO of bicate-
gories. However, not the strong monoidal but the lax (and colax) monoidal
are the prevalent functors of monoidal categories. For instance, in the context
of monoidal Dold-Kan correspondence, the Moore chain complex functor and
the nerve functor are lax functors ([nLal9a]). Also, note that lax monoidal
functors transfer monoids to monoids: if iM; : M M M; 1! Miis

4We remark that the original version of Gray tensor product ([Gra74]) did not require
invertibility condition and introduced the concept using a general 2-morphism
5i.e. a monoid object in Gray or equivalently a one-object Gray-category
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a monoid (resp. comonoid) in a monoidal category (V; ;1) and (F; ; ), as
above) is a lax (resp. colax) monoidal functor then

hEM);F(C) wmm:FM) FM)! F(MYFE(C) 21t F(M)
is a monoid in V°

Same is true when we generalize from monoidal categories to bicategories:
a lax (resp. oplax) functor (F; ; ): B ! C of bicategories take any monad
h: X ! X;; itothemonad HF(t): F(X)! F(X);F() w;F() xI.
This can be observed from the aforementioned fact of lax monoidal functors
and the observation that Fx.x : B(X;X ) ! C(FX;FX) is a lax monoidal
functor of monoidal categories. Another way to reach to the same conclusion
is to realize that a monad in B is exactly a lax functor from the terminal
bicategory to B and that lax functors are stable under composition.

However there are some aspects of lax monoidal functors which do not gen-
eralize to lax functors of bicategories and may be regarded as unpleasant
properties of lax functors. There is a 2-categoryMonCat,, of monoidal cate-
gories, lax monoidal functors, and monoidal transformations. This 2-category
has a sub-2-categoryMonCatsyong Where the 1-morphisms are restricted to the
strong monoidal functors. Although MonCatsong is not a full sub-2-category it
has some nice properties: by doctrinal adjunction, any left adjoint in MonCat,,
is automatically strong monoidal. Since any equivalence in a 2-category can
be improved to an adjoint equivalence, any equivalence inMonCat,y, consists
of strong monoidal functors. Thus, the notion of “equivalence of monoidal
categories” doesn't depend on what kind of functor one chooses to work with,
and the notion of “lax monoidal functor” is invariant under this equivalence.

For a start, we can not make a 2-category out of bicategories, lax functors, and
any kind of natural transformation of 2-functors (See 1.6). The reason is sim-
ple: were they to form a 2-category we would be able to whisker 1-morphisms
with 2-morphisms. To the contrary suppose we can. Let(G; ; ): C! D
be a lax functor of bicategories and : (F;; ) ) (F% % 9 a lax natural
transformation of lax functors F;F?% B C. Form the whiskered lax natural
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transformation G : GF ) GF° For a morphismf :x! yin B, we have
the 2-morphisms

GFYf) G( ) =27y G(FAf) =Y o(, F(f))

G( y) GF(f)
O yir@))

in D. But we see that the most right arrow goes in the wrong direction and

there is no chance we can form the component ofG  atf.

REMARK 1.3.8. Under two special circumstances such whiskering in above would
be possible: rst, if the functors of bicategories are pseudo instead of lax. In this
scenario, for our desired whiskering, we could use the inverse of the troublesome
2-morphismG( |, .r¢) in D. Although whiskering is possible it does not satisfy the
exchange law, even for strict 2-functors, for there is no reason that the pasting of the
diagrams

GFx 12 GF% —=% GFk GFx — s GFx —S1), gy
| |
GF(f)‘ S e 7, | GF(f)l SR g lGOF‘)(f)
l l
GFy — — GFY — — GFY GFy —  G¥y — G¥Y
G(y) FOy Fy G y)

on the two sides should be equal unless eitheF ) F%or : G) GOis identity.
Therefore, we still cannot form a 2-category with lax transformations even if we
restricted to strict 2-categories and strict functors.

Indeed, there is only one good way of getting a 2-category of bicategories
and lax functors with non-strict natural transformations as its 2-morphisms.

The 2-morphisms are restricted forms of lax natural transformations called

“icons”® ([Lac10b]). An icon between lax functorsF;G: B Cof bicategories
is an oplax transformation  with extra constraints that all components  are

identity morphisms for all objects x in B.

Ff l 7 lef

6Short for Identity Component Oplax Natural-transformation
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In the case of one-object bicategories the icons are precisely the monoidal
natural transformations. This shows that, from a certain perspective, the
reason icons are to be preferred as generalization of monoidal transformations.
Another observation in this direction is to look at the structure of an oplax
transformation of lax functors C;C% Snd Set. By remark (ii), C;C%are
categories with a common set of objectsS. An oplax transformation :C) C°
provides us with a family of setsf X (€)ge2s and afamily f .4: C(c;d) X (d)!

X () CYc;dg of functions, satisfying evident identity and composition
constraints. The data of can be elegantly packaged intoabundle s: X! S
together with a bundle map s sC X1 X CloverS S satisfying
a unit and a composition law. When is anicon the bundle s: X ! Sis
isomorphic to the trivial bundle Ids: S! S, and the bundle map s sisa
functor C ! D. Therefore, icons between lax functorsC; C?% S Set
correspond exactly to the functorsC ! C°which are identity on objects.

However, icons have their downsides as well. The requirement the the com-
ponents , must be strict equalities is unsatisfactory in many situations. For
instance as we shall see in chapter 2 that a cloven Grothendieck pre bration
P:E! B of categories correspond to a lax functorP : B°? ! Cat, and a map
of pre brations to a pseudo transformation. However, an icon between any
two such lax functors would require strict equality of bres of corresponding
pre brations, i.e. an equality of categories.

At any rate, The additional constraints of icons make the obstructions in Re-
mark 1.3.6 and Remark 1.3.8 in forming a 2-category of bicategories disappear.
Indeed, we can form the 2-categorylcon of bicategories, lax functors, and
icons. The same paper introduces a 2-monad on the 2-category ofat-enriched
graphs for whose algebras are 2-categories, and pseudo (resp. lax, resp. oplax)
functors are the pseudo (resp. lax, resp. oplax) morphisms of algebras, and
icons are the transformations of algebra morphisms.

Another serious problem with the lax functors of bicategories is that they
are not invariant under equivalence or biequivalence of bicategories. Again,
consider an inhabited category C as a lax functor C: Co™ ! Set For an
inhabited set Coq. We have the equivalenceC,™ ' 1. But composing C with
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this equivalence does not yield a lax functor if C, for instance, has more than
one connected components.

There are stronger notions than equivalence of bicategories and although
we shall not make a great use of them, we de ne them here for the sake of
completeness and, more importantly, contrast.

DEFINITION 1.3.9. A pseudo functor (resp. laXF; ; ): B ! Cis anisomor-
phism of bicategories if it has an inverse pseudo functor (resp. l&&) ; ): C!
B,ie.(G F; ; )=(Ild g;id;id) and(F G; ; ) =(Id ¢;id;id).

Recall that a functor U: C! D exhibits C as a full subcategory ofD if U is
a fully faithful functor, thatis U, : C(x;y) ! D(Ux;Uy) is an equivalence of
sets for all objectsx;y of C. In a similar fashion

DEFINITION 1.3.10. A homomorphism (resp. 2-functol): B ! C exhibitsB
as asub-bicategory (resp. sub-2-category) @ if the functor Uy, : C(X;y) !
D (Ux; Uy) is an equivalence of categories for all objecty of B .

This means that any morphismg: Ux! Uyin Cis isomorphic to Uf for some
morphism f : x ! yin B, and any 2-morphism : Uf ) Uf%in Cis equal to
U( ) for a unique 2-morphism :f ) f%nB.

As a non-example of full subbicategory consider the embedding of bigroupoids
»(Sh) ! »(S* _SY) induced by the inclusion of, say, the left component.

THEOREM1.3.11. The categorBiCat of (small) bicategories is bicategory-enriched:
for any bicategorie® andC, pseudo functors, pseudo natural transformations and
modi cation between them form a bicategaByCat(B ; C).

For important examples of categories enriched in a bicategory see [Wal81],
[Wal82], [Bet+83].
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1.4 Constructions on bicategories

CONSTRUCTION1.4.1 (The symmetries of bicategories) The groupZ=2Z
Z=27 acts on the class of bicategorie$his action yields four 3-functors:

¢ ()@ =1]d: Hom ! Hom

o ()T =( H)P:Hom®! Hom
e ()OD =( )®: Hom ! Hom
o ( )&V =( )PP Hom ! Hom

For any bicategor , the bicategor ° is obtained by reversing the 1-morphisms
only, B ©° by reversing the 2-morphisms only, aBd°°P by reversing both 1-morphisms
and 2-morphisms. Since the de nition of a bicateg@&ywas given in terms of its
local hom-categories, we remark that

B (X %Y%) = B(X;Y)”"

The operatior{ ) is sometimes referred to asnjugation Note that iff a g with
unit and counit in K, theng® a f © with unit © and counit °° in K,

Moreover, we havédom (B °°; CP) * Hom (B ;C)* an alsoHom (B °°; C°) '
Hom (B; Q)"

REMARK 1.4.2. We seriously warn the reader twt carry the logic in construc-

tion above to its conclusion. The terminological inconsistency mentioned in Remark
1.3.3 is not accidental. As we have said, in a 2-category "op' refers to reversing the
1-morphisms and in a category it denotes reversing the 1-morphisms. If we use the
terminology of "op' and "co' strictly consistently, doesn't it follow that we should
call colimits in a 1-category or in a 2-category “oplimits’ and yet, no one does that.

’In general the group (Z=2Z)" acts on the (meta) n-category of (weak) n-categories and every
elementg = (g:1;:::;0n) Of the group determined a meta n-functor rs(g): (n CAT)9 !
n CAT where rs: (Z=2Z)" | (Z=2Z)" is the “right shift” group homomorphism. In
particular rs(0;1) = (0;0) and rs(1;0) = (0; 1).
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In category theory we use "co' for most dualizations. Furthermore, later in Chap-
ter 2, we shall see that an op bration internal to a 2-catedory indeed a bration

in K. In fact, what is nowadays called op brations was originally called "co bra-
tions' in [Gra66]. However, this clashed with the use of the term “co bration' in
topology, so it was avoided in the category theory literature quite consistently there-
after. One of the root reasons for recurring inconsistencies is the fact that categorical
structures can be generalized to 2-categories in many ways different ways: through
the realization of a category as a discrete 2-category, as the delooping bicategory
of a monoidal category (See Example 1.2.1), and through representational approach
(See 81.7). Each of these axes of generalization gives its own account of arriving at
“op-concepts” and “co-concepts”.

CONSTRUCTION1.4.3 (The underlying category of a 2-category). We can throw
away all 2-morphisms of a 2-category and get a category. More precisely, this is
done by the transport of enrichment structure. Suppas¥ ! VVis a lax-monoidal
functor andC is aV-enriched category. We transport the enrichment structu® of
alongF : we construct &%enriched categor@- where

Ob(Cr) := Ob( C)

C-(c;d) := F(C(c;d) for any pair of objectg; dof C.

The composite morphism,e ! F(ly) ! F(C(c;0) in V°de nes the unit
map ofC:.

The composite morphisf(C(c; ) F(C(c%c%) ! F(C(c; ) (%) !
F (C(c; ®9) in V°de nes the composition map @ .

Transporting the enrichment structure of a 2-cate¢foajong the representable carte-
sian monoidal functoHom(1; ) : Cat! Set, which sends a small categdtyto
the set of objects o€, yields a categorjjKjj L which is called thainderlying cat-
egory of K. We have:

« Ob(Kg) = Ob(K)

* Ko(x;y) := Hom( 1; K(x;y)) = Ob(K(x;y))
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Obviously,(K®): = (jjKjj,)*® and(K*); = jjiKjj,.

CONSTRUCTION1.4.4. Any bicategoryB has aclassifying category 1(B)
associated to it. The objects remain the same while the morphisms of the classifying
category are isomorphism classes of morphismB ofThis construction gives us

a homomorphism ;: BiCat! Cat This construction originally appeared in
[BéN67, page 56]. Of course the Construction 1.4.3 cannot be carried out in the
same way for bicategories since we cannot discard 2-morphisms of a bicategory and
get a category. However, we can regard the classifying category of a bicategory as
its homotopical underlying 1-categaryhis view is justi ed by the observation that

the classifying category of the bigroupoid ,X of a topological spac¥ (Example

1.2.2) is precisely the fundamental groupoidxof

CoNsTRUCTION1.4.5. Recall that to each categofy, one associates the maxi-
mal sub-groupoidore(C) whose morphisms are invertible morphismgoindeed,
Core is the right adjoint to the forgetful embedd@gpd ! Cat whose left adjointin
turnis the re ective localizatioh : Cat! Caff !],where : 2! listheinclusion
of the free walking arrow category into the walking isomorphism interval. Indeed,
adds formal inverses to categories to make them into groupoids. Similarly, to each bi-
categoryB , we associate the maximal sub-bigroupGiok€B ) whose 2-morphisms
are invertible 2-morphisms d . For instanceCorgCat)(1;C) = CorgC). All
pseudo weighted limits and colimits (1.9) in a bicategBrare indeed lax weighted
limits and colimits inCorgB ). Also, to any bicategori , we associate the full sub-
bicategoryGrpd(B ) whose objects are bigroupoidal objects (De nition 1.7.5Baf
For instanceGrpd(Cat) = Grpd. ObviouslyGrpd(CorégB)) = CorgB). Finally,
we have an adjunction

SN

(2;1) Cat,, — Inc — 2 Caty

NS

Core

CONSTRUCTIONL.4.6 (The pseudo-functor of points). Supposé is a bicategory
with the terminal objecl. For every objecK 2 B, apoint x of X is a morphism
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x: 11 X. The points ofX form a category, namelpt; (X) ' B(1;X). The
homomorphisnpt; : B ! Catis represented by the terminal objdadf B .

For instance, in the bicategory Top , from Example 1.2.3, the groupoid pt(D?)

of points of 2-dimensional disk D2 is discrete with uncountable many objects
and the groupoid pt(St S') has two connected components and in each
component any two objects are isomorphic in exactlyZ ways.

The 2-categoryCatis very special: any of its objects (i.e. a category) is com-
pletely determined by its category of points that is, for every categoryC, the
functor category Fun(1;C) = C.

PrRopPOsSITIONL.4.7. The 2-functompt.,,: Cat! Catis 2-isomorphic to the iden-
tity 2-functorld: Cat! Catand thereforept.,, is a 2-equivalence.

For a bicategoryB , equipped with a terminal object, and for any pair of objects
X;Y of B, we have the action functor

B(X;Y) pt(X)! pt(Y)
which can be transposed to the functor
B(X;Y)! Cat(pt(X);pt(Y)) (1.8)

DEFINITION 1.4.8. A bicategoryB (equipped with a terminal object) is callea|l-
pointed whenever the homomorphispt; : B | Catis faithful, that is the action
functors(1.8) are faithful for all objectsX andY of B .

Note that the above de nition of well-pointedness for a bicategory generalizes
the usual de nition of well-pointedness for categories. Of course, a well-
pointed category B is in particular a concretebicategory with the faithful
functor to Catbeing ptg. Proposition 1.4.7 shows that the 2-categoryCatis
indeed well-pointed. The 2-category Cat(S) from Example 1.5.1 is well-pointed
if category Sis well-pointed. On the other hand, the bicategory Top , is not
well-pointed.
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REMARK1.4.9. The concrete 2-categoriésc, ETop, BTop are not well-pointed.

The construction below of "Display sub-2-category' requires explaining the
notion of bipullback in 2-categories. We shall later give a precise intrinsic
de nition based on weighted limits in 81.9. Nonetheless, for the sake of
readers unfamiliar with or uninterested in weighted limits, we give a concrete
de nition of bipullback listing the required data and axioms. The latter
de nition is equivalent to the intrinsic one.

DEFINITION 1.4.10. A bipullback of an opspamN "Cc Bin a bicategoryB
is the universal isocone ovérandg, i.e. an objecP together with 1-morphisms
do: P! A;d;: P! B andan iso-2-morphism: fdo = gd; satisfying the fol-
lowing universal properties

(BP1) Given anotheriso-corfk;ly; : fl o = gly) overf andg (with apexX), there

exist al-morphismu and two iso-2-morphisms and ; such that the pasting
diagrams below are equal.

= (1.9)

(BP2) Given 1-morphisms;v: X P and 2-morphisms;: diu) dv (i =0;1)
such that the diagram

fdou —2 fdov

gdiu T gohv

commutes irK(X; C), thereisaunique: u) v such thateach; = d
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The two conditions (BP1) and (BP2) together are equivalent to saying that the
functor
B(OX;P)  B(Xf)# B(Xg)

is an equivalence where the right hand side is the pseudo pullback of func-
tors B(X;f): B(X;A)! B(X;C)andB(X;g): B(X;B)! B(X;C). One
direction of the equivalence is obtained from whiskering by the iso-cone
(do; d1; ).

Note the distinction from pseudopullbacks, for which the equivalence is an
isomorphism of categories. And of course a strict pullback has similar condition
of universality as in above except that they are with regard to strict cones
instead of iso cones.

DEFINITION 1.4.11. A 1-morphism inK is bicarrable (resp.carrable, pseudo-
carrable ) whenever a bipullback (resp. strict pullback, pseudo pullback) of it along
any other 1-morphism (with the same codomain) exists.in

Of course, bipullbacks are de ned up to equivalence and the class of bicarrable
1-morphisms is closed under bipullback.

Two important facts that we are going to deploy in chapters 3 and 4 are:

» All extension maps in the 2-category Conof AU-contexts are carrable.
(See [Vic19))

* In the 2-category ETop of elementary toposes all bounded geometric
morphisms are bicarrable. (See [Joh02a, B3.3.6]).

CONSTRUCTION1.4.12 (Display sub-2-category). Suppos« is a 2-category. Let
D be a chosen class of bicarrable 1-morphismK,mwhich we shall call “display
1-morphisms”, with the following properties:

» Every identity 1-morphism is iD.

« If x:x! xisinD,andf :y! xinK, then there is some bipullbagkof x
alongf suchthay 2 D.
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We form thedisplay 2-categoryKp as follows. We use a systematic “upstairs-
downstairs” notation with “overbars' (efy) and ‘underbars’ (e.g.) to help navigate
diagrams.

(Kp : 0) Objects arex: x! xinD.

(Kp : 1) For any objectx andy, the 1-morphisms frorg to x are given by the triples
~ H _
f =H,f;fiwheref:y! xandf:y! xarel-morphisms i, and

H _
f :xf ) fyisaniso-2-morphismik.

(Kp : 2) If f andg are 1-morphisms fromg to x, then 2-morphisms frorh to g are of
theform = hy _iwhere :f ) gand_:f ) gare2-morphismsik so
that the obvious diagram of 2-morphisms commutes.

g

/\

f y!?/x
X y—>x f oy

g+
‘X y‘ fe hx y F+g '
X Yy —— X XTX

L \_/(

Composition of 1-morphismk: z ! y andf:y ! xis given by pasting them
together, more explicitly it is given byk := h‘T;E F ki whereE fH

= (f E ) (fH k). Vertical composition of 2-morphisms consists of vertical
composition of upper and lower 2-morphisms. Similarly, horizontal composition of
2-morphisms consists of horizontal composition of upper and lower 2-morphisms.
Identity 1-morphisms and 2-morphisms are de ned trivially from thosk.of

Notice that Kp is a sub-2-category of the 2-categorycyl _ (K) := Gray (2;K),
where the latter consists of strict 2-functors, pseudo-natural transformations,
and modi cations from the free walking arrow category 2. Indeed, cyl_( )
construction is a 2-dimensional generalization of the construction of arrow
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category. There is a (strict) 2-functor cod: cyl _(K) ! K which takes objectx
to its codomain x, a 1-morphismf to f and a 2-morphism (5 _) to _. The 2-
category cyl _ (K) has a universal property: Any pseudo natural transformation

:F! G:L Kliftstoastrict 2-functor ©€: L ! cyl_(K) with dom €=F
and cod €= G. The relationship betweenK, Kp, and cyl _ (K) is illustrated
in the following commutative diagram of 2-categories and 2-functors:

Ko eyl _ (K)

Ck cod

K (1.10)

We can generalize the construction above to bicategories although some care
has to be taken with regard to weak unitality and weak associativity when
we paste squares and cylinders both horizontally and vertically. Depending
on whether we drop the invertibility condition of the 2-morphisms inside
squares of 1-morphisms we obtaincylinder bicategory cyl (B ) or iso-cylinder
bicategory cyl_(B) of a bicategory B ([BEn67]). We would instead obtain

a homomorphism cod: cyl(B) ! B de ned in the same way and a display
sub-bicategoryB p.

In passing from categories to 2-categories, the construction of slices of cat-
egories is bifurcated into four versions: strict, pseudo, lax, and oplax slice
2-categories.

CONSTRUCTION1.4.13. For an objecB of a 2-categon, there is dax slice
2-category K . B: the objects oK . B are morphismg): E ! B in K,
the morphisms oK . B are pairsif;' i:q! psuchthat : pf ) qisa 2-
morphism inK, and the 2-morphisms ¢f. B are ofthe form : Hf;" i)h f%'§
where is a 2-morphism fronf to f ®in K which is compatible with and' © i.e.
'O (p )=".Thecomposition of morphisnig; i: ! qhf; i:q! pisgiven
by the morphisnifg; ( gi. Amorphismhf;" i:q! pisanisomorphismin
K. B iffbothf and are invertible. It is an equivalence fffis an equivalence of
and is aniso-2-morphism.
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The construction obplax slice 2-category K % B is similar except that in the

de nition of morphismff;" i, the 2-morphismi goes in the opposite direction, i.e.
":q) pf. Ifall' are invertible (and therefore their direction does not matter),
then we obtain the notion gfseudo slice 2-category (or sometimes simply a
slice 2-category) which we shall denote Ky B. If all ' are identity, then we get
the notion ofstrict slice 2-category which is denoted bX=B. There is a strict
2-functorK=B | K B which is identity on objects and sends a morphisio

H; idi, and is identity on 2-morphisms. It is locally full and faithful, however, it is
not necessarily an embedding of 2-categories. Also, it is not loctilete(Recall

that a subcategory is replete if the property of belonging to it respects the principle of
equivalence of categories, i.efif X ~ yandx 2 D | Ctheny 2 D andf liesin

D as well). Similarly, there are 2-functoks B, K% B,andKk B! K. B
which are identity on objects, morphisms, and 2-morphisms. They are locally fully
faithful and replete, but not necessarily emebedding of 2-categories.

The embeddings of slice 2-categories above lie #yere. the following triangles of

2-functors commute.
K=B — K B — K.

St

Any morphismh; i:q! pinK B factors asdom -vertical morphism (i.e. a
morphism whose image unddom is identity) followed by a strict morphism (i.e.
a morphism in the strict slick=B). The same is true for morphismskn. B and
K% B.

E f F E_,E_"F
\«i/ = &pf/
q p q p

!
B B

Therefore, we may write
H;, i=nH;idi hl, i

Also, any objecp: E'! B of K. E induces a 2-functor,: K. E! K.
B which takes objeck: X ! E topx: X ! B, morphismh; i:y ! xto
H;p i:py! px,anditactsidentically on 2-morphisms.

Chapter 1  2-Categorical preliminaries




REMARK 1.4.14. The slice and coslice categories can be realized as oplax and
lax limits in the 2-categorCat, respectively (See Remark 1.9.20). One might be
tempted to construct lax (resp. oplax) slice 2-categories as oplax (resp. lax) limits in
some 3-category of 2-categories. However, this is not straightforward (if possible at
all') since the construction requires the use of lax (op)lax natural transformations
which do not form a 3-category of 2-categories. Nonetheless, similar to the fact
the slice and coslice categories are obtained as special cases of comma categories,
lax and oplax slice 2-categories are obtained as special cases of Gray's 2-comma
categories [Gra74].

1.5 Examples of 2-categories and
bicategories

In this section we give few typical examples of 2-categories and bicategories.
For more examples we refer the reader to [Lac10a, Section 1].

EXAMPLE 1.5.1. SupposeS is nitely complete category. There is a 2-category
Cat(S) of internal (small) categories i§, internal functors and natural transforma-
tions. See De nition A.8.1 in Appendix. In Chapter 2, we shall see that it embeds
into the 2-categoryib(S) of categorical brations ovet. This embedding though
only holds in the bicategorical sense of Section 1.3.

An special case of the above example is the 2-category of (internal) groupoids.

EXAMPLE 1.5.2. Groupoids, functors, and natural transformations between them

(necessarily invertible) form a 2-categoBrpd. Consider the delooping 2-functor
Gp?! Grpd whereGrp? is the discrete 2-category of groups. In the theory of

groups, one is often concerned only with group homomorphism® conjugacy

(i.e. study of groups by inner automorphisms). We note that the essential image

of : Gp?! Grpdis the 2-category of groups where a 2-morphism( f) )

( 9): G Hisaniso-2-morphism iff it is a conjugacy between group homomor-

phismsf andg, i.e. an element of H such thatg(x) = f (x) *forall x in G.

Whiskering on the left with a morphism( h): G°! G is given by the same

element 2 H, while whiskering on the right with a morphisnf k): H! H°
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is given by the elemer( ) 2 H® The vertical composition of 2-morphisms landing
at H is given by multiplication of the corresponding element#linin particular,
for an endomorphismh: G ! G, a 2-morphism : (id g) ) ( f) exhibitsf as
the inner automorphisin=( ) : G! G. Therefore, the connected component of
the groupoidarpd( G; G) containing (id ) is precisely the set of all inner auto-
morphisms ofG. Finally, the grougGrpd( G; G)((id ¢); (id g)) is isomorphic
to the central subgroup(G) of G.

ExAMPLEL.5.3. Locales and locale maps with specialization order form a 2-category
Loc. Recall that for a local&X we have an associatédme of "opensO(X) and
amapf:Y ! X of locales give rise to a map of framés: O(X) ! O(Y) in
the reverse direction. A 2-morphism between such two such fgpsy X if

f (V) g (V) foranyoperV inthe frameO(Y). This order is known by the name
of “specialization order”: we writé v g Note that there is at most one 2-morphism
between any two 1-morphisms. In fatcis D cpoenriched: given a directed fam-
ily ff;g of maps inLoc(X;Y ), the directed join of them is given by the formula
(V'fi) V = V(f)) V TheDcpoenrichment implies that a The construction of frame
of opens of a locale gives a 2-functdr. Loc! Frm which is represented by the
Sierpinski spac& whose frame)(S) is given by the posdt0 | 1g. Therefore
Shas two point® ;> with ? v > .

EXAMPLE1.5.4. For an elementary topds (with nno) the object classi er (over
S )is atoposS [O] whose (generalized) points in other toposes form the underlying
category of that topos, i.e.

BTop g (E;S[O))' E

By underlying categor¥ of a toposk, we simply mean the category of objects of
toposE which is locally representable. The role of object classi®fO] ! S
generalizes the the role of Sierpinski sp&c&Vhile S classi es opens (i.e. subtermi-
nals) of localesS [O]! S classi es objects of othe$ -toposes (i.eS -sheaves).
Note that the object classi er represents the pseudo functor

S e
(BTop g )" I Caty

which takes a geometric morphigin ;f ) of S -toposes to the cocontinuous functor
f oflocally representable categories. [BC95] shows that the 2-cat¢Bdiyp=S )"
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is 2-monadic over the 2-category of locally presentable categories and cocontinuous
functors between them internal$o. Therefore, the pseudo funct®iop=S ( ;S [O])
has a left 2-adjoint.

EXAMPLE 1.5.5. The simplex categofy of nite ordinals can be updated to a
2-category in three ways: rst, as a locally discrete 2-category, and second, as a
delooping of its monoidal structure (See 8A.6), and nally, and perhaps the most
interesting way is to consider as a locally posetal 2-category. This insight goes
back to [Str80] which uses this 2-category to de ne the notiodadtrineon any bi-
categoryB : it is a strict monoidal homomorphism from (considered as monoidal
2-category) to the monoidal bicategdtiym (B ; B ). A bit of calculation shows that
doctrines on bicategories are basically the same thing as pseudomonads, i.e. monads
whose associativity and unit laws hold only up to coherent isomorphisms, instead of
strict equalities.

More precisely, the objects and morphisms are the same as standard simplex cate-
gory and 2-morphisms are obtained in virtue of poset-structure of ordinals. For
instance, the hom-categorfy 1;2) consist of two monomorphismsg 0, and

( 2;3) consist of three monomorphisms o Where the order is pointwise.
Morphisms ; are known agofacemorphisms, and geometrically, they are pictured

as follows (but now with the addition of 2-morphisms):

1
8
2
1 —= < =
: 8 fOg  fO0—1g — 1>, /ytﬁ//\/
0 >0 — 2

0

In general in hom-category n;n + 1), we have a chain of 2-morphisms
n) n1) 1) o

This is half of the picture; there are epimorphismswhich go in the other direc-
tion and they are calledodegeneracynorphisms. In general in the hom-category
( n+ 1;n), we have a chain of 2-morphisms

0) ) na

8This is the simplex category of category theorists, not topologists.
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The chains of 2-morphisms above are generated by the following string of adjunc-
tions:

nd pn1d p1ad..:ad gd o

where the unit of , a 1 and the counit of ¢ a | are identities. From these we
obtain:

K= k k1 k1F k1

Similarly,

k 1= k k k1=k)" k

REMARK1.5.6. Note thatin hom-category n;n + 1) there are more morphisms
than just coface and codegeneracy morphisms. For arbitnaapdn, there are in
fact "*™ ! number of objects in the hom-categdfpm (m:n).

X
jHom (m;n)j= jmondk;n)j j epim;Kk)j =
| |
X nm 1 X n m 1
k

.k k m k

This uses the well-known canonical decomposition of morphisms into cofaces and
codegeneracies, and Vandermonde's identity.

ExAMPLEL1.5.7. For any nitely complete categor$there is an associated bicate-
gory Span(S) of spangakacorrespondencgsn S. The objects oSpan(S) are the
same as the objects 6fb(S), and the morphisms froA to B are spans betweeh
andB, that is diagrams of the form

VN

A B

Chapter 1  2-Categorical preliminaries




wheresy; s; are morphisms in 06. We denote such 1-morphism By= hsg; S; sii.
A 2-morphism :s) s%isamorphism : S! S%n Swhich makes both triangles
in below commute.

S
RN
A B
s s?

SO

The composition of 1-morphisms is given by pullback.

Span(§(A;B) Span(9(B;C)! Span(S)(A;C)
(hso; S;spis Mo, T t1i) 70h Sp S1(10);S B Titr to(S1)i

The vertical composition of 2-morphisms is given by composition of morphisms in
S, and the horizontal composition of 2-morphisms is the induced morphism on the
pullbacks obtained by their universal property.

A monad inSpan(S) is the exactly the same thing as a (small) category interrfal to
([Str74]) and a monad morphism corresponds to a profunctor of internal categories.

There are embedding homomorphieini : S*! Span(S)andh ;1i: (S !
Span(9) of bicategories whereby the rst embedding takes a morpliist{ | Y

in S to the spanhly ; X;f i, and the second embedding take®: Y ! X in

SP to I; X; 1xi. We also have an invertible involution 2-funct8pan(S) !
(Span(S))° which is identity on objects and acts on morphisms and 2-morphisms
by switching the legs of spans.

Span(S) has a certain 1-dimensional property: any fundtofrom the underlying
category ofSpan(S) to a categoryC is uniquely determined by a pair of functors
F :S®1! CandF : S! Cwhich take the same value on objects®&nd more-
over, any pullback irS on the left is taken to a commutative squaredron the
right:

A—%.B AF9 B
fl p lk 7! F () TF )
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EXAMPLE1.5.8. SupposeSis a regular category, in particular we need stable epi-
mono factorization irS. The bicategoryRel(S) of relations internal t& has the
same objects aS, and as morphism spans= hrg; R;ri for whichrg andr; are
jointly monic, and we consider only the 2-morphisrwhich are monic. This makes
Rel(S) is alocally posetal bicategory. Note that in any locally posetal bicategory, the
2-dimensional coherence equations become redundant as all parallel 2-morphisms
manifestly commute. There is a lax functdr. Rel(S) ! Span(S) which forgets

the jointly monic property of spans. The composition of relation®\ !'p B and

s: B !'p C has one more step than composition of their corresponding spans: it is
calculated as the image (i.e. the monomorphism of epi-mono factorizati®nah
morphismiry r;So;S1 Sprai : R g S. Inthe internal language & the composite
relations r may be described as follows:

a(S R)c () 9 b:B:(aRb” (bS9

EXAMPLE1.5.9. The?2-categoryPar (S) is a sub2-category ofSpan(S); we only
consider those 1-morphishy D; f i for whichi is monic, and we consider only the
2-morphismh which are monic. Th@-functorP : Par(Set) ! Set which takes a
objectA to the pointed s€fA fg ; ) andis furthermore de ned on hom-categories
byPag : Par(S)(A;B)! Set(A fg ;B f %), wherePag (i;f )(x) = f (x) if

x 2 D andPag (i;f )(x) = ©otherwise, establishes and equivalence of bicate-
gories.

ExAMPLE1.5.10. SupposdV; ;l) is a monoidal category equipped with equaliz-

ers and coequalizers which are stable under tensoring (such as the monoidal category
of Abelian groups). Then the bimodulesVhform a bicategoryBiMod (V). This
bicategory generalizes bicategorigpan(V) andopSpan(V). (See Construction
A.8.11 and Examples A.8.13 and A.8.14 in Appendix.)

EXAMPLEL1.5.11. Supposé/is acomplete and cocomplete closed symmetric monoidal
category (i.e. A Bénabou cosmos). There is a bicate@usy(V) of categoriesy-
distributors (aka profunctors), andnatural transformations. More precisely, the
objects aré/-enriched categorie&, B, etc., a morphism between objeé&tsandB

is aV-functorB°® A ! V (hereV considered self-enriched itself via its closed
structure), and a 2-morphism between morphisinandK is aV-natural transfor-
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mation :H ) K:B°% A V. The identity morphism oA is given by
V-hom-functorA( ; ): A°® Al V: the localV-morphisms

(A% A)(a;b; @) ! [A(a;b; APy
are induced by
A@%a) A@b A" " AEH)

Distributors can be considered as bimodules of categories.

'FI;he composition of morphismd : A!pB andK : B!p Cis given by the coend
2B H(b; ) K( ;b)which traces out the middle variatef B.

A 2-morphism : H ) HP%is aV-enriched natural transformation (in the case of
Bimodules a bilinear homomorphism). The vertical and horizontal composition of
2-morphism is performed similarly to that of bimodules (See A.8).

A lax monoidal functoF : V! W of cosmoi induces a lax 2-funct®ist (F): Dist (V) !
Dist (W) (all applyingF to all the "hom-objects' &-category oN-distributor), and

a lax monoidal adjunctiok a G: W ! V of cosmoi induces #ocal adjunction
Dist(F) a Dist(G).

A special case of distributors are matrices.

EXAMPLE 1.5.12. The 2-categoryMat of matrices is formed of ( nite) sets (i.e.
discrete categories in the context of example above) as objects and 1-morphisms
between objectX andY areX Y-indexed families of sets. We denote such a
family by (Axy)x2xy2y. The composition of two 1-morphism®s 2 Mat (X;Y)

andB 2 Mat (Y;Z) is given by their producfAB )., = i yAy Byz. The 2-
morphisms are de ned component-wise. Note tN&t is a genuine bicategory
since for setf\;B;C,we have(A B) C6 A (B C), butareisomorphic

via a canonical associatorgiven by ((a;b;c) =(a;(b;9).
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1.6 2-categories of toposes

Elementary and Grothendieck toposes form honest 2-categories and concerning
the core of the thesis, we really doe not need bicategories in their full generality.
However, there are persisting and essential bicategorical aspects to these 2-
categories, such as the use of bilimits of toposes, which require us to have a
mixed approach.

Another reason is that a geometric morphism from the classifying toposSet[T]
to Set[T9 is up to unique isomorphisma model of T%in Set[T], i.e. a model
of T constructed geometricallyfrom the generic model of T. As such, the
iIsomorphism, and not the equality, of 1-morphisms of toposes should be
regarded as the correct notion of structural sameness (8A.2) of morphisms
of toposes. If the objects are of interest as classifying toposes, then they are
de ned only up to equivalence. We can only get bipullbacks, not strict or
pseudo pullbacks of toposes. These properties of toposes and their morphisms
are manifestly bicategorical. Therefore, throughout the thesis we have the
bicategorical aspect in mind. The section 81.9 emphasizes the distinction
between strict, pseudo, and bilimits on which we shall heavily rely in the next
chapters. By contrast as we shall see in Chapter 3 the 2-categor€on the third
model of generalized spaces, is strictly 2-categorical (all exisiting limits and
colimits are strict).

The setting for our main result of the thesis (4.2.2) is the 2-category ETop
whose objects are elementary toposes (equipped with nnd), whose morphisms
are geometric morphisms, and whose 2-morphisms are geometric transforma-
tions.

However, our concern with generalized spaces means that we must also take
care to deal with boundedgeometric morphisms. Recall that a geometric
morphism p: E ! S is boundedwhenever there exists an objectB in E (a
boundfor p) such that every A in E is a subquotient of an object of the form

%natural number object
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(pl) B forsomel 2 S : thatis one can form the following span in E, with
the left leg a mono and the right leg an epi.

E

N\

(pl) B A

The signi cance of this notion can be seen in the relativized version of Giraud's
Theorem (see [Joh02a, B3.4.4]): p is bounded if and only if E can be got
as the topos of sheaves over an internal site inS . (In the original Giraud
Theorem, relative to Set, the bound relates to the small set of generators.)
It follows from this that the bounded geometric morphisms into S can be
understood as the generalized spaces, the Grothendieck toposes, relative to
S.

Bounded geometric morphisms are closed under isomorphism and composi-
tion (see [Joh02a, B3.1.10(i)]) and we get a 2-category BTop of elementary
toposes, bounded geometric morphisms, and geometric transformations. It is
a sub-2-category ofETop, full on 2-morphisms.

Also [Joh02a, B3.1.10(ii)], if a bounded geometric morphism qis isomorphic
to pf, where p is also bounded, then so too isf . This means that if we are
only interested in toposes bounded overS , then we do not have to consider
unbounded geometric morphisms between them. We can therefore take the
“2-category of generalized spaces ovelS ” to be the slice 2-categoryBTop=S ,
where the 1-morphisms are triangles commuting up to an iso-2-morphism.
[Joh02a, B4] examines BTop=S in detalil.

For the (op) brational results, [Joh02a, B4] reverts to BTop. This is appro-
priate, since the properties hold with respect to arbitrary geometric transfor-
mations, whereas working in BTop=S limits the discussion to those that are
identities over S .
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Unbounded geometric morphisms are rarely encountered in practice, and so
it might appear reasonable to stay inBTop or BTop=S [Joh02a, B3.1.14].
However, one notable property of bounded geometric morphisms is that their
bipullbacks along arbitrary geometric morphisms exist in ETop and are still
bounded [Joh02a, B3.3.6]. (Note that where [Joh02a] says pullback in a
2-category, it actually means bipullback — this is explained there in section
B1.1.) Thus for any geometric morphism of base toposed : S°! S, we
have the change of base pseudo functof : BTop=S ! BTop=S % One might
say the "2-category of Grothendieck toposes' is indexed oveETop_ (where
the 2-morphisms in ETop. are restricted to isos). [Vicl17] develops this in its
use of AU techniques to obtain base-independent topos results, and there is
little additional effort in allowing change of base along arbitrary geometric
morphisms. To avoid confronting the coherence issues of indexed 2-categories
it takes a brational approach, with a 2-category GTop “of Grothendieck
toposes” bred (in a bicategorical sense) over ETop. .

We shall take a similar approach, but note that our 2-category GTop, which
we are about to de ne, is not the same as that of [Vic17] — we allow arbitrary
geometric transformations “downstairs”. We shall write GTop_. when we wish
to refer to the GTop of [Vicl7].

DEFINITION 1.6.1. Following the Construction 1.4.12, tfecategoryGTop is de-
ned asETopy, whereD is the class of bounded geometric morphisms of elementary
toposes. We calbTop the 2-category of Grothendieck toposes.

Glop (ETop#ETop)

cod cod

ETop
To be more explicit, irGTop
(GTop 0) Objects are Grothendieck topogesE ! S over some elementary top8s.

(GTop 1) For objectsp and g, the 1-morphisms frong to p are given by the triples
_H _
f =H, f fiwheref:q! pandf:qg! pare geometric morphisms,
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H _
and the geometric transformatidén : pf ) fqis an invertible geometric
transformation.

(GTop 2) If f andg are 1-morphisms from to p, then 2-morphisms frorh to g are of

the form = hy i where=:f ) gand _:f ) gare geometric transfor-
mations such that lies over_ (modulo invertible geometric transformations

H
f anda).

Notice that in particular, GTop(S ) = Base 'S = BTop=S .

An important part of the next chapter will focus on the codomain 2-functor
cod: GTop! ETop.

It is important to note that this codomain functor is not a bration in any
2-categorical sense, as it is not well behaved with respect to arbitrary 2-
morphisms in ETop. This will turn out to be easy to see if one takes the
point of view of indexed 2-categories (and the corresponding change-of-base
functors).

Indeed, it becomes a bration if one restricts the downstairs 2-morphisms
to be isos, as in [Vicl7]. However, it will still be interesting to consider its
brational objects, cartesian 1-morphisms and 2-morphisms, which we shall
doin 82.5 §2.6.

1.6 2-categories of toposes
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1.7 Representability and bicategorical
concepts

In this section, we shall discuss the importance of the notion of representability
in 1-categorical and 2-categorical setting. Recall that

DEFINITION 1.7.1. A functorF: C! Set isrepresentable whenever there is
an objectA in the categoryC with a natural isomorphism: F = Hom(A; ).
In this situation, we sayF is representedy the objectA. A presheafP: C°P !
Set isrepresentable when there is an objed® in the categoryC with a natural
isomorphism : P = Hom( ;B).

NOTE. We usually use notationg* = Hom(A; ) andys = Hom( ;B). The
functorsy andy are, respectively, Yoneda and co-Yoneda embeddings. By Yoneda
lemma, the representing object is determined uniquely up to canonical isomorphism
for a given representable functor (resp. presheaf).

There are many reasons why representable functors and representable presheaves
are so important in category theory and higher category theory. Suppose we
want to de ne an object satisfying a universal property, such as a limit, a
colimit, an exponential, etc. in a given category C. One elegant approach is to
take advanatge of topos structures (e.g. cartesian closedness, completeness,
cocompleteness, etc.) ofSet®” and the Yoneda embeddingC! Set®”: The
desired object (satisfying our universal property), provided it exists in C, is

the representing object for a presheaf, constructed from representables, which
satisfy the same universal property inSet® . The Yoneda lemma ensures us
that this object, if it exists, will be unique up to canonical isomorphism.

EXAMPLEL.7.2. LetCbe a category andl andB objects inC. Take the functoy,

yg : CP I Set. Ifthis functor is represented by an obj€cin C, thenHom(X;C) =
Hom(X;A) Hom(X;B), naturally inX . The data of these natural isomorphisms
Is exactly the data of a product AfandB in C, provided that the later exists @

An application of the representational approach is found in de ning new
objects in mathematics with higher structures. Suppose we want to de ne a
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group internal to any category with binary product and terminal object. One
way is to write down all the data needed for operations of a group plus the
group axioms for these operations. This is special case of the de nition of
an internal category. (See Appendix A.8). For more sophisticated structures
such as topological groups and groupoids, bicategories and double categories,
Lie groups, spectra, etc. internal to categories (with enough structures), this
approach can be tedious. Instead we can use Yoneda embedding again: An
object A in Cis a group object iff the representable presheafy, has a unique
lifting along the forgetful functor U: Gp! Set.

Y, J

u

P Set
Ya

One example of such lifting is the fundamental group of a topological space.

EXAMPLEL.7.3. LetTop. ; be the category consisting of pointed topological spaces

with morphisms homotopy classes of base-point preserving maps. The co-representable
functory®": ) computes, for every pointed spa¢¥sx o), the set oh-spheres (loops

forn = 1), up to homotopy, based =4 in X . The lifting of y(S": ) along the forgetful

functorU gives then-th fundamental group.

Gp Ab
P A
e | JU n JU

Therefore(S"; ) is aninternal cogroup in the categargp . ; whose co-multiplication
map is given by the canonicalm&j ! S"_ S".

We can jump one level up from categories (i.e.Set-categories) to 2-categories
(i.e. 2-categories) and bicategories. The idea is still the same with the main
difference that in the world of 2-categories and bicategories there are two
distinct ways to formulate representability: using isomorphism versus equiva-
lence of hom-categories and precisely these different choices account for strict
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and weak structures of representing objects such as limits, colimits, etc. We
shall use the pre x “bi” when we refer to the bicategorical cases.

PRINCIPLE If P is a property/structure of categories, then we say that an alject
in a bicategonB representably satis eB (or is representably ) if for all objects
W of B, B (W; X) satis es/exhibitsP. If P is a property/structure of functors of cat-
egories, then we say that a 1-morphismX ! Y in a bicategoryB representably
satis es P (or is representablyP ) if for all objectsW of B, f : B(W; X) !

B (W; Y) satis es/exhibitsP.

REMARK1.7.4. Recall from category theory that a categoryndiscrete(akacodis-
crete chaoti¢ whenever for any two of its objects there is a unique morphism (nec-
essarily invertible) between them. An indiscrete category is inhabited iff it is equiv-
alent to the terminal category. A typical example of an indiscrete category is the
fundamental groupoid of a contractible topological space.

Consider the chain below of (forgetful) functors whereforget morphismsj jj -
Und is the underlying category.

2 () () ()°
pt(l) « i, — (pt(S);=) «ii |, - (Set=) « i , — (Cat' ) <ii , - (2Cabysa;" )

( )ind ( )ind ( )ind

whereSis the Sierpinski spacef(S) can be regarded as the category of truth values
(aka (-1)-categories) = ; and> = f;g . Note thatSet is the category of points of
the object classi er topo$ [O]. Also, jj jj ) is the unique functol, jj jj L 5

the propositional truncation , and jj 0 is the "underlying set of objects' functor.

DEFINITION 1.7.5. SupposeB is a bicategory. We de ne the following concepts in
B representationally: An objeétis bidiscrete (resp.biposetal, respbigroupoidal )
if the representable pseudo func®( ;A): B° | Catfactors, up to an equiva-
lence, through the sub-2-categ@gt (respPoset, resp.Grpd) of sets (resp. posets,
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resp. groupoids). The phrase "up to equivalence' means that there is there is a natural

equivalence
K

A
BT ;A) .-~ h
/// 1

B ——— Cat
B( :A)

whereK is the 2-categoryet (resp.Poset, resp.Grpd).

In more basic terms, A is bigroupoidal iff each 2-morphism

is invertible or equivalently, the morphism
It X! 2t X,

induced by the categorical embedding2 ! 1, is an equivalence inB. A
is biposetal iff there is at most one such 2-morphism between any pair of
1-morphism. Finally A is bidiscrete iff it is both bigroupoidal and biposetal.

REMARK 1.7.6. The analogue of de nition above for 2-categories replaces "up to
equivalence' by "up to isomorphism'.

1.8 Adjunctions, extensions, and liftings

In addition to the de nition of equivalence, adjoints, and adjoint equivalences
in bicategories, which we have discussed to before, a host of other basic con-
cepts of categories and functors functors can be internalized in bicategories.

PrROPOSITION1.8.1. Every adjunction can be promoted to an adjoint equivalence.

EXAMPLE 1.8.2. Every adjunction in the 2-categofyrpd is automatically an ad-
joint equivalence. Also, it is a theorem of formal category theory that every adjunc-
tion of categories can be promoted to an adjoint equivalence. This works mutatis
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mutandis in every bicategory. If we consider groups as one-object groupoids (Exam-
ple 1.5.2), then an adjunction G H : r of groups consists of elements2 G
and" 2 H suchthat = "()and !=r("). So," is uniquely determined from

. Infact, bothr ~ and”™ r are inner automorphisms, given by conjugation with
and", respectively.

DEFINITION 1.8.3. (i) A1-morphismi: X ! Y isfaithful (respfull)if whisker-
ing with i on the left is a faithful functor (resp. full), i.e. for evely 2 Kg
the induced functor : K(W;X) !  K(W;Y) is faithful (resp. full) inCat.
We can give a rst order reformulation:: X ! Y is full iff for any pair
of 1-morphismd;g: W X, any 2-morphism :i f ) i ghasalift
—:f ) g. Moreoveri is fully faithful iff such lifts are unique.

X

e

f i

Tg

rd
W=—i f —vY

N

(1.11)

(i) A pseudo-retract of 1-morphismf : Xo! X isa l-morphisnr: X | X
together with an iso-2-morphisidy, = r f. A pseudo-section of p: E !
B is a 1-morphisns: B ! E together with an iso-2-morphispm s = idg.

(i) Given 1-morphismsf : A'! C andj: A ! B, the 2-morphism : f )

g ] 2 K(A;C) exhibitsg 2 K(B;C) as theleft extension of f alongj
whenever for any 1-morphisg? 2 K(B; C) we have the bijection of sets

K(B;C)(g;d) = K(A;C)(f;99)
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given, from left to right, by the assignmen®! ( j)

e (1.12)

(iv) Given 1-morphismg : A'! B andp: E ! B, the 2-morphism : f )
p g2 K(A;B) exhibitsg 2 K(A; E) as thdeft lifting of f alongpwhenever
for any 1-morphisng®2 K(A; E) we have the bijection of sets

K(AE)(9; ) = K(A;B)(f;9%)

given, from left to right, by the assignmen®! (p )

ﬁ Jp (1.13)

The extension (resp. lifting) sbsolute ifit is preserved by all outgoing (resp.
incoming) arrows fronC (resp. toB).

REMARK 1.8.4. The left liftings inK are the left extensions iK°P. Also we de ne
the right liftings (resp. right extensions) as the left liftings (left extension$y‘th
At times, we shall use the notatidxmjf for the left extension am:lanjf for the right
extension. If all left (resp. right) extensions of morphisms of the thpe C
alongj exist, then we get a left (resp.) adjoiiamj( ) a j (resp.j a ranj( ))
wherej = K(j;C): K(B;C) ! K(A;C). Note that in particular the 2-morphism
:f ) lan{ | is the unit of the adjunction above fat The left extensiorhanjf IS

i
absolute iff foranyu: C! C°%wehaveu ( ;)= .

REMARK 1.8.5. The notions of extension and lifting in a bicategory are direct gen-
eralization of left and right closed structures of monoidal category. Consider mor-
phismsA, X, andB in the delooping bicategoryV of a closed monoidal category

V (Example 1.2.1). Aright lifting o)X alongA gives the counifA; X] A! X

of adjunction A a [A; ]and aright extension of alongB gives the counit

B [B;X]! X ofadjunctionB a [B; ]inV. In a symmetric monoidal
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category there is no difference between left and right closed structures and this can
be seen from the previous remark sirfcé/)°? = VvV

PROPOSITIONL.8.6. Inthe extensioffg; ) ofdiagram(1.12) ' is aniso-2-morphism
iff ] is an equivalence.

Proof. We only prove the “if” direction. The “only if” direction is similar.
Supposej : A'! B is an equivalence. Then := j;jl iy (F) 1 isan
iso-2-morphism betweenf and (fj %) j. O

REMARK 1.8.7. The representably de ned notion of fully faithful 1-morphism can
be recasted in terms of left lifting: tautologicalfy; A ! B is fully faithful iff 1,
is an absolute left lifting of against itself.

REMARK1.8.8. The unit of an adjunctiorf a u exhibits the left adjoinf : A'!

B as the absolute left lifting ol, along the right adjoinu. For any morphism

f% Al B andany2-morphism: 1, ) uf®wedenee:=( f9 (f ):f)

f % The left adjunction equation in 1.2 yields the equality of pasting diagrams in

S AR

A1 .A A A

7
/0

REMARK1.8.9. In a 2-categorK with a terminal object, the colimit and limit of
a morphismf : A'! B can be intrinsically de ned as the left and right extensions
of f along the unique (up to iso-2-morphism) morphismA ! 1, respectively.

A % C A f—> C
!AJ U /// !AJ ﬂ '
1 _—""colim f 1 lim ¢
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Pasting(lan; ; ) with the comma square in below mak(ee;b;(lanjf ) ( dp))
into a left extension ofd o alongd,: (j #b) ! 1.

GG#bh) —2 A " ,C
1oy S
d{ I ‘J (1.14)
1 B - - lan
b
By de nition, we have
lan' b= colim((j #b)!® A " C) (1.15)

ProOPOSITION1.8.10. From the remarks above we conclude that

(i) Left (resp. right) adjoints preserve left (resp. right) extensions. In particular,
they preserve colimits (resp. limits).

(i) The left adjoint is fully faithful iff the unit is an iso-2-morphism.

(i) The right adjoint is fully faithful iff the counit is an iso-2-morphism.

ExamPLE1.8.11. Inthe 2-categoryatof categories extensions are knownkasn
extensions as a tribute to the early work of Daniel Kan on adjoints and extension.
Itis by now a classical result that in the case wideis small,B is locally small, and

C is cocomplete then the left Kan extension of any funftatong anyj exists, and

is pointwise calculated by the coent?? B(ja;b) fa ([ML98, § X.4.1-2]). Of

course, the expression of coend uses the set-enrichment structure of categories, so
B(ja;b) fa is basicallyB (ja; b)-indexed coproduct dfa with itself. (See §1.9

for formulation of cotensor as a weighted limit and the expression of left extensions

in the more general setting denriched categories.)

Now, the coend expression of the left Kan extension suggests that the condition

of local smallness of B can be weakened to the requirement th&(gt b) are
small (i.e. a set), a condition called “admissibility” pf by Street and Walters in
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their “Yoneda structures' A familiar case of this equation in the 2-cateGartyof
categories is the following situation:

(F P #d) P — P Set

A

R

- Langop P
op -
s
1 r D

From the general case, we deduce that
Lange P(d) = colim((d#F) ™ ° Set)

This is known as "push-forward' of presheaves. It is, by the universality property of
left extensions, the left adjoint to the “pullback functér': PShyD) ! PShyC)
obtained from pre-composition with°?. Indeed,F (Q) = PShVD)(ypF( ); Q).
Note that by this equation, a natural transformatior ) G induces a natural
transformation : G ) F , and therefore

WhenF is left exact, thefd # F) is Itered and since Itered colimits commute with

nite limits (See [MLM94, 8VI1.6]), it follows thatLang. : PShyC) ! PShyD)

is left exact, and therefore itis the inverse of geometric morplismg ;F ): PShyD) !
PShVC). Therefore, we have a 2-functB'Shy ): Cat..® ! ETop. (For more
details see [Joh02a, Example 4.1.10].)

ExaMPLEL1.8.12. We saw the connection between left extensions and colimits. But,
there is a sense which relates lefts extensions to the object of (path) connected com-
ponents. Lefl: A ! Setbe the functor which is constant at the terminallsetf ?g.
It is straightforward to see that the left extensiori@long any functoK : A! B
computes, ab 2 B, the set of connected components of comma cate@for# b),
le.

Lank 1(b) = colim((K #b)!dO At Set) = oK #b)
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A special case of this situatilgn involves category of elements of a diagram. Suppose
F:B ! Setisafunctor andg F is the category of elements Bf obtained by the
following comma object.

sF —— 1

| 2|

In fact the 2-morphism in the comma square above establishess the left exten-
sion of constant functat: g F ! Set, and therefore we have

Z
F(b) = colim(( s #b)!® F LSe) = o s #b (1.16)

To see the isomorphisi(b) = ( g #b) more concretely, note that in the comma
category( g #b), an object is of the fornfx;d; ) wherex 2 F(d)and :d! b

is in B, and a morphism of g #b) is of the formg: (x;d; ) ! (x%d% 9 where

g: b! KPis amorphismiB withg x = F(g)(x) = x%and ° g=

The functordy: ( g #b) ! RB F forgets theband parts. Now, any two objects in
the same connected component of #b) we associate the same elementx =
(%9 x= (gx)= °x%Themappingg 7! (x;b;idp) 2 and(x;d; ) 7! x
give the isomorphisnk (b) = ( g #b).

1.9 2-Categorical and bicategorical limits

The aim of this section is to introduce a consistent language to talk about and
delineate between 2-categorical (co)limits and bicategorical (co)limits. As
mentioned before bicategorical (co)limits are the correct notion of (co)limits

in various 2-categories of toposes, while the important 2-category Con of
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AU-contexts for us in Chapter 3 the limits are strict and 2-categorical. This
demarcation is summarized in the table of Remark 1.9.6. It should be noted
therein that although in general by weakening of structures of cones and
representation for (co)limits we obtain various notions of 2-limits and bilimits,
in particular cases these various notions could well be equivalent. This is
manifested in handful of examples in this section.

We use the elegant machinery of weighted limits ([Kel82], [Joh02a]) for
giving the de nition of most general 2-limits and bilimits. At the start, we
shall motivate the notion of weighted limits from the 1-dimensional case of
limits of diagrams in categories.

In Remark 1.9.5, we observe that we can divide the universal properties
of 2-limits to the 1-dimensional universal properties and the 2-dimensional
universal properties. We will stick to this terminology throughout the whole
thesis.

Limits of diagrams in category theory, viewed as a representing objects for ap-
propriate Set-functor, generalizes to the notion of weighted limitsof a weighted
diagrams in 2-category theory, de ned as representing objects of certainCat-
valued 2-functor.

We quickly recall a version of 1-dimensional limit and colimits which can
be readily generalized to weighted 2-dimensional limits. Example 1.7.2 of
product is one of the simplest instance of products in category theory. As with
the product, a limit of a diagram in a category represents the presheaf of cones
on that diagram. SupposeJ is a small category andD : J! Cis a diagram of
shaped in the category C. For an objectA in C, the set of cones inC with apex
A is in bijection with the set of natural transformations between the constant
functorat 1 =fg ,namely (1): J! 1! Set, and functor D. More formally,

CongA;D) = [J;Set]((1) ;CA;D( ) = [J;C(( A);D) (1.17)

Note that this isomorphism is natural in A, and as such we obtain a presheaf
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Cong ;D): CP ! Set. Alimit of diagram D is a representation (IirJn D; )
for the presheafCong( ;D) where : ( A)) D.

We wrote C(A; D ( )) instead of homc(A; D ( )) to emphasize theSet-enrichment
structure of the category C. Indeed, it is known since long that the theory
of limits and colimits of categories has a robust generalization to the cate-
gories enriched in closed monoidal categories and they are known anriched
weighted (aka indexed) limits([BK75], [Kel82]). The enriched theory of limits
and colimits generalizes ordinary categorical theory of limits and colimits by
choosing (V; ;1) to be the symmetric closed monoidal category(Set; ;1).
In below, we give a brief outline of this generalization, emphasizing why the
notion of weight must be introduced in the passage fromSet-categories to
general V-categories.

NOMENCLATURE Nowadays, the terminology "weighted (co)limits' is much more
commonly used perhaps for the good reason that the term “indexed' is already over-
loaded with various meanings in category theory. There is another reason why we
should prefer the terminology "weighted (co)limits": For a farfil;gi», of sets,
eachX; with cardinalityn;, the cardinality ofi2| X is - ni, and therefore coprod-
uctsare likesums. Weighted productse likeweighted sumis2| w; n;. This view
is vindicated by the coend formula
Zizg
colimb = W() D)

for weighted colimits. Nonetheless, beware that some of the pioneering papers about

weighted limits (e.g. [KS74], [BK75], [Kel89]) use the terminology “indexed limits'.

First, recall that V-enriched representable functors are de ned asV-functors
C(A; ): C! V, and the action of this enriched functor® on hom-objects is
determined by the right adjoint

COGY ) [CA X)) CA Y )]y

10Note that here V is considered enriched over itself via its closed structure.
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to the composition morphism

CX;Y) CAX)! CAY)
In above we rely on the closed structure'! of V.

NOTE. If V is symmetrianonoidal closed, then we can also de ne enriched repre-
sentable presheav€® ;A): C°P | V. Understanding/-functors asC! V as
V-modules, in the absence of symmetry, we need to distinguish between left and
right for the module structure; one is used for limits, the other for colimits.

Second, the category of natural transformation, used in equation 1.17, is

generalized to a V-category. If the monoidal category V is complete then

we posses the means to make the collection oV-functors between any two

V-categories into anV-category. This is usually expressed by considering the

gbjectof natural transformations between V-functors F;G: C D as the end
“CD(F(c); G(0)).

It seems that we now have all the ingredients to generalize the notion of
(co)limits to the enriched setting by replacing 1, the unit of monoidal category
Set, with | the unit of V. However, a simple-minded generalization will
not yield the correct notion for two reason: rst that to establish the rst
iIsomorphism in equation 1.17 we fundamentally used the factthat 1 = fg
is the terminal object of Set. This is not true for many interesting monoidal
categories. Furthermore, the categorySet is well-pointed and the unit 1is
the separator. Moreover, any setX is entirely determined by its points, i.e.
morphisms 1! X, and any function of sets is entirely determined by its action
on points. Again, these facts do not generalize to a general monoidal category
(by a point of object A of (V; ;1) we mean a morphisml ! A). Therefore, to
obtain a nicely behaved notion of enriched (co)limit we have to replace (1)
by a fattened up V-functor W:J! V.

11Steven Vickers noted that we can do away with this reliance: we can understand av-functor
A from Cto V as a ‘V-module” over C, for each objectX of Cit has a V-object A(X); and
for each pair X;Y there is a “scalar multiplication” C(X;Y ) A(X)! A(Y).
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SupposeV is a closed monoidal category andC is a category enriched inV.
A V-weighted diagram of shape J consists of a pair of V-functors D (the
diagram) and W (the weight) where J is a small VV-category.

A weighted cone with apex A in Cis a V-natural transformation W )
C(A;D( )). Consider the transposedV-functor B: CP I [J;V]; it takes a
object X of Cto the V-functor C(X;D ( )): J! V, and is de ned on hom-
objects by the composition morphismC(X;D (j)) C(Y;X)! C(Y;D(j)). Note
that in the case J = 1, the assignmentD 7! B is nothing but the enriched
Yoneda embedding.

A limit over the weighted diagram above is a representation(livr\p D; ) for the
functor

CongyD:C®! V

(1.18)
X 7! [J; VI(W; BX)
where : W) BX is aV-natural transformation, that is
C(X; Ii\Ln D) = [J; VI(W; BX) (1.19)

natural in X . Note that is indeed the unit of this isomorphism, i.e. the image
of I ! C(Iivrvn D; Iivrvn D) under the isomorphism above.

Dually, one de nes the notion of weighted colimit over aweighted cocone
(D:J! V;W:J%1 V)whereJ%®(j;j9:= J(%j). The cocone diagram can
be expressed as the span below:

Jgop D% . (cop

.

\%
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The colimit then is de ned by the isomorphisms
Cc
C(covlvim D;Y) = [3°°; V](W; DY) (1.20)

natural in Y, where E): C ! [J°;V] is the V-functor which takes X to
C(D( );Y). AV-enriched category iscomplete Wgenever B has a left adjoint
for all diagrams D. It is cocomplete whenever D has a left adjoint for all
diagramsD.

C

D
. — op- — T
Bsel T > Sov s > c

limD colimD
( ¢ (1.21)

When V is the cartesian monoidal category Set of sets, as opposed to the
general case, then all weighted enriched limits can be expressed by ordinary
limits. Nevertheless, weighted limits usually have a simpler diagram functor
D as they transfer the complexity of diagrams, over which we take limits and
colimits, to the weights. For instance, consider the example of productQ D,
where D is in Cand W is a discrete category, which is the limit of cons\f\{ant
diagram ( D): W ! C. Itis of course isomorphic to the limit of weighted
diagram with weight functor W: 1! Setand the diagramD: 1! C. The
latter limit is known as cotensor(aka powen Wt D. In this case we have
Wt D = Q D = DW. The limit cone is given by W-many morphism
Wt D! DV\f obtained by exponentiating W-many morphism 1! W.

Moreover, even in the case of set-weighted limits, the notion of weighted
(co)limit is important on its own merits as it gives a conceptual clarity not
offered by ordinary (co)limits. For instance for every complete V-category C,
the functor C(()Ii)mD in the diagram (1.21) is the left extensionof D:J! C

along the Yoneda embedding.

All of the strict 2-categorical limits can be obtained via weighted limits when
we take V to be the cartesian monoidal category of categories and functors. For
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the rest of the thesis we will be concerned only with category-weighted limits.
We shall give an elementary description of 2-categorical weighted limits. Note
that they generalize the enriched limits over the cartesian monoidal category
Cat of categories and functors in that we can weaken the strictCat-natural
transformations, used in de nition of category of cones, to pseudo and lax
transformations. Also, we can weaken isomorphisms of categories by their
equivalence in de nition of the limits as representation. But rst, it is helpful

to contrast picture of category-weighted cones with ordinary cones.

REMARK1.9.1. Inthe ordinary case, a cone over adiagiamJ! Cis given by a
apexX of C, and for eacl) of J asinglemorphismX ! D¢(j) natural with respect

to action of morphismg: j ! j%nJ. The limit of D is the universal such cone over

D. In the case of category-weighted limits, a category-weighted cone over a diagram
D:J! Kspecies a category of morphismé& ! D(j), for each objectv of the
categornyW (j ), and moreover it speci es actions of 1-morphisms and 2-morphisms
of J as functors and natural transformations between these categories.

D(@)
DEFINITION1.9.2. Supposd is a small 2-category arfflis a 2-category. Moreover,

letD:J! KandW:J! Catbe strict 2-functors. Aliagram of shape J with
weight W in K consists of

where the 2-functoD is the diagram, andV speci es a weightW (j) for each
objectj 2 Jg and a weight transformét (f ) to each morphisryl f j%inJ. Alax
weighted cone over the weighted diagrafD; W) with apexX 2 Ky is given by
the following data:

(WC1) AfunctorL(j): W(j)! K(X;D(j)) foreachj 2 Jo.
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(WC2) Anatural transformatioh(f): D(f) L(j)) LG9 W(f), for each arrow

74

f:j! j%nd.
. L(j) .
W(j) —— K(X;D(j))
W(f)l ) lD(f) (1.22)
W(j 9 i K(X;D (j9)
satisfying the coherence condition expressed by equality of pasting diagrams
in below:
. LG) . . L(j) .
W(j) —— KX;D(j)) W() ——— K(X;D(j))
W(f°)<vz(i)>wu) (I lD(f) = W(fO)l Lo D(F9 <D<Q>D(f>
W(j9 W K(X;D(j9) W(j9 W K(X;D (j9)
(1.23)

for any 2-morphism : f ) f%j j%nJ.

Notice that the last condition materializes only when J is not a locally discrete
2-category. It appears in the shape diagram of equi er (Example 1.9.28),
inverter (Example 1.9.31), and identi er (Example 1.9.32).

CONSTRUCTION1.9.3. We form the categori axCone\>,<v D of lax weighted cones
over the weighted diagra(; W ) with apexX . The objects of this category are lax
natural transformations: W ) K(X;D ( )) as given in W C2), and a morphism
between two such natural transformatidngndL®is a modi cationm: L V L°
which speci es for each objegtof J, a natural transformatiom(j): L(j)) LYj)
such that

Lf (D(f) m()=(mG9) W) Ly (1.24)
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Equation(1.24) expresses commutativity of the obvious diagram of 2-morphisms
in diagram(1.25) : traversing along the front face and then bottom face yields the
same 2-morphism as traversing the top face followed by back face.

W(j) L) — K(X;D (j))
m(j)
/ D /
W(j) LG) — K(X;D (j)) D(f)
(1.25)
W) WG9 — 19 - | —— K(X;D(j9)
m(j 9
/ i /
W( 9 LG9 K(X;D (j9)

Consider the2-functor® : K°? I [J; Caf]; it takes a objecX of K to the functor
KOX;D( )):J! Cat al-morphisnf:Y ! X to the natural transformations
of functorsB (f): B(X) ) B(Y) and a 2-morphism : f ) gto a modi cation
B():B(f)V B(g).

The category axCoanv D just so constructed is a functor category, that is:
LaxCong, D = [J; Caflax (W; BX ) = [J; Caflax (W;K(X; D ( )))  (1.26)

where the 2-categofy; Cafl.x consists of strict 2-functors, lax transformations and
modi cations.

DEFINITION 1.9.4. A lax weighted limit over the weighted diagraifb; W) is
the representing objetim, D of Kq for the 2-functor

LaxCone, D: K® ! Cat
X 7! LaxCong, D

This is equivalent to give equivalences

x KX ImD) " [J; Calliax (W; DX ) x (1.27)
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of categories, natural iX . We call (1 jm,, o), which gives the structure of limit
cone, theunit of representation and we denote it by .

Dually, a lax weighted cocone can be de ned by a pair of strict 2-functors
D:J! KandW:J% ! Cat A lax weighted colimit is an object together
with equivalences

Y:K(coVIVimD;Y)' [J°p;Cat]|ax(W;E)Y): Y (1.28)

natural in Y. Thus weighted colimits are the same thing as weighted limits in
Ko,

REMARK 1.9.5. We can break the universal property of limit expresse(lLi27)
into two parts:

(i) One-dimensional property which is expressed by the equivalen€g.27)
restricted to the underlying categories:

jiKij ,O%; im D) *jj - [9; Catlei, (W; BX) (1.29)
where the isomorphism above is a bijection of sets.

(i) Two-dimensional property which states that for any pair of morphilgmis: X
limy D, any modication | o ) |, of cones is equal to for a unique
2-morphism :1lg) ;.

REMARK1.9.6. There are several important variations of this de nition which pro-
vides us with stricter structures. More precisely, the level of strictness of our weighted
limits supervenes upon

* the strictness structure of functor 2-categpiyCaf], where? can be lled
with lax, psd, or str, and

« the strictness of representation of the limit, that is whether it represents cate-
gory of cones by isomorphism or equivalence of categories in equdtidbn) .
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We enumerate some important variations from the most strict to the least.

Diagram Cone Representation
Strict weighted limits strict strict =
Pseudo weighted limit strict pseudo =
Lax weighted limit strict lax =
Weighted bilimit strict pseudo '
Lax weighted bilimit strict lax '

For instance the paper [PR91] on PIE limits exclusively deals with strict weighted
limits but [Joh02a] is mostly concerned with weighted bilimits particuarly in vari-
ous 2-categories of toposes, although the pre x "bi' is not used there. We have fol-
lowed the consensus of Australian category theorists in naming various concepts of
2-categorical weighted limits. For instance See [Kel89]. However, of course not ev-
erybody adheres to this convention. Most notably, [JohO2a, 8B1.1] takes “lax limit”
to mean the limit of a lax diagram, as opposed to our terminology where we took
‘lax’ as an attribute of weighted cones. However, the theory of limits of lax diagrams
can be reduced to weighted limits with strict diagrams (See [Joh02a, Lemma 1.1.6]).

REMARK1.9.7. The correct bicategorical notion of weighted limit is that of bilimit
(aka weak limits). In bicategories, and also various 2-categories of toposes, we shall
only consider bilimits, and we shall explicitly state it when we do. Since isomor-
phisms of categories are equivalences, any limit is automatically a bilimit, but the
converse almost always fails to be true.

REMARK1.9.8. The theory of weighted limits can be done brewise. Here, we only
sketch the outline of it. Its details will be the subject of a future study. Suppose
diagramD and weightW are given as before. ¥/ -conelL with apexX in Kis an

op bration mapW ! X D overJ whereX D is the weak slice constructed
as the comma 2-category ¥f: 1 ! KandD:J ! K. By op bration in above

we mean a bration of 2-categories which will be discussed in chapter 2. The limit
Iivrvn D then is the universal such op bratid'!,nvn D D! Jwithan op bration map
from W overJ.

EXAMPLE 1.9.9. Any weighted limit with weight functoww = ( 1): J ! Cat
constant at the terminal categatyis calledconical. Notice that in this case, an
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object ofL axCoanv D is an ordinary cone ovdd with apexX in underlying cate-
goryjj ijl, and a morphism therein is a modi cation of such cones. The universal
property in(1.27) exhibits something more than just a limit in underlying category
iiKjj,. There is also the 2-dimensional universal property. Therefore, every conical
limit, such as product, pullback, etc., in a 2-categrg an ordinary limit injj ijl.
However the converse is not true; a binary produgj Hﬁ]‘j1 need not be a conical
limitin K.

EXAMPLE 1.9.10. Consider the weighted diagram whek¥e= 1 is the terminal 2-
categoryD is an object oK andW is a (small) category. The strict weighted limit
Iiv(/n D is known ascotensor (akapower) of D by W and is denoted bW t D.

Similarly the colimitcc\),!/im D is known as theéensor (akacopower) and is usually
denoted byV=  D. Equations 1.27 and 1.28 become specialized to

KOX;W t D) = Cat(W;K(X;D)) and K(W D;Y) = Cat(W;K(D;Y))
(1.30)
In the case of cotensor, the weighted limit cone consist a fard{ly)g of 2-morphism

d(w)

wtD  [d() D

~_
d(w9

indexed by morphisms: w ! w®in W. The 1-dimensional universal property
states that any other famity( )gfactors uniquely through the famifyd( )g. The2-
dimensional universal properstates that for any parallel pair of morphisim& : X
Wt D and afamilyf :d(w)h) d(w)kgof 2-morphisms irK which makes the
following diagram of 2-morphisms

d(w)h —"= d(w)k

d( )hﬂ Md( ) k

d(w9h = d(w9k

commutes, there is a unique 2-morphismh ) k with d(w) = , for each
objectw of W. The characterization of universal properties of tensor is similar. The
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tensor and cotensor with the free walking arrow cate@dmas special status. In fact
in the 2-categonCat, the tenso2 Cis isomorphic to the produ@ Cand the
cotensor2t Cis the comma categoyC# C). These two are very different things:
forinstance2 1=26"1= 2t 1.

Of course in the environment of bicategories, and also 2-categories of toposes by
tensor and cotensor we really mean the weak version, i.e. a bilimit. In this case, for
any 2-morphism :ay ) a;: X D, we have a morphisrp g: X ! 2t D,
unique up to a unique iso-2-morphism, together with iso-2-morphismeg = d;

pgq@i =0;1)suchthat;* ( p q o= . Forinstance, inthe case where

K = ETop, we have a 2-functo2 ( ): ETop ! ETop. For a toposE, the
underlying category o2 E is the comma categoife # E) = Cat(2; E), whereE

is the underlying category @&. There are (bounded) inclusiodgd,: E 2 E
whose inverse images are given by domain and codomain fundct£) E,

l.e. dy(Eq! f E;1) = Eo andd,(EJ f E.) = E;. The direct images are given

by (dp) E = (E! ! 1) and(d,) E = (E! d E). For the nal toposS , we have

2 S ' Shv(S). An direct way to see this is to consider sheaves over as discrete
op bration: A sheafX overSthen is a discrete bundle (op bration) over points of

S, and as such is given by a morphistw ! X, inS . Similarly2 Shw(X) '

Shv(S  X).

PROPOSITION1.9.11 ([Kel89]) . If a 2-categoryK admit strict tensors wit@ then
all the 2-dimensional universal properties of existing strict weighted limits follows
from their respective 1-dimensional universal properties.

Proof. Suppose diagramD and weight W are given as before, andA is an
object satisfying strict version (i.e. with isomorphism instead of equivalence)
of (1.29) natural in X. Therefore, we have the structure of limit cone of A,
and we get functors x asin 1.27, though not necessarily an isomorphism yet,
by whiskering with the structure of limit cone of A. We want to show that
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is indeed an isomorphism of categories. Consider the commutative diagram of
sets in below.

o icCatj (2, x)
i Catjj, (2; K(X;A)) ji Catjj, (2;[3; Caf(W; B (X))

:l |=

K, (2 X A) iild; Cafjj, (W;B(2 X))

The left bijection is the expression of the 1-dimensional universal property of
tensor2 X, while the bottom row bijection follows from the 1-dimensional

universal property of A by our assumption. The right bijection is a combination
of currying (with respect to the cartesian monoidal structure of jj Catjj L and
the 1-dimensional universal property of 2 X . Now it is an easy exercise to
see thatjj Catjj1(2; )i Catjj1 I Set re ects isomorphisms. Therefore,  is
an isomorphism. O

In such 2-categories, such asCat, ETop, and Con our proofs that a certain
object is equivalent to a weighted limit are more economical since we do not
need to check the 2-dimensional aspect.

DEFINITION 1.9.12. A 2-category iscomplete (resp.cocomplete) if it admits
products (resp. coproducts), equalizers (resp. coequalizers), and cotensor products
(resp. tensor products). It Bcomplete (resp. bicocomplete) if it admits the weak
version of these limits. We say that a 2-category is nitely complete (resp. nitely
cocomplete) if it admits nite products (resp. coproducts), equalizers (resp. coequal-
izers), and cotensor (resp. tensor) with

PROPOSITION1.9.13. The following statements hold about strict completeness:
« Catis complete and cocomplete.

* The 2-categor®Cat(J; K) is complete (resp. cocomplete) whKns so, and
the limits (resp. colimits) are calculated pointwise.

* Any full re ective sub-2-category of a complete 2-category is again complete.
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EXAMPLE1.9.14. Suppose be a nitely complete 2-category (or “representable”
in terminology of [Str74]). Thereforé has all comma objects (See Remark 1.9.27).
For an objecC in K, the pairdy;d;: 2t C C can be enriched to an internal
category (See A.8) in the underlying categjjtyjjl. The identity 2-morphisnid;
induces a morphism: C ! 2t Cwith i =id,.. Also, the 2-morphisn{
(dyd1)) ( (d,do)) formed by the pasting diagram

(2t C)g, 42t C) 2%, 2t C

dl do dO :> d]_
d1 C

2t C

N~

do

induces a morphism: (2t C)g4, 4,(2t C)! 2t Cwith m=( (dydy))

( (dydp)). Indeedj andm are respectively unit and composition of category object
C=(dy;ds: 2t C C). A morphismf : C ! D in K lifts to internal functor

(f; 2t f): C! Dsincef ¢ mustuniquely factor throughs.

2t f
2t C—2t D

e s

C——D

f
Additionally, any 2-morphism : f ) f% C D in K lifts to an internal natural
transformatione: C! 2t D from(f; 2t f)to(f%2t f9. This induces a fully

faithful 2-functor2t : K! Catf(jjKjj 1). For instance, ik = Cat, this 2-functor
takes to a categor@ to the double category of commutative square€.of

There is a generalization of Yoneda embedding for 2-categories:

1.9 2-Categorical and bicategorical limits 81




CONSTRUCTION1.9.15. Any small 2-category can be embedded into a complete
and cocomplete 2-category: given a small 2-cate¢fothe Yoneda embeddingon
is given as the composite

K1 Cat(jiKij,) | 2 Caty (jiKij,; Cay

of fully faithful strict 2-functors whereby the second functor is the externalization of
an internal category denoted Bam (Appendix A.8 A.8.7). Therefore the 2-functor
Yon: K | 2Caty (jjKjj,”; Cat) takes an objecA to Fam(A). The codomain of

Yon is equivalent to the 2-category of split normal cloven bred categories over
i ij1 (See Chapter 2 2.3). Therefore, we can express the Yoneda embedding of
2-categories by a 2-functofon: K ! splnlFib(jj Kjj 1). Note thatYon is biconser-
vative in that it re ects equivalences.

ExaMPLE1.9.16. Consider the weighted diagram

[y

W\

Cat

(1.31)
where2 is the category with two objects and a free (walking) arrow between them as
its only non-identity morphism. The strict weighted limit @; W) is a known as
comma object of f andg and is usually denoted iy # g) (or sometimesgf #q)).
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For a objectX in K, aW-cone with apexX over opsparnt; C;gi is speci ed by
functorsL(j): W(j) ! K(X;D (j)) satisfying strict naturality condition (with iden
tity for each 2-celL (f ) in the diagran{1.22)).

Therefore, we get two morphisnhg: X ! A andl;: X ! B, and also, two mor-

phismX C with a 2-morphism between them. The strict naturality condition

dictates that the source and target ohust be equal td |y andg |4, respectively.
B
C

Now, universal property divrvn D = (f #9) says that for any 1-morphisom: X !
Y the following diagram commutes:

g (1.32)

)><—><
)><—><
+—— @

I
-
7
f

/T
4s

@

K(Y;(f #9)) —— LaxCone;VD

u h lL axCone"

K(X; (f #g)) ——— LaxCon€, D

Lettheunit o (1;,. o) bethelimitcone(f #g);do; dy; i, where r4:fdo)
gdi. Then commutativity of the above diagram for obj¥ct= (f #g) implies that
is calculated by whiskering with the limit cone, i.ex (u) = hX; dou; diu; 4 ui

for any 1-morphisnu: X ! (f #09).
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On the other hand, for any cohe= hX;lq;l;; i,u= x(L): X ! (f #9) isthe
unique morphism with x u = id (s 4. In other wordsdy u = lp,d; u= I4, and

fig U=

(1.33)

Thus thel-dimensional universal properyf the comma objectf #g) states that
any 2-morphism : fl ) gl; uniquelyfactors through the universal 2-morphism
up to equality. Now, suppose thiat= hX;l;1;; i andL®= hX;13;1%; 9 are both

weighted cones with apex. A modi cation m: L V L°consists of 2-morphisms
mo: lo) 1§andmy:1;) 19 rendering the diagram below (left) commutative.

flo =% £I9 fdou == fdou°
[ E | L
gh === 9l gahu —— gchu’

In such a situation, the unique 2-morphigmm) : ( L)) ( L9 generatesyand

m; by whiskering withd, andd; respectively. Th@-dimensional universal property

can be expressed as follows: given morphisms: X  (f #g) and 2-morphisms
:dou) dou®and :diu) diuPwhich make the diagram above (right) commute,

there exists anique2-morphism :u) ulwithd, = andd; =

REMARK 1.9.17. Dually, cocomma objects are de ned as colimits of spans. In the
weighted diagram 1.33,is replaced by its opposite, and the weight funttbtakes
Jto

2 '

|

1

Obviously, cocomma objects K are comma objects iK°?. This is generally true
about all weighted limits.
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REMARK1.9.18. Notice thatin the case of weighted diagrélr31) , pseudo weighted
limits are equivalent to strict weighted limits: we can construct comma objects as
pseudo-weighted limits. Isomorphisragf ) in (1.22) provide us with two extra
iso-2-morphisms: flo = zand ;: gl = z%in additionto :z) z% Sucha

pseudo cone can be stricti ed t&;1¢;1;; €i where® := ;1 .

:(><—><
o<—w

4> B X L N
ﬂ l [ 7
413 C A—0—

REMARK 1.9.19. The weighted bilimit over the same diagram as above is the so-
calledbicomma object . We'll use the same notation for bicomma objects, but the
context shall indicate whether we use comma or bicomma objects in each instance.
The structure of limit cone remains the same but the universal property becomes
weaker. First of all, arbitrary cones factor through the limit coné af g) not neces-

sarily uniquely, but rather the factorization is unique up to a unique iso-2-morphism.
Moreover, the equalitiedgu = |p andd,u = |, are replaced with cannonical iso-
2-morphisms. Nevertheless, the 2-dimensional universal property remains the same.

Finally, with this change in the weighted diagram, the weighted bilimit is called the
bipullback of f andg. We visited them earlier in 1.4.10.

REMARK 1.9.20. Two special well-known cases of comma objéct g) are when
eitherf or gis identity morphism or even more specially, bétlandg are identity
morphisms. In the rst case, say whgn= 1., we get, what is known as, thax
limit of morphism f, i.e. an objec(f #C) with morphismsdy: (f #C) ! A
andd;: (f #C) ! C and a 2-morphism: fdo ) d;, universal among such data.
For instance irCat, the coslice categor@=C s obtained as the lax limit of constant
functorX : 1! C. Inthe second case, we hafle #1c) = 2t C. Sometimes we
denote the latter b{C #C).

EXAMPLE 1.9.21. If in the structure of weight of diagrarfl.31) we replace the
category2 with the interval groupoid (which is obtained fron2 by localizing

at the free walking arrow), then the weighted limit is knowrpasudo pullback .
Weighted cones are similar to 1.32 except th#terein becomes an iso-2-morphism,
i.e. an iso-square. It has the same universal properties with respect to iso-squares.

1.9 2-Categorical and bicategorical limits 85




ExAMPLE1.9.22. Both comma objects and pseudo pullbacks are well-known in the
2-categoryCat of categories. For functols: C! EandG: D ! Ethecomma
category (F #G), has as its objects all triplés; d; ) wherec is an object ofC, d

is an object oD and : F(c)! G(d)is a morphism irE. A morphisms between
any two such objects is a paif;g): (c;d; ) ! (%d% 9 wheref:c! isa
morphism inC andg: d ! d%is a morphism irD such that the following square
commutes irkE.

F(o —2% F(®

| |

G(d) = G(d)

The pseudo pullback (akao-comma category) F # G can be similarly de-
scribed but with the difference that the componeim the object(c;d; ) is an iso-
morphism ofE. In the 2-categoryat of categories, there is no distinction between
pseudo pullbacks and bipullbacks. However, strict pullbacks and pseudo pullbacks
of functors give inequivalent categories in general. Obviously, the canonical compar-
ison functor

| :Cg D! F #: G
(c;d) 7! (c;idr(); d) (1.34)
(f;9) 7t (f;9)

is fully faithful. It is an equivalence if eitheff or G is an iso bration. The same
holds in every bicategor . (See [JS93b] for more details.)
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ExampPLE1.9.23. Consider the weighted diagram in below.

J K

0
1—2=1f0! 1g
1

Cat

The limit cone is the universal diagram of the from

1(f;g) —>— A

| /\g

which is called thenserter of f andg. Let us enumerate its universal properties:

(UP1) Givenany morphismy: X ! A andany2-morphism: fq ) gqthere exists
a unique morphism: X ! [ (f;g) suchthapu= qand u=

(UP2) Given apairu;v: X ! 1(f;g) and a 2-morphism : pu) pv which makes
the diagram
fpu SN fpv

o |

gpu g:> apv

commute, there exists a unique 2-morphismu ) v satisfyingp =
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REMARK 1.9.24. Replacing2 with the groupoidl = f0! © 1g, we get theiso-
inserter as the limit. Iso-inserter df andg agrees with their inserter if the object
C is groupoidal. Replacing with the terminal category, we getequalizer as the
limit.

ExXAMPLE 1.9.25. The inserter of functor§;G: A ! Cis the category (F; G)
whose objects are pai(®; : Fa ! Ga) wherea is an object ofA and is a
morphism inC, and whose morphisms are of the fofm(a; ) ! (a% 9 where

f:a! alisamorphismimA withG(f) = © F(f). The category(F;G)isa
subcategory ofF # G), however itis not full. The universal properties of inserters in

a bicategory (i.e. a weak inserter) can be equivalently formulated by the equivalence

KOG (F;9)) " 1(KCX; f ) K(X;9))

of categories, and therefore, it is obvious that the inserter morphidi(f;g) ! A

Is both faithful and conservative. It is fully faithful if the objeCtis posetal. Finally,
observe that every inserter is in particular a weak inserter, and any pseudo inserter is
equivalent to a strict inserter.

ExAMPLE1.9.26. The free categori(G) of a graphG = ( E; V), understood as a
spanV % E1% v whereE is the set of edges ard is the set of vertices of the
graph, is equivalent to the inserter of the aformentioned span.

REMARK 1.9.27. Inserters and comma objects may be constructed from the prod-
ucts, pullbacks, and cotensor wizh

PfgQ

I(f;g) —— 2t C (f #g) —— 2t C
ul P ldo d1 do dll P ldo d1 (1-35)
A——C C A B—C C
hf;gi f g

Moreover, all comma objects can be obtained from inserters and products, for the
comma objec{f #g) can be constructed as the insertefof;g g: A B C,
where ; g are the product projection morphisms.
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EXAMPLE1.9.28. The 2-categorical generalization of equalizers is what is known
asequier . It can be constructed as the weighted limit of the weighted diagram
below.

Cat
(1.36)
Therefore, the strict equi er of and is given by an objecEq(; ) and a mor-
phisme: Eq(; )! B suchthat e= e subject to the following universal
properties:
(UP1) Given any morphisng: X ! B with q-= g, there exists a unique

morphismu: X ! Eq(; ) suchthaeu= q.

(UP2) Givenapaiu;v: X  Eq(; )andaZ2-morphism: eu) ey, there exists
a unique 2-morphism: u) v satisfyinge =

REMARK 1.9.29. The limits reducible to the products, inserters and equi ers are
referred to PIE limits and they are characterized in elementary terms and further
studied in [PR91] (they are all strict limits). Any pseudo PIE limit is equivalent to a
strict PIE limit.

PIE limits are important for us, since the 2-categ@yn of AU-contexts has got
all PIE limits ([Vic19]), but not all conical limits (e.g. pullbacks). In 2-categories
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where we have both products and pullbacks, any strict equi er can be constructed
from cotensor witl2.

. l p J (1.37)

In particular the equi er morphisme: Eq(; )! B is fully faithful.

REMARK 1.9.30. Lax equi ers are de ned by a more complicated 2-dimensional
universal property. For instance, in the 2-categ0ay, a lax equi er of natural trans-
formations; between functor§;G: B Cis given by the categorigq,_ (; )
whose objects are quadruplgs g; o; 1) wherebis an objectoB,g: ¢! ciisa
morphism ofC, and o: F(b)! ¢y, 1: G(b! ¢, are morphisms i€ which make
both diagrams in below commute.

F(b) —— o F(b) — o
I L s
Gb) ——a G ——

A morphism(b;g; o; 1) ! (B d% & 9in Eqg_(: ) is given by a morphism
f:b! KPinB and morphisms;: ¢ ! c fori = 0;1, in Csuch that all faces of
the cubes below commute.

F(h —=>2— G(b F(lh ——— G(b)
F(f) \00 o | \Cl F(f) \CO Cl
t lG(f) t lG(f)
F (P T‘f G( . htl F (P T‘/—, G(HP h
™ 0o N\ AN
0 08 g Cg 0 Cg Cg

In the pseudo case; (i = 0; 1) are isomorphisms and the objectsaf_ (; ) have
the simpler form of triplegb; o; 1) with no extra equations. In the simplest case of
strict equi er, ; are identity morphisms. Note that the strict equileq(; )isa
full subcategory oB whose objects are those objebtsf B for which , = . This
agrees with the construction of strict equi er as the pullbacilid7) . The fact that
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ExAMPLE1.9.31. Let :f ) g:B Cisa2-morphismin a 2-categol. The
inverter of is the universal morphism: Inv( ) ! B such that the whiskered
2-morphism i is invertible. More precisely, the universal properties state that any
morphismu: X ! B which is whiskered with to an invertible morphism factors
uniquely through, and moreover, any 2-morphision ) iv: X B is uniquely
induced by a 2-morphism) v:Inv( ) B.

A familiar instance of coinverters is the categories of fractions. See [KLW93]
for more detalils.

EXAMPLE1.9.32. Let :f ) g:B Cisa2-morphismin a 2-categoK. The
identier of is the universal morphism: Id( ) ! B such that the whiskered
2-morphism i is the identity 2-morphisnid; .

EXAMPLE 1.9.33. Identi ers and coidenti ers are not bicategorical. Consider the

cotensor limit cone
dom

/\
(c#Q C
cod

in Cat The identi er of is the globular subcategory of the arrow categ@y C)
which is isomorphic taC itself. The coidenti er is the quotient df by the equiva-
lence relation of "being connected by a zig-zag (span) of morphisms' on objects of
C. Therefore, the coidenti er is the category of path component of

Comma construction preserves adjunctions.

PROPOSITION1.9.34 ([Str74]) . SupposeK is a 2-category anfl: A! Bisa
morphism with the right adjoint, unit , and counit. For any morphisng: C! B
for which the comma categoKy # Q) exists inK, the lling arrowv: C ! (f #g)
obtained by factoring g through : fdg ) gd; is the right adjoint tod; with
identity counit.

The 1-morphism v in the proposition is uniquely determined by equations
div=1,dov=ug,and v= g. Moreover, the proposition states that we
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can lift the 2-morphism in the lower part of the diagram to a 2-morphism
1) vd; inthe upper part.

C 1
v
ug o

(f #) —%~ C = (f #g

f do
A B A
\ */
1
Proof. We rst construct the unit ; of putative adjunction d; a v. Using the
fact( f) (f )=1,we obtain the equality of pasting diagrams

(fF #g) — 25 A 1A (f #g) —2 A
o 4ol v ] = ey
C—5—+B—>A——B C—5—B
W
1
Therefore,

(vd) (F ((u ) ( d)=( gd) (fu ) (f  do)=

From the 2-dimensional universal property of the comma object (f #g), we
obtain a unique 2-morphism ,: 1) vd; with

do 1=(u ) ( do)

(1.38)
dl 1= id dp

One readily veries that id: d;v = 1c and 1: Ly ) Vvdi, dp satisfy the
triangle equations of adjunction. Il
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The proposition above has a dual whereby one of the morphisms participating
in the construction of comma object has a left adjoint instead.

REMARK 1.9.35. In a 2-category with a terminal object, taki@ = 1 andg =

b: 1! B, the proposition above generalizes the well-known fact of category the-
ory that(f #b) has a terminal point for every: 1 ! B if f has a right adjoint.
Recall that in the 2-categoi@at the terminal point off #b) is given by the pair
(u(b); p: fu(b) ! b) and its universality discloses the familiar fact that any mor-
phism :fa ! Dblifts along , to f (b) for a uniqueb. However,Cat, unlike a
general 2-category, is well-pointed, and therefore the fact above holds in the reverse
direction as well: if(f #b) has a terminal object for evety 1! B thenf has a

right adjoint. Dually, if a morphisnu: B ! A in the 2-categorK has a left adjoint

then the comma obje¢a # u) has an initial point, for everg: 1! A.

REMARK 1.9.36. A useful special case of the above proposition is wheandg
are both identity morphisms: E ! E. Inthis casqf #g) ' (E#E)' 2t E
andv = ig: E ! (E#E) whiskers with ¢: g ) € to give the identity 2-
morphismid,.. The unit 1: Lgss) ) Iie € is the unit of familiar adjunction
e; a ig while the counit is identity. Thusg, is a re ection. similarly, the dual of
proposition 1.9.34 yields: as the left adjoint ofy: (E #E) ! E. The unit of
ig a € is identity, makinge, a retraction. The counit is given by the unique 2-
morphism o:ig &) Lese) de ned by the equationgy ¢ =id¢, ande; o=
WhenK = Cat, we have o(u) = (id ;u), and ;(u) = (u;id) foranyu: ey ! e;in
(E #E).

& —— & & —— e

id

c
c
%
=
o

1.10 Notes

The canonical reference for weighted limits and colimits is [Kel82, Chapter
3]. Therein they are known by the name of indexed limits. The origin of the

notion itself goes back further than that; see for instance [BK75]. Weighted
limits and colimits are studied in areas other than pure category theory and
categorical homotopy theory. See their use in study of topological Hochschild
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homology [MSV97] and in [PRV04] in their study of the Davis-Januszkiewicz
spaces.

As we saw in §1.3, the enrichment structure can be realized as a lax functor
from an indiscrete (aka chaotic) category to the suspension of a monoidal
category. In fact, there are indications which support the view that the theory
of enriched categories should be approached as a part of the theory of lax
functors ([Bén67] and [StrO5]. First steps have been taken in [Bacl3] in
extending the internal hom of enriched categories to lax functors taking their
values in a symmetric monoidal category. More recently, the paper [GH13]
introduces a notion of enriched in nity-category analogous to the view of
enrichment as a lax functor.

We also saw some serious problems with lax functors, the most severe being
that they are not invariant under equivalences. One good solution is to work
with double categories instead. Bicategories get "horizontally' embedded in
double categories and the same is true for all bicategorical concepts of this
chapter. All examples of 2-categories and bicategories in this chapter have
smooth generalization to double categories; the most prominent example
being the bicategory of modules and profunctors. In addition, there is a
satisfactory notion of lax functors between double categories whichis invariant
under equivalence (See [Shu08]). Lax double functors are laxly functorial
on horizontal morphisms, and strictly functorial on the vertical morphism of
double categories, whereas the components of the transformations remain
vertical and therefore, whiskering preserves naturality. We saw with lax
functors of 2-categories we could not do this and that is why the surrogate
notion of icon is needed.
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Categorical brations

In this chapter, we review the two styles of internal brations in 2-categories,

which we shall call the Chevalleyand Johnstonestyles. In Chapter 3 we use
Chevalley style to de ne brations of AU-contexts and in Chapter 4 we use
Johnstone style brations as brations of toposes. The main theorem of the
thesis then connects the brations of AU-contexts to the brations of toposes.

Our main task in 82.4 is to clarify the 2-categorical structure needed, and the
strictness issues, when we apply the Chevalley criterion inCon

As an original contribution, we introduce the notion of brational object for
2-functors of 2-categories. In §2.6, we prove that Johnstone-style brations
are in fact brational objects of the 2-functor cod: GTop ! ETop. This
reformulation will be a crucial step in our proof of the main theorem (4.2.2)
of the thesis.

2.0 Introduction

The standard notion of categorical bration, i.e. Grothendieck bration, ex-
pressed as a property of a functor of categories, can be generalized to a
property of a 1-morphism in a 2-category, but how this may be done depends
on the structure available in that 2-category.

Basically, for a Grothendieck bration (resp. op bration) P:E! B, every
morphism f : b! a whose codomain (resp. domain) is in the image of P
has a cartesian lift in E. This induces a “transport' functor from the bre of
P over a to that over b, with a certain universality conditions that express
cartesianness. When we generalize fronCatto some other 2-categoryK, the
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obvious generalization of Grothendieck bration may seem to be achieved
by replacing P: E! B by a 1-morphismp: E ! B in K, a and b with
1-morphisms from the terminal object 1 to B, and with f a 2-morphism
between them. Note that Remark 1.4.7 justi es this move for well-pointed
2-categories.

However, in general, even whenK has a terminal object, there may fail to
be enough 1-morphisms from the terminal object 1 to object B to make a
satisfactory de nition this way. This is generally the case with 2-categories of
toposes.

The crude remedy for this is to considera and bas 1-morphisms from arbitrary
objects B°to B in K, and this underlies Johnstone's de nition for BTop in
[Joh02a, B4.4]. This de nition requires very little structure on K other than
some — not necessarily all — bipullbacks (De nition 1.4.10), suf cient to have
bipullbacks of p along all 1-morphisms to B. We shall call it the Johnstone
style of de nition of bration. This de nition is quite intricate, because it has

to deal with several coherence conditions. In 8 2.6, we shall give a cogent
reformulation of Johnstone-style brations in terms of brational objects of

a certain brations of bicategories. The utility of this reformulation is that it
repackages lots of coherence data in the de nition of Johnstone-style bra-
tions, arising from bipullbacks involved in the said de nition, into universal
properties of cartesian morphism of a certain bration of bicategories.

In the special case wherebyK has comma objects, corresponding to a generic
2-morphism  between 1-morphisms with codomain B, we get a 1-morphism
whose codomain is the cotensor2 t B of B with the walking arrow category
2, and whose whiskering the free 2-morphism g:dy) d;:2t B Bis

In such a 2-categoryK, the bration structure for arbitrary B%and can be got
from generic structure for the generic . Therefore, the structure of bration
needs to be given only once, instead of each time for everyB®% We shall call
this a Chevalley criterion For ordinary brations the idea was attributed to
Chevalley by Gray ([Gra66]), and subsequently referred to as the Chevalley
criterion by Street ([Str74]).
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However, unfortunately our 2-categories of interest such asBTop (unlike
BTop=S ) do not support the structure of comma objects, and as such we can
not use the simpler Chevalley criterion to de ne brations inside it.

But, not all hope is lost. The 2-category Conof AU-contexts (See chapter 3)
has all comma objects and pullbacks we need. AlsoConis intimately linked
to BTop. The strategy which we shall pursue in Chapter 4 is to use Chevalley
criterion in Conto de ne brations therein and then relate those brations to
Johnstone style brations in BTop.

We shall begin this chapter, in 82.1, by a general discussion concerning bundles
and brations. In the subsequent section (82.2) we will motivate this discussion
by giving examples of 1-categorical brations of groupoids and categories from
their origin in algebraic topology. For instance the notion of covering spaces in
topology gives rise to discrete brations of groupoids.

We then pass on from discrete brations to Grothendieck brations (82.3).
While the bres of a discrete bration are discrete categories (i.e. sets), the
bres of a Grothendieck bration are generally not discrete. As example 2.3.45
shows, non-discrete brations are quite important and commonplace in va-
riety of branches of mathematics To state precise de nition of Grothendieck
(op) bration we will need to reintroduce the ancillary notion of (op)cartesian
morphisms. Readers familiar with the parlance of higher category theory
recognize Grothendieck (op) bration as “(op)cartesian brations” as they have
“enough’ cartesian lifts (for instance in [Lur09]).

Additionally, we shall review the correspondence between Grothendieck bra-
tions and indexed categories through the Grothendieck construction, and shall
highlight the reasons why it is preferable for us to work with brations rather
than indexed categories.

The general approach of this chapter is to proceed with the philosophy of

seeing constructions on categories as inherently 2-categorical notions, and as
such we emphasize the 2-categorical aspects of Grothendieck brations. Many
of the propositions stated with regard to 1-categorical brations are stated

2.0 Introduction
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in a way that have natural intrinsic 2-categorical formulations. In 82.4, we
review the fact that Grothendieck brations are Chevalley-style brations in
Cat Chevalley-style brations and their characterization in [Str74] as pseudo
algebras is summarized in the same section. New calculations concerning
the strictness of the counit of Chevalley adjunction are provided. In 82.6, we
remark that both Chevalley and Johnstone styles of brations are respectively
the strict and weak versions of the representational notion of bration in
2-categories.

In 82.6, using Construction 1.4.12 of display sub-2-category we give a cogent
reformulation of Johnstone-style bration. The utility of this reformulation is
that it repackages lots of coherence data in the de nition of Johnstone-style
brations, arising from bipullbacks involved in the said de nition, into univer-
sal property of cartesian morphism of a certain bration of bicategories. We
shall use this reformulation in obtaining results on brations and op brations

in the 2-category ETop of elementary toposes by takingK = ETop and D as
the collection of bounded geometric morphisms in ETop.

2.1 Bundles and brewise view

In mathematics we do not work only with objects but also with families of
objects. In most classical set-based branches of mathematics, in uenced by the
structuralism of Bourbaki, structures are sets determined internally in terms of
relations and operations on their elements, and when working with various
structures we often introduce de nitions and constructions not only on object
but also on family of objects exhibiting considered structures.

In ZFC set theory, a cartesian product ofl -indexed families X = fX;gi,,

andY = fYjg, is anl-indexed family X Y = fX; Ygi»,. Note that a
family like X as above can be consider as a functoX : 19! Setwhere 19 is
considered as the discrete category whose set of objects is Given families
X and Y a function between them is de ned, according the principle

of extensionality, elementwise. Therefore, it can be realized as a natural
transformation :X ) Y.
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In category theory we do not have the same language (an admittedly strange
language!) as ZFC set theory and we shall not utter such a thing as “an
object of a category whose "elements' are a collection of objects of the same
category”.

First of all, it is not clear what the word "element’ should mean. If we think
along the same lines as Lawvere's ETCS, we may consider an elemertof
object X of category S as a morphismx: 1! X. The problem with this
approach is that the category S may not have a terminal object and more
seriously, it may not be well-pointed.

So, it is best to change our perspective on families of sets. We can see a family
X:191 Setasabundle : X ! | of sets where the bre of at the element
i 2 1is (i) = Xj. In this way, we obtain the equivalence

Set=|"' Cat(l9; Set) (2.1)
of categories. Note thatl 9 is the setl considered as a discrete category.

In the language of category theory, the above change of perspective is expressed
by stipulating X; as a pullback of alongi: 1! I in S, if such a pullback exists
in S. So, for an object!| of a category S an | -indexed family of objects can
be simply regarded as a morphism : X ! | in S. One of the rst exercises
in set theory is that any construction on sets (such as product, union, sum
(disjoint union), the set of functions and relations between sets, etc.) can be
elementwise carried out for families of sets. Categorically, this means that the
slice category Set=Il possesses the same structures as the categoBet. The
same holds for any elementary topos and even for any Grothendieck topos and
it is known as “the fundamental theorem of topos theory”.

In particular, for an elementary topos S , the topos S =I is cartesian closed
sinceS is. This means that we get natural isomorphisms
0 1 0 1
: : . : : v
S 4@ g X Y 2 A=S @ X r% 2T A
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Unwinding the natural isomorphism of sets above precisely says that for any
morphism f : J ! | the pullback functor f : S =I'! S =J has a right adjoint

¢ (Note that in addition, f has a left adjoint ; given by post-composition
with ).

Recall that in a cartesian categoryC with an exponentiable object B, the object
of sectionsf a morphism : X | B is obtained by the pullback

() — [B;X]

|5k
1 [B;B]

where s is the transpose of the isomorphism projectonl B = B. A
generalized element of g( ) at stageW is equivalent to a morphism {0 1
in the slice category C=B, where éw): W B! B is the second product

projection. Type theoretically, it can be expressed as a term of typeQ (W !
b: B

X1).

For a Grothendieck toposE, and an object (sometimes called a sheaf)l of
E,l :E! E=l is part of an essential geometric morphism wherel (X) =
| X! ° I.Inthe special situation when S= Set, given a setX , we havel (X)
as a bundle with constant bre X, and given anl -indexed family = fX;gi2,
we have () = 2 X;. Note that the direct image |, de ned in above,
computes the “set' of sections (more precisely, it is the discrete core ection of
the spaceof sections which exists as an internal point-free space). Observe that
| uses non-geometric constructions.

If E is a Grothendieck topos (say over elementary toposS ), classifying a theory
T, then E=I classi es the theory of pairs (M; x) where M is a model of T and
X is a global element of| (M). The geometric morphism(l ; ,): E=I! E
then takes the point (M;x) to M.
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The crucial observation is that the language of topos theory enables us to com-
pute things such as space of sections of a bundle functorially and synthetically.
Indeed, brewise topology of bundles (for toposes they are bounded geometric
morphisms) shows the advantage of working with point-free topology: the
localic bundle theorem of Joyal and Tierney says that point-free spaces internal
to a topos S are equivalent to localic bundles overS .

2.2 Discrete brations

We recall from topology that a continuous map p: E ! B is said to be
a covering map , and spaceE is a covering space over B, whenever for
every point x 2 B there is an open neighbourhoodU containing x such that
p }(U) = qi21 V;, a disjoint union of open setsV; in E such that pjy. : V; = U.
A simple example of a covering map is the quotient mapR? ! T where the
torus T is obtained as the quotient space ofR? by the congruence generated
by identi cations (x;y) (x+ m;y+ n) foreverym;n2 Z.

Another well-known examples is the helix-shaped real line over 1-sphere. More
generally, some of covering spaces are built out of locally constant sheaves. We
recall that a sheaf P on a topological spaceX is locally constantif there exists
an open cover of X such that the restriction of P to each open set in the cover
is a constant sheaf. If the topological spaceX is locally connected, a locally
constant sheafP on X is, up to an isomorphism, the sheaves of sections of the
étale covering : ét(P)! X.

The famousunique path lifting property holds for covering maps with connected
and locally connected base.

THEOREM2.2.1. SupposeB is a connected and locally path connected space and

p: E! B is acovering map of spaces. Suppose also that! B is a path inB
starting at (0) = ky. Then for eacte 2 p (ly) there is a unique path: | ! E
with p(T) = . Moreover, if there is a homotopgy between two paths and (with

2.2 Discrete brations
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the same starting and ending points) in the base dpatieen there is a unique lifF
of homotopyH between the lifts” and~ (with the same starting and ending points).

E
~ A
s

B

| ——

A proof of this theorem can be found in section 3.2. of [May99]. Moreover,
covering spaces are "almost' stable under base change.

REMARK?2.2.2. If f : A! B is a map whereby is path connected thdn p, the
pullback ofp alongf, is a covering map. In particular, the bie, is a covering
space over a poirii2 B, and henc&,, must be a discrete space.

Ehb — E
[ b
— B

1 b

b

There is a strict 2-functor  ;: Top ,! Grpd which associates to every topo-
logical space its fundamental groupoid, to a continuous map of spaces a functor
of groupoids, and to a homotopy between maps, an natural isomorphism.

For each groupoid G and each objectc of G, dene (G ) as the full sub-
groupoid of G with only one object namely ¢c. So, (G c)(c;¢ = Aut g(C).
Composing this functor with 1, we get the familiar fundamental group
at point of a topological space at point c. We can use 2-functor ; for
lifting of paths and homotopies of topological spaces in terms of groupoids
and functors: If p: E ! B is a covering map of spaces then the functor
e=pe= 41(E)! p(e= 1(B), which sends a homotopy clasy ] represented
by path :1 ! E starting at ein E to homotopy class[p ], is an isomorphism
of groupoids for any point e2 E.

We now give an algebraic characterization of the notion of covering map of
spaces in terms of functors of groupoid:
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DEFINITION 2.2.3. AfunctorP: E! B of groupoids is aovering functor when-
ever

(i) P is surjective on objects, and

(i) e=P: e=£! P(e)=B is anisomorphism of categories for every objeat E.

REMARK2.2.4. For any groupoidE, there is only a unique morphism between any
two objects oke=E. So, isomorphism of such co-slice categories means isomorphism
of their underlying sets of objects.

THEOREM2.2.5. (i) For a covering map: E ! B of topological spaces the
fundamental groupoid functor 1(p):  1(E)! 1(B) is a covering func-
tor.

(i) Covering functors of groupoids are closed under composition.

(iif) Covering functors of groupoids are stable under base change.

REMARK2.2.6. By the unique path lifting property it is trivial to see that ,(E)p
does not have no non-identity morphisms and therefore, it is discrete. We note that
1(E)p’ 1(Ep) since both are discrete groupoids with the same set of objects.

By the unique path lifting theorem, for any point b2 B, there is a transitive
action of fundamental group (B;b) onthe bre E:

(B;b Ep! Ep

dened by (l)(e) = (1), where I"is the unique lift of | with {0) = e.

r

ANV

b o
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Notice that for any e;& 2 E,, P( (E;e)) and P( (E; &%) are conjugate sub-
groups of (B;b and each is isomorphic to isotropy group of the action.
Hence

E,= (B;D=P( (Ee)

as (B;b)-sets.

DEFINITION 2.2.7. SupposeB is a connected groupoid. We de riéov(B) to be
the category whose objects are coverings with liBasgth morphisms between any
two coveringsP: E! B andQ: F ! B being functorsG: E! F such that

R

B

REMARK 2.2.8. Any such morphisnG is necessarily a covering itself i is con-
nected.

PROPOSITIONZ2.2.9. For a connected groupoBl, we have the following bijection
Cov(B) (E;F) = (B;D)-Set(Ep; Fy)

wherebis any base point iB. This bijection is natural with respect to the choice of
b.

See [May99, p.29] for a proof. In fact, we can study covering of spaces entirely
by covering of their fundamental groupoids and not lose any information. This

IS a pretty atypical situation in algebraic topology. Generally, we have the strict
hierarchy of subclasses of morphisms of topological spaces:

fhomeomorphismsy f homotopy equivalencesgy f weak homotopy equivalencesg

We can of course generalize the notion of covering functors of groupoid to the
functors of categories. Note, however that there is a breaking of symmetry in
passing from groupoids to categories. For a groupoidg, we havee=£ = (E=9°°
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and we could have instead formulated the notion of covering of groupoids in
term of slice groupoids. The breaking of symmetry leads to thecovariant and
contravariant notions of covering for categories.

We shall also drop the condition of surjectivity on objects. This omission
gives a structure more easily attuned to the setting of categories and internal
categories. Note that a functorP: E! B of groupoids which satis es the
condition (ii) of 2.2.3 is the same thing as a functor B ! Core(Set), where
Core is the maximal subgroupoid functor. Therefore, for a groupoid B we have
an equivalence

dFib(B) ' Cat(B; Core(Set)) (2.2)

DEFINITION 2.2.10. AfunctorP: E! B of categories is @iscrete bration

if for every objecte of E, every morphisnf : b! P(e) in B has a unique lift
fmb! einE AfunctorF:E! B is adiscrete opbration whenever the
functorF°P: E°® | B° s adiscrete bration. For a categoBy, discrete brations
(resp. op brations) oveB form a full subcategory o€at=B which we shall denote
by dFib(B) (resp.doFib(B). The categorB is sometimes referred to as thase
categoryof bration.

REMARK 2.2.11. Unwinding the above de nition of discrete op bration, we note

that F is a discrete op bration precisely whenever for every objedf E, every
morphismf : Fe! binB has aunique liff e! BinE.

REMARK 2.2.12. The word “discrete' refers to the fact that the bres of functor

P form discrete categories. To see why, assume Hyas the bre given by the
following pullback of categories:

Eb — E
[P e
1 — B
over any objecbin the base, and take any arraw €®! ein E,. Of courseu is a

lift of id, with codomaine. However,ide is the unique lift ofid, with codomaine
and thusu = id . ande’ = e.

REMARK 2.2.13. Note that for a discrete bratioP : E! B, even if each bre is
discrete, it may not be the case tlait discrete.

2.2 Discrete brations
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REMARK 2.2.14. We can reformulate De nition 2.2.10 so that it can be extended
to internal categories in any nitely complete categ@y For internal categoriés

B =(B; Bo) andE = (E; Eo) in S, an internal functoP: E! B is an
internal discrete bration if

E]_LEO

W P (2.3)

B]_ E— BO
di

is a pullback diagram in the categdBy The dual notion ointernal discrete op bra-
tion is de ned by replacingl; with d, in the diagran{2.3).

CONSTRUCTION2.2.15. The Grothendieck construction for presheaves of sets (i.e.
discrete categories) establishes an adjoint equivaléirt¥B) ' PShuB).

Presheaf of bres,

B - Set
Grf)thendieck construction
discrete brations presheaves (2.4)
the presheaP is de ned as follows:
P:B%® — . Set
b—— E (2.5)

wheref maps an object in the bre dito dom(f"), wheref~is the unique lift off .
The functoriality ofP precisely follows from the uniqueness of lifts.

LFor an internal categoryC = (C;  Cp) we shall call Cq the object of objectand C; the object
of morphisms Occasionally we shall use the notationsCy = Ob( C), and C; = Mor( C). See
Appendix A.8.1 for more details.
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For instance for an objedtin a locally small categor, the functor ,: B=b! B
formed by the lax pullback

(2.6)

is a discrete bration and the presheaf of bres is indeed the representable presheaf
y(b) = Homg( ;b). We shall refer to ,, as the representable bration.

Conversely, starting from a presheaf B ! Set, the Grothendieck construction
yields the so-called category of elemeXts B with a forgetful functor x: Xo B !

B. Infact, x can be constructed as the lax pullback?®f alongX°P: B ! Set®
whereby?: 1! Setis the unique left exact functor.

X0B 41

1T

B T} %Pp (27)

We readily observe thaty is a discrete bration: the brgX o B)yis isomorphic
to the seX(b) and this yields the equivalence 2.4. The Grothendieck construction of
representable presheaves are slice categories:

Hom( ;b)o B = B=b

Hence, the equivalence 2.4 restricts to

8 9 8 9
< Discrete brations= | < Representable presheaves
b: B=b! B - Hom( ;b:B°! Set
Moreover,

dFib( p;P) = E, = P(b) = PShyHom( ;B);P)
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Similarly, we have the equivalence

Functor of bres .

4

y)
Gro\thendieck construction

discrete op brations functors (2.8)

Adopting the brational viewpoint of presheaves (resp. functors) enables us to
internalise them to other categories. Taking an internal presheaf essentially
as an internal discrete bration (See Remark 2.2.14), we de ne an internal
presheaf (resp. internal diagram) as follows.

DEFINITION 2.2.16. Foraninternal categoi@ = (C; Cp) ina nitely complete
categoryS, aninternal presheaf X overC consists of

e an objectX of S,
* abundlemorphism : X ! Cy, and
e anactionmorphism : X 4 C;! X

such that the left square in below commutes, i.e.
pullback of alongd;.

= dy 1where ;isthe

X ¢+——X ¢4C ——=X

l . l P l (2.9)

Ci Co

dy
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and moreover, satis es the unit and associativity axioms for a (right) action, ex-
pressed by the commutativities in below:

g * aG
T

(X 4;C1)dg 1 &1 C1

= l X o id
id i
X d1d,(C1dg d; C1) /
™~

id di "y d; C1 (210)

Of course any set-valued presheaf is an internal presheaf in the categorget.

REMARK2.2.17. Supposé®: CP ! Setis a presheaf whef@is a small category.

We can viewP as an internal presheaf in the categ®at: takeX = P(c)
c2C

withthe map : X | Gy as the rst projectiog, and the action given byc; x 2
Pc;f:d! c)=(d;Pf(x)). WehaveX o C' P where the latter is the familiar
category of elementsf P.

From De nition 2.2.16, it is easily observed that ; ;: X 4, C; X form
an internal category in Swhere is the domain morphism, ; is the codomain
morphism, and identity and composition are given by identity and composition
in C. We call this internal category the internal action category 2 and we
denote it by X o C . Furthermore, commutativity of diagrams 2.9 and 2.10 are
indeed the (internal) functoriality axioms for x :=h,; i: XoC ! C. We
note that
(XoC); —— (X0oC)o
{ p l (2.11)

Cld—l>C0

is a pullback diagram in S. By Remark 2.2.14, the forgetful functor h 4; i is
an internal discrete bration. This process describes the internal version of
Grothendieck construction earlier described in 2.2.15. It is similar to see that
an internal discrete bration has the structure of an internal presheaf in the
sense of De nition 2.2.16.

2This is the internal version of category of elements.
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We would like to conclude this section by discussing theuniversal discrete
brations and op brations of categories.

PROPOSITION2.2.18. The forgetful functolJ: Set ! Set, whereSet is the cat-
egory of pointed sets, is a discrete op bration of large categories, and the bre over
each seKX is isomorphic the seX itself (viewed as a discrete category). We occa-
sionally refer toU as thetautological discrete bundle . Moreover,U classi es

all discrete op brations of small categories: for a small cateddryhe equivalence
doFib(B) ' Fun(B; Set) of Grothendieck construction is achieved by pulling back
alongU: Set ! Set.

More concretely, for any small categoryB and every functor F: B! Set, the
pullback of U along F gives us a discrete op bration :B o F! B with the
bre over b2 B being the discrete categoryF (b), as shown in the diagram

F — Set

0]
P
éﬁSet

B

E

where U(X;x) = X, and 1(b;Xx) = (F(b);x). Moreover, any discrete op bra-
tion P: E! B, isgotten as a pullback ofU along a unique (up to isomorphism)
functor F: B! Set. Of course, by de nition U°P: Set® ! Set® is the univer-
sal discrete bration of categories. Observe that an immediate consequence of
proposition above is that the discrete brations and discrete op brations are
stable under pullback.

The sheaf condition can be expressed brewise.

REMARK 2.2.19. Recall that a preshedf on a site(C;J ) is a sheaf if and only
if for any objectU of C and any covering siev8 2 J (U), any matching family
: S! P canbeuniquely extendedta yU ! P in PShC) (the diagram on the
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left). Fibrewise, this is expressed by saying that C has a unique extension to the
discrete bred categorZ=U (the diagram on the right).
Vg U

]/ - soc el poc
s N

2.3 Grothendieck brations

In this section we will review the notions of precartesian and cartesian mor-
phisms. They are introduced by Grothendieck which he used to develop
the notion of bration of categories. The standard present-day notions of
“precartesian’' morphisms and “cartesian' morphisms were originally named
by Grothendieck "cartesian' morphisms and “strongly cartesian' morphisms
(See [GR71, Exposé VI], especially its beautiful introduction). For us, as it
is the standard nomenclature nowadays, the corresponding notion of func-
tor with enough cartesian (resp. precartesian) lifts will be ~ bration' (resp.
“pre bration").

In learning about brations and writing this chapter, | have also bene ted from
consulting [Vis05, Chapter 3], [Strl18], [Joh02a, Part B], and [Jac99, Chapter
1].

2.3.1 Precartesian and cartesian morphism

DEFINITION 2.3.1. LetP: E! B be afunctor. A morphism: X ! Y inEis
said to beP -precartesian whenever for anf-morphismv: Z ! Y with P(u) =
P(v), there exists a uniqué-morphismw such thau w = v andP(w) = 1px).
Morphismu: X ! Y is said to beP-cartesian whenever for anye-morphism
v:Z! Yandanyh: P(Z)! P(X)withP(u) h= P(v),there exists a unique
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lift wof h suchthau w = v. The notion of opcartesian morphism is the dual of
the notion of cartesian morphism.

NOMENCLATURE In the diagrams we writX 7! A, for X 2 Ey andA 2 Bg to
indicate that X is sitting aboveA', that isP(X) = A. Besides, morphisms in the
bre categoryEg, that is allE-morphismsv: X | Y with P(v) =id g, are called
vertical. Furthermore, when functd? is obvious from the context, then we simply
use the term cartesian insteadRofcartesian.

REMARK 2.3.2. De nition 2.3.1 essentially says being cartesian means that any
lifting of P (v) alongP (u) in the base categoryd() is uniquely induced from a lifting
of v alongu in (E).

In the next proposition we list some basic observations about precartesian and
cartesian morphisms:

PROPOSITION2.3.3. Supposd: E! B is afunctor.

(i) Any cartesian morphism is precartesian.

(i) Precartesian lifts, if they exists, are unique up to unique isomorphism.

(i) An immediate consequence of the remark above is that any precartesian verti-
cal arrow inE is an isomorphism.

(iv) Any isomorphism is cartesian.

(v) A precartesian morphism with a right inverse is an isomorphism.
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LEMMA 2.3.4. An E-morphismu: X ! Y is P-cartesian (resgd?-opcartesian) if
and only if the left (resp. right) commuting square is a pullback diagra8etrfor
each objecW in E:

E(W;X) ——— E(W:Y) E(Y; W) —2— E(X;W)
Pw;x J{ P J{PW;Y PY;WJ{ P J{PX;W
B(PW;PX) ;. B(PW;PY) B(PY;PW) — =+ B(PX;PW)

From this lemma and pullback-pasting lemma it follows that

PROPOSITION2.3.5. The closure properties of cartesian morphisms with respect to

composition are:
(i) Cartesian morphisms are stable under composition.

(i) For a cartesian morphism: X ! Y, amorphismv: X°! X is cartesian if
and only ifu v: X°! Y is cartesian.

(i) Given a commutative square &morphisms

v v

X0—7— X
40

wherev: V@ are vertical andi® is cartesian we have thatis cartesian iff the
square is a pullback diagram.

Note however that these closure properties do not hold for precartesian mor-
phisms. By the proposition above we can associate to every functoP: E! B

a strict double category D(P) which has P-vertical morphisms in E as its
vertical morphisms, P -cartesian morphisms as its horizontal morphisms, and
commutative squares as 2-morphisms. EvidenltyD(ldg) is the standard double
category D(E) of commutative squares inE.
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EXAMPLE2.3.6. Let's see what precartesian and cartesian morphisms look like in
the simplest of cases.

» For any categor, there is a unique funct@® ! 1. All morphisms ofB are

vertical, a morphisms is cartesian iff it is precartesian iff it is an isomorphisms.

» LetB be a category with pullbacks. The codomain funciod: B #B) ! B
takes an object: X ! B of (B #B) to its codomairB, and takes a mor-
phismhg;fi: ©! of (B #B), i.e. a commuting square, ta Interestingly,
cod-cartesian morphisms (B #B) are exactly pullback squares Bf Also
a morphisms ifcod-precartesian iff it iscod-cartesian. (See Appendix for a
proof of these facts.)

B* % y X
o P l

o Bvoﬁ B (2.12)
B BO_' . B

The bre (B #B)(B) is isomorphic to the slice categoB/~=B. The cartesian
vertical morphisms in that bre fornCorg B=B), that is the maximal sub-
groupoid ofB=B.

2.3.2 Pre brations and brations

DEFINITION 2.3.7. AfunctorP: E! B is said to be &rothendieck bration
(resp.Grothendieck pre bration ) whenever for eaclX 2 E, every morphism
A" PX in Chas a cartesian (resp. precartesian) lifEinA functorF: E! B is

aGrothendieck op bration if F°°: E°® ! B°Pis a Grothendieck bration.

Grothendieck brations were originally introduced in the classical setting
where axiom of choice is valid. In order to not rely on the axiom of choice,
a choice of cartesian lifts is often required to be added to the structure of
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brations and this choice for a bration is called cleavageA bration equipped
with a cleavage is calledcloven

DEFINITION 2.3.8. A cleavage for a (pre) brationP : E! B is a choice for each
X in Eg and morphisnt : B! P X in B, a (pre)cartesian lift(f; X ): g X ! X
of f in E. More formally, the data of a cleavage is a terwf the following type:

Y Y Y X
c: Cart g(Y; X)

B;A: Ob(B) f:B(B;A) X :X(A) Y:X(B)

where the typeCart g(Y; X) is type of all cartesian morphisms frovhto X . If the
bration P is equipped with a cleavagethen(P; ¢) is called acloven bration. The
cleavagecis said to besplitting if for any composable pair of morphisnigy :

og f;X)=dg;X) df; gX)

And normal whenever for every object in E:
qidpx ; X) =id x

REMARK 2.3.9. In the presence of axiom of choice, every Grothendieck bration

is cloven. But in this chapter we will be quite explicit in working with cloven bra-
tions, in that we will keep track of the effect of various operations on brations (such
as pullback, composition, etc.) on the cleavage as well. Nonetheless some brations
(for instance category of modules bred over category of rings, see 2.3.45(i)) have
a ‘canonical' choice of a cleavage. However, this is not true in some important ex-
amples of brations (e.g. as codomain bration of 2.3.44(ii)), since pullbacks are
only de ned up to isomorphism. In fact, there the data of cleavage proves us with
interesting things (e.g. choice of pullbacks) which we ought to book keep. This is
particularly true when one work in strict settings such as semantics of dependent
type theory where it is important that semantics of substitution, given by pullbacks,
should be strict. We will see in section 2.4.2 a cleavage for a bration is determined
uniquely up to a canonical isomorphism. Thus, a bration is a "non-algebraic' ap-
proach of formulating base change functors (e.g. indexed categories 2.3.3): the oper-
ationf is characterized by a universal property, and the de nitizarelystipulates

that an object with that property exists, rather than selecting a particular such object
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as part of the structure. In the terminology of [Mak01], theyaraual operations
(as opposed thonestoperations of say a bicategory or pseudo functors.).

REMARK2.3.10. Sometimes when there is no risk of confusion about the cleavage
of a (pre) bration , we usually use the suppressed notdfio X ! X instead of
cartesian liftc(f; X ) of f : B! P X. Further still, when the cleavages clear from

the context, we use the more compact notafiorXs ! X

REMARK 2.3.11. A cleavage of a cloven bration can be modi ed to make the -
bration normal cloven not necessarily splitting normal. The simplest example, given
in [Str18], is the delooping mod,): ( Z)! ( Z,) of the non-trivial group mor-
phismmod,: Z! Z,. The data of a normal cleavage formod,) is just a function
Z, ! Z which takes the identity eleme@to the identity elemend of Z, and takes
1to an odd element . But a splitting cleavage fof mod,) is a group homomor-
phisms: Z, ! Z with s(1) an odd integer. Such does not exist. Nevertheless,
any bration is equivalent to a split bration by changing the domain of bration
to an equivalent category. The groupdidZ) (with one object) is equivalent to the
groupoidG, generated by two objec® and?, inverse morphisms: 72 7.
and an invertible : ?! ?, viathe equivalenctl: G! ( Z) which takes to+1,

to 1,and to+1. Bytaking and inthe cleavage( mod,) U is a splitting
brations (and op bration): the lift ofl: Z, ! Z, with the codomair? is taken to
be and the lift ofl:Z, ! Z, with the codomairf. is taken to be . Note that

=id , which is the chosen lift of identit®: Z, ! Z,.

Assuming the stability of precartesian morphisms under composition, there is
no difference between brations and pre brations. The proof of proposition
below is given in Appendix A.9

PROPOSITION2.3.12. A (cloven) pre bration is a (cloven) bration if and only if
precartesian morphisms are closed under composition.

EXAMPLEZ2.3.13. We continue Example 2.3.6 by examining the simplest cases of

brations and op brations.

() The unique functoB ! 1is a Grothendieck bration. The canonical choice
of cartesian lift for eackX 2 E isidy, and with this choice the bration is a
normal split bration.
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(i) For any categoryB, the codomain functocod: B #B) ! B is always
an op bration, and it is a bration if and only B has all pullbacks. A
cloven bration(cod;c): (B #B) ! B is precisely a categoi@with a choice
of pullbacks inB. For a morphisnf : B®! B, the base change functor
f :(B#B)(B)! (B #B)(B9 are the familiar pullback functdr : B=B !
B=B° Similarlydomis always a Grothendieck bration and itis a Grothendieck
op bration if and only if B has all pushouts.

(i) Any discrete brationP: E! B is a Grothendieck bration: any morphism
in E is P-cartesian and there are no non-trivial vertical morphisms.

The following proposition is a rewriting of De nition 2.3.7 in terms of adjunc-
tion on slice categories. We include the proof in Appendix A.9 for the sake of
completeness.

PrRoOPOSITION2.3.14. (P;0): E! B is a cloven Grothendieck bration if and
only if for each objeciX 2 E, the induced functoPy : E=X ! B=P X has a right
adjoint right inversesy , that is the counit of adjunction is identity.

The important thing about the proof of this proposition is that Sy is de ned by
cartesian lifts, and for any E-morphismu: Y ! X, the unit (u) followed by
the cartesian lift S(P u) in c gives the vertical-cartesian factorisation ofu:

Y
(W u (2.13)

Spu(X) —— X
bu

A similar proof also yields the following proposition.

PrROPOSITION2.3.15. (P;c): E! B isacloven Grothendieck bration if and only
if the canonical functo(E#E) ! B=P has right adjoint right inverse.

The Chevalley brations of Section 2.4.2 are generalisation of this formulation

of bration to appropriate 2-categories.
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PROPOSITION2.3.16. (Cloven) Grothendieck brations are closed under composi-
tion and pullback.

The proof of this classical result is included in Appendix A.9.

We are at a stage to de ne the 2-category of Grothendieck brations:

DEFINITION 2.3.17. A (pre) bration map  between two (pre) bration®: F !
CandP: E! B consists of two functors: C! B andL: F! E such that

F
|
C

commutes, and moreovér,carriesQ-cartesian (resp. precartesian) morphisni34o

L
_

E
lp (2.14)
B

F

cartesian (resp. precartesian) morphismgpee) bration transformation isa
pair of natural transformatior(s : Lo! Li; :Fo! F;) suchthaP = Q.
A bration map of cloven brations(Q; ¢g) and(P; ¢-) is similarly de ned with the
additional requirement that takes morphisms in the cleavaggto cs.

To spell out the de nition of bration map (L;F): Q! P in above, take
a morphism f : c®! cin the base categoryC and a Q-cartesian morphism
u:y°! yoveritin F. Apply F to f, and L to u. Commutativity of the diagram
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(2.14) says thatL (u) lies over F (f ). The unique lift of L (u) along the cartesian
lift ﬂ:(f) in E is a vertical morphism, sayv: L(y9 ! L(y)

(./L\

‘ \—/
F
C
(2.15)

The fact that L preserves cartesian morphisms makes an isomorphism. In
particular, we have L(ys) = L(y)F(f). We call the bration map (L;F) strict if
this isomorphism is indeed an identity.

F(f)

REMARK?2.3.18. Onthe surface, we could have de ned maps of bration differently
by requiring a natural isomorphism instead of identity in square 2.14. However,
Remark 2.3.23 explains why that modi cation is anyway immaterial as we would
obtain a 2-category biequivalent fdb.

Fix a categoryB. In the 2-category Fib(B), the discrete objects are exactly
discrete brations: for any pair of maps of brations to a discrete bration,
there is at most one natural transformation between them.

REMARK?2.3.19. Fixing a basd3, a bration map to a discrete bration iRib(B) is

itself a bration. The assumption that the codomain is discrete is essential. Consider
the (non-discrete) bratio2 ! 1. A global section of this bration irFib(1) * Cat
exists but it is not a bration. Moreover, if the domain is a discrete bration, then the
bration map is too a discrete bration (For a proof, see [Joh02a, Lemma 1.3.11]).
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CONSTRUCTIONZ2.3.20 (The 2-category of Grothendieck brations) . Grothendieck
(pre) brations, (pre) bration maps, and (pre) bration transformations form a 2-category
Fib (resppreFib). We also us&ib(B) to denote the full sub 2-categoryleib which
as objects has only categories bred orwith 1-morphisms and 2-morphisms
only those who sit abovielg andid,q, . Obviously,Fib(1) ' Cat Similarly, clvFib
shall stand for the 2-category of cloven Grothendieck brations@wagreFib shall
stand for 2-category of cloven Grothendieck pre brations. FurthernspiEib (resp.
splnlFib) shall stand for the 2-category of cloven splitting (resp. splitting and normal)
Grothendieck brations. We have the following chains of (forgetful) embedding of
2-categories:

spinlFib

splFib

clvFib ——— clvpreFib

Fib ——— preFib

REMARKZ2.3.21. Note thatin diagrani2.14) sinceF preserves identity morphisms,
thenL respects vertical morphisms. Hentepreserves the vertical-cartesian factor-
ization and therefore, we get a morphism of double categ@{€y ! D(P). By
the commutativity of diagran®.14), a bration map produces a family of functors
on bre categoriefFp ! Egr(c)j C 2 Ob(C)). In fact, this family is the bre of
1-morphismLp: Q! F P inFib(C) inducedbyL: Q! P inFib.

The result below was proved in [Gra66]. Its proof is not particularly dif cult:
it can be done componentwise. We state it here to make a connection later
with representably-de ned notion of bration internal to 2-categories.

PROPOSITION2.3.22. AfunctorP: E! B is a Grothendieck bration if and only
if Cat(F;P): Cat{F;E) ! Cat(F;B) is a Grothendieck bration for any category
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F and for any functorA: F° ! F the commutative diagram below is a map of
brations.

catF:E) 2@, catF°E)

P (F)J{ J{P (F9 (2.16)

. 0}

The proposition above parallels a similar results about brations of spaces
(e.g. Kan bration of simplicial sets). For a bration p: E ! B of spaces,
the induced map p : Map(X;E) ! Map(X;B) of mapping spaces is again
a bration for every locally compact space X . Also, p induces a bration
E! B ofthe loop spaces. Since the traditional modelling of spaces uses
groupoids and higher groupoids, to model brations of spaces categorically,
we do not need lift of all morphisms in the base, but rather only isomorphisms.
The notion of iso bration of categories is a weaker notion than Grothendieck
bration; it only requires a lift of isomorphism (with appropriate codomain)
of the base category. This means thatP: E! B is an iso bration iff the
induced functor Core(P): Core(E) ! Core(B) of maximal sub-groupoids is a
Grothendieck bration. Iso brations relates to the study of spaces up to their
rst homotopical dimension via their fundamental groupoids. In particular
there is a canonical model structure(F ;C; W) on the 1l-category Grpd of
groupoids and functors where

* the class F of brations consists of iso brations.
* the class W of weak equivalences consists of categorical equivalences.
» the classC of co brations consists of functors which are injections on
object parts. All objects are both brant and co brant and this makes the
model category quite simple.
The canonical model structure on Grpd has nice properties: for instance, it is

left proper and co brantly generated. Some original ideas go back to work
is done in [Bro70], but the model category structure was rst presented in
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[And78]. An excellent survey of this model structure with its applications can
be found [JTO8].

REMARK2.3.23. By Proposition 2.3.3(v), any Grothendieck bration is an iso bra-
tion, and in particular the functd? (F): Cat(F;E)! Cat(F;B) is an iso bration.
This justi es the choice of strict equality instead of natural isomorphism in the de -
nition of a bration map in the diagrar(2.14) : any natural isomorphisfiQ = PL

can be lifted to a natural isomorphidni= L with PL°= FQ.

CONSTRUCTION2.3.24. The tautological discrete bundl¢: Set ! Set can be
constructed as a part of the comma object of thelnit! Setandld: Set! Set
in the 2-categorygCat For this reason, we denote it Ig9(1). Similarly, the functor
@(1): Cat ! Cat obtained from the comma object

CatLl

@(% 7 P

is indeed a Grothendieck op bration of large categories. By the construction above,
Cat has as its objects pai€; c) wherecis an object ofC, and as its morphisms pairs
(F;f): (Cc! (D;d) wheref : F(c)! disa morphisminD. The op bration

@(1) classi es all Grothendieck op brations of small categories: Any op bration
F:E! B isequivalentto the pullback @(1) along the bre functof~: B! Cat.

2.3.3 Fibrations and indexed categories

The equivalences 2.1, 2.2, 2.2.15 and their internal versions suggest a pattern
for a bigger picture. As we discussed in the very rst section of this chapter
a fundamental principle in mathematics is that objects do not exist only in

isolation, rather they occur in families. The adjectives “indexed, parameterized,
familial* appearing in the title of many elds and concepts in mathematics

Is a witness to our claim. In category theory, “indexing” is mainly expressed
by functors, pseudo functors, ..., 1 -functors, etc. However, as we climb
the tower of dimensions, there naturally appears an increasing number of
coherence conditions to make sure the indexing is “functorial'. Particularly
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when our higher categories are weak (such bicategories, etc.) to specify and
verify the coherence conditions are dif cult to track. If we take the bundle view
though, these coherence conditions can be repackaged under a single universal
property of cartesianness. The process of turning indexedn-categories to
brations of n-categories is known as Grothendieck construction and we have
already seen examples of it for discrete brations. In this section we are going
to describe Grothendieck construction of indexed categories and indexed 2-
categories. By an indexed category we mean a homomorphism of bicategories
of the type C!'! Catwhere Cis a (small) category and C? is the associated
discrete bicategory.

An interesting feature of the Grothendieck construction is that it reduces
category level as illustrated in the table below?:

Indexed families oh-categories Fibrations oh-categories
A set-indexed family of sets A bundle of sets
X:191 Setin Cat X ! 1in Set
A category-indexed family of sets A discrete bundle of categories
F:CP! Setin Cat FoC! CinCat
A category-indexed family of categories A bundle of categories
P: B! Catin 2 Catyg PoB! B in Cat

Other than a change in viewpoint it makes a world of difference when we

work in higher levels. For instance, an 1 -stack in algebraic geometry can
be conceived as a “category bred in spaces” instead of arll -functor to the

1 -category of spaces.

In what follows we shall describe in details how to associate to a normal split
cloven Grothendieck bration the 2-functor of bres, to a cloven Grothendieck

30f course there is a dual to this table which relates pseudo functors to op brations.
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bration a pseudo functor of bres, and to a cloven Grothendieck pre bration
a lax functor of bres.

Suppose(P: E! B;c0) is a cloven pre bration. We dene P: B°® ! Catas
follows: For an object A of B, we de ne P(A) to be the bre of P whose
objects and morphisms are objects and morphisms oE which are mapped to
A and idy by P, respectively. Note that for any morphismf : A! B, we geta
‘change of base' functoP(f ): P(B) ! P(A) sendingY togY andu:Y ! Y°
in P(B) to ¢ (u), the unique vertical morphism which makes the following
diagram commute.

GY afy ) v
G (u) u
0 /o(f;v") 0 /
Y
A f B
Now supposef: A ! B and g: B ! C are morphisms in B. We have

P(af)(Z) = ot Z and P(f) P(9)(Z) = & gZ. Notice that since P(d(g; Z)
df; Z)) = P(dgf;Z)) = gof, and precartesian property of morphismsc(gf; Z)
yields a unique vertical morphism v: ¢ gZ ! ¢4 Z such thatc(gf;Z) v =
d9;Z) df; ¢gZ). (The fact that composition of precartesian morphisms may
not be precartesian precludesv from being an isomorphism.) All squares in
the diagram below commute and this shows the choice ofv is natural.
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of; gZ) og;Z)

G GZ CZ Z
G (u) - c(u) - u
v o(f; 29 N «fz 9 /
G GgZ° J Z° Z°
\%
0 Gyt 7 ogf,Z) 7
o v
Cgf Zo ogf;z 9 ZO

This turns P into a lax functor. If P was indeed a cloven bration then v in the
diagram above would be an isomorphism and we would get a pseudo functor

P instead. Also, if we have a pre bration map (F;L): (Q;c) ! (P;c) asin
De nition 2.3.17, then Lp: Q!

transformation : Q) P F°P.

F (P) in Fib(C) induces a pseudo natural

F—- E Q
/\
QJ JP 7o | cat
C F > B F\BOP/P

The pseudo-naturality squares are given, for a morphismf : c®! ¢, by

Q(c) —— P(Fc)

f l =, l(Ff) (2.17)
Q(d) — P(Fc

where the natural isomorphism ; at componenty 2 Q(c) is exactly the vertical

isomorphism v of the diagram (2.15). The bration map (L;F) is strict iff is
a strict 2-transformation.
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What's more, we get a bijection between bration transformations on the left
side and modi cations of pseudo transformation of indexed categories on the
right side. Indeed, we obtain 2-functors

Fib(B) ! 2 Catysq(BP; Cal) (2.18)
spinlFib(B) ! 2Cat(B°?; Cat) (2.19)

which are biequivalenceof 2-categories.

The quasi-inverse is known as the “Grothendieck construction for indexed
categories” which we are going to explicate in below. Note that there is no
biequivalence for the case of pre brations since there is no 3-category of 2-
categories having lax functors as their morphisms. Supposé is a category and
P: B° ! Catis a pseudo functor. We would like to associate a Grothendieck

bration to P such that bres are categories equivalent to P(U) for objects U
in B.

CONSTRUCTIONZ2.3.25. De ne the category? o B

(i) whose objects are pai($; A) wherel is an object oB andA is in an object
of categoryP(l ), and

(i) whose morphisms ar@d;u): (J;B)! (I;A)wheref : J ! | isamorphism
inB,andu: B! f (A)amorphisminP(J).

Moreover,
« the identity morphism &tJ; A) is given by the paifid;; ;(A)), and
* the composition of
(K;:C) 1 (3;8) ™) (1;A)

is given by
;e a;a)

whereh ;= 4(A) g (u) wv.
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Inabove, ;: Idpyy ) P(id;)and 4 : P(g) P(f)) P(f g)ispartofcoherence
data ofP.

The gure below provides us a with a snapshot of the category P o B at
moments|; J; K .

P(K) P(J) P(1)
C
g (B)
9 (2.20)
gf (A) B
f.g (A) J(u

(9f) (A) T (A) A

It's plainly clearthat p: Po B! B taking object (I;A) to | is a Grothendieck

bration. Moreover, every morphism in P o B factors as vertical morphism
followed by a horizontal one:

(J;B)

(id: 5(f ) “)J N

(3 f (A) W (LA)

2.3 Grothendieck brations 127




REMARK2.3.26. The biequivalences i(2.18) sends composition of indexed cate-
gories to pullback of brations. Given a functér: C! B and an indexed category
P: B° ! Cat we get a pullback of categories

(PF)oC—-> PoB

I
P FOP | p lP
+

C———8B

whereL ((J;:B) ™) (:A) = (F@):B) O (Fa): A).

COROLLARY2.3.27. Since monads in a 2-categd@at are nothing but lax functors
1! Cat we conclude from the above equivalence that monads are indeed the same
as pre bred categories over the terminal category.

An application of Grothendieck construction is the formation of homotopy
guotients. SupposeG is a group, X is a topological groupoid, and G acts onX ..
Therefore, X induces a functor G! Gpd. The Grothendieck construction
applied to this functor gives the homotopy quotient of X by G, denoted by
X==G. It is isomorphic to the groupoid whose objects are points of X, and
whose morphisms from point x to y are given by pairs(g; ) where :g x=y
in X . Here's why homotopy quotients are important. Supposep: E! Bisa
map of groupoids. The homotopy pullback (i.e. pseudo pullback) E,! E of
an elementb: 1! E is always faithful but not full. The image of E, in Eis
connected and forband P in the same connected component of8, we have
E,' Ew. Also, the group Aut(b) = E(b; B canonically acts on the homotopy
bre Ep,. There is a fully faithful functor E,==Aut(b)! E. Therefore, we can
write one of the most fundamental equations of theory of groupoids, that is

X
E= Ey==Aut( b)
b2 o(B)

for any groupoid E.
Another application of Grothendieck construction is the so-called external-

ization processwhich turns internal categories into bred categories. The
heavy machinery of indexed categories is an essential component of Part B
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[Joh02a] and Part C of [Joh02b] to access and de ne internal constructions
in toposes via their externalized indexed categories? For instance one of the
key theorem of relativised topos theory is that to any base toposS and any
geometric theory T one can assocciate an the classifying -topos S [T] which
is a Grothendieck topos in the sense that it is equivalent to the category of
internal sheaves over internal syntactic site ofT.

CONSTRUCTION2.3.28. SupposeC is an internal category iB. In Appendix A.8 it
is explained how an indexed categétgm(C): S°® | Catcan be constructed from
an internal categor¢ in a nitely complete category. Applying the Grothendieck
construction yields a bration: Fam(C) o S! S. The categorfram(C) o Shas

» as its objectgl; X ) wherel is an objectofSandX : I ! Cyis a morphism
in S, and
e asits morphism¢;f ): (J;Y)! (I;X)where :J ! 1 isamorphismin

Sandf : Y ! X is given by a morphisth: J ! C;inSwithd, f =Y
andd; f =X in §(J; Co).

The rst projection gives a split normal cloven brationc: Fam(C)o S! S
Note that a morphisr; f ) is cartesian iff is an isomorphism ifram(C)(J). The
canonical cleavage assigns to each] ! | the morphisn(; id x).

ExAamMPLE2.3.29. LetB be acategory. Consider the associated brakam(B) !
Set of the 2-functor
Fun( ;B): Set®! Cat

where for an (indexing) sdt, Fun(l; B) is the category of functors from discrete
categoryl toB. The objects of this bred category are familieX ;g;», of objects of

B indexed by a sdt, and a morphismis apair,f )where :J ! | andf afamily
of morphismdf;: Y; I X ()g25 inB. Inthe case wher is a small category this
exactly matches the externalization of categdrfrealized as an internal category in
Set) in Construction 2.3.28. A morphis(m ff;:Y; ! X ()gi25) is cartesian iff
eachf; is a bijection.

CoNsTRUCTIONZ2.3.30. The Grothendieck construction of an indexed category is
a special case of a 2-mon&ams: [S°P; Caf] ! [S°P; Caf] calledindexed family

“4In other places such as [Str18] and [Lur09] a brational approach is preferred.

2.3 Grothendieck brations 129




130

construction . For anS-indexed category?: S°* ! Catde ne Famg(P) to be the
S-indexed category ofS-indexed families of objects' dP, i.e. for each object of
S, Famg(P)(I) is the category whose objects are pdirs J ! 1;A) whereA is
an object ofP(J), and whose morphisms are of the fomf ): (;A)! ( 2A9
where : ! %is a morphism in the slice catego8f! (i.e. the left diagram in
below commutes) anfd: A ! ACis a morphism in the categoR(J).

J —— 0

\I/O . A" A°

Note that ifS has a terminal objed, then in particulaFamg(P)(1) is equivalent to
the total category? o Sof Grothendieck bration ofP. The reindexing (aka change
of base) functor for a morphism : K ! | in Sis given by the pullback functor
which takes an objedqt;A )to( ; ,A), and morphisn{;f )to( ; f )
where is the canonical natural isomorphism = () ( 9) as part of the data
of indexed categori.

() (%9 A°
£ f1
LA A
J 2 J

Now, any reindexing functor has a left adjoint : Famg(P)(K) ! Famg(P)(I)
which takes an objedt : L ! K;B), with B an object ofP(L), to ( B ).
Moreover, they satisfy Beck-Chevalley condition. Therefdtamg(P) is the free
cocompletion of indexed categoB: In fact, the 2-monadrams is a KZ-monad
whose algebras are exac®indexed categories witG-indexed coproducts.
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2.3.4 Yoneda's lemma for bred categories

We have an embeddingB? ! Fib(B) of 2-categories by taking an objectU
of B to the slice bration (:B=U! B, and a morphismf:V ! U tothe
cartesian functorf : B=V ! B=U over B. In section 2.2 we showed that the
discrete bration | is representable amongst discrete brations, in that we
have the equivalence

dFib(B)( u;P)" P(U)

for any discrete bration P: E! B. However if we are willing to pay the
cost of considering  in the 2-category Fib(B) rather than in the category
dFib(B), we then win the prize of having it as a representable bration.

PrROPOSITION2.3.31. For any object in B, and any bred categoryP;c): E!
B overB, we have a family of equivalences of categories

u: ClvVFib(B)( y;P)" P(U): y

natural inU.

Proof. For a bratonmap L: y! P,dene (L):= L(U! d U). Also for
a vertical natural transformation :L ) L% dene ( ):= (idy). isa
functor. For an object X in E over U = P(X), we de ne the bration map

( X): B=U! E as the following functor: ( X)(V! f U) = ¢ X, and for
h: 01 finB=U, ( X)(f?" f)= h. One easily checks that( X) is indeed
a functor. Moreover, by Proposition 2.3.5P ( X)= y and ( X) preserves
cartesian morphisms of B=U. (That is every morphism of B=U since slice

bration is discrete.) Note that ( L) =L forany bration map L: since
L sends each morphism ofB=U to a cartesian one inE, L(f : f ! idy) is
cartesian, and therefore, (L)(f)=qg(L(dy)) = L(f). ]

2.3.5 Categories bred in groupoids

We start by the following observation whose proof is given in Appendix A.9.
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PROPOSITION2.3.32. SupposeéP: B°® | Grpd is a pseudo functor. Every mor-
phisminP o B is p-cartesian.

DEFINITION 2.3.33. A Grothendieck brationP: E! B, equivalentto p for a
pseudo functoP: B°? ! Grpd, is said to bea category bred in groupoids

So, we deduce that

A pseudo functor P: B°? ! Catgives rise to a category bred in groupoids
if and only if
it factors through the embedding Grpd ! Catof (2; 1)-category of groupoids
into the 2-category of (small) categories.

Categories bred in groupoids have an easier description than categories bred
in categories. We do not need to concern ourselves with the cartesianness of
the lifts, since every lift is automatically cartesian due to Proposition 2.3.32.

THEOREM2.3.34. P: E! B iscategory bred in groupoids if and only if

(CFG 1) For every arrow : V I U in B and every objecK in E sitting aboveU,
thereisan arroff: Y | X with P(f6) = f.

(CFG 2) Given a commutative triangle B, and a liftf® of f and a liftg of g, there is a
unique arronh: Y ! Z suchthat® h= gandP(h)= h.

Z Y,
x &
of X o U
. A
Y v
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REMARK2.3.35. By taking nerves we get quasi-categoie€E) andN (B), we can
express the two lifting conditions in above as horn- lling conditions below:

11]—IN(E) 22— IN(E)
i o~ N (P) i o -~ N (P)
2] —IN(B) 2] —IN(B)

Because of theorem above categories pre bred in groupoids and categories
bred in groupoids are the same thing, and we only shall talk about the
latter.

REMARK 2.3.36. Note that a bration is discrete iff in the left diagram in above the
diagonal ller exists uniquely as well.

A bration map between two categories bred in groupoids Q: F! Cand
P:E! BisapairoffunctorL:F! EandF:C! B suchthatFQ = PL.
We can drop the condition that L preserves cartesian morphisms (De nition
2.3.17) because of Proposition 2.3.32.

PROPOSITION2.3.37. Categories bred in groupoids form a full sub-2-category
CFG of Fib. CFG inherits stability properties of brations in Proposition 2.3.16:
categories bred in groupoids are stable under composition and pullback along all
functors.

CONSTRUCTION2.3.38. For a bration (resp. pre brationf : E! B we associate

a categoryCorg(P): Ecat ! B bred (resp. pre bred) in groupoids. The category
E.at is a subcategory oE with the same objects but onlp-cartesian (respP -
precartesian) morphisms between them. The funCtoe(P) is P restricted to the
subcategonE.,; . It turns outCorg(P) is a sub bration ofP (i.e. a subobject in

jj Fib(B)jj 1) and in fact it is bred in groupoids: (CFG 1) holds by the fact that
P is a bration and (CFG 2) is true due to Proposition 2.3.3. This construction
induces a 2-functo€ore: Fib ! CFG which is right 2-adjoint to the embedding
2-functorCFG ! Fib with identity unit. The counit gives the bration inclusion
CorgP)! P inFib. ThereforeCFGis a core ective sub-2-category &ib.
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REMARK 2.3.39. The 2-adjunctiorinc a Core induces a family of 2-adjunctions
parameterized over the baBe

Inc

CFG(B) @ Fib(B)

Core

Note in particular foB = 1, the left adjointCore gives the core groupoid of a cate-
gory which in turn in a categori cation of core group of a monoid (i.e. the maximal
subgroup of the monoid).

REMARK 2.3.40. Every category bred in groupoidP: E! B is a groupoidal
object in the 2-categoryib(B). This simply follows from the fact that every vertical
morphism inE is an isomorphism since it is both vertical and cartesian. Moreover,
CFG(B) is equivalent to the full sub-2-category of groupoidal objectgib{B).

2.3.6 Grothendieck brations and the principle of
equivalence

Grothendieck brations are not invariant under equivalences of categories, so
they are not a bicategorical notion as they violate the principle of equivalence.
(See A.2.) Given a Grothendieck bration Q: F ! B and an equivalence
K:E! F of categories, unfortunately Q K :E! B isnolongera bration.

An easy way to see this is to take an indiscrete groupoidGwith more than one

objects and notice that 1! " Gis not a Grothendieck bration.

Nevertheless a compositeP: E! B of an equivalenceK : E! F followed
by a Grothendieck bration Q: F ! B has the following property: for any
object E of E and any morphismf : B! PE we have aP-cartesian morphism
f&. f E! E together with an isomorphism P(f®) = f in B=PE and the unit
gives the vertical-cartesian factorisation of morphisms inE.

DEFINITION 2.3.41. Any functorR: F ! B with the above property is called a
weak bration (akaStreet bration akaabstract bration).

5See [Str81].
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Weak brations are the correct notion of brations in bicategories as they
adhere to the principle of equivalence. One can associate to every weak
bration an equivalent Grothendieck bration, that is, every weak bration
can be factored as an equivalence followed by a Grothendieck bration.

The Proposition 2.3.14 has a parallel for weak brations:

PROPOSITION2.3.42. AfunctorP: E! B is aweak cloven bration iff for every
objectE of E the induced slice functof®z : E=EE ! B=PE has a right adjoinSg
which is fully faithful.

The proof is similar to the proof of 2.3.14 except one thing: the counit in this
case is an isomorphism instead of identity.

ExamMPLE2.3.43. Of course every Grothendieck bration is a weak bration. In be-
low, we list few examples of weak brations which are not Grothendieck brations.

(i) Foragroupoid, every functolP : E! B isaweak bration. By Proposition
2.3.42, we need to proe=E ! B=PE has a fully faithful right adjoint. But,
this is evident sincB=PE ' 1 sinceB is a groupoid and the unique functor
I E=E ! 1 has a fully faithful right adjoint since the slice categ&yE has
a terminal object.

(i) This example appears in [Jan90] in the context of Magid's Galois Theory. Let
P be the composite

. BA; Spec
CRing®®! ™™ Bool®® I°°*° Stone

The functorP contravariantly takes a commutative riRgto its Pierce spec-
trum, i.e. the Stone spat&hose points are ultra Iters of the Boolean algebra
BAisem(R) of idempotents iR, and whose topology is generated by the basic
open set©y = fF 2 Spec(BAgem(R)) j H 6 Fg. The functorP is a weak
bration of categories but not a Grothendieck bration.

6Recall that a Stone spacés a compact, Hausdorff, and totally disconnected topological space.
Any Stone space is homeomorphic to the spectrum of the Boolean algebra of its clopen
parts. See [Joh86] for more details about the famous Stone duality.
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2.3.7 Few examples of categorical brations

ExampLE2.3.44. (i) [Shu08] de nes anonoidal bration between monoidal
categoriedE; ;k) and(B; °%k9 as a Grothendieck bratio?: E! B
which is also a (strict) monoidal and the tensor produptreserve® -cartesian
arrows. The codomain bration of Example (ii) is a special case wikeis
a monoidal bi bration and the base categ@ys cartesian monoidal. In such
cases, in addition to the external monoidal structurt, gfiven by tensor prod-
uct and unitk, there is an internal tensor product on bres, denoted by
which is strictly preserved by base change functors.

E: Es Es B
('s) ( B
('s) ( 8)

In the case of cloven bi bratioffcod; c): (B #B) ! B the brewise/internal
tensor product ilft=B is the bre product: ifp: X ! B,andq: Y ! B,then
X Y=X gY,andp q= (p 9 since

X gY—X Y

(i) A bration P: E ! B is calledcartesian whenever the indexed functor
P: B° | Catfactors through the inclusio@ate, | Cat whereCatgy is
the sub 2-category of nitely complete categories and functors. It turns out
the equivalent condition fdP to be cartesian i& has all nite limits andP
preserves them. (See [Joh02a, B.1.4.1]) This tBrirtgto a cartesian monoidal
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bration. We remark that by Corollary A.9.2 in order to check tRats carte-
sian we only need to check that the bre categB(y) has all nite limits for
each object of B. MoreoverP is cartesian closed wheneveiE is cartesian
closed and® preserves the exponentials. Again, this condition can equivalent
be expressed in term of indexed categBryP is cartesian closed iff each bre

P(l) is cartesian closed and reindexing along projectionsl J ! | has
a right adjoint. (This gives dependent products from which exponentidds in
are made.)

(iif) Every discrete (op) bration is a Grothendieck (op) bration. This easily fol-
lows from Proposition 2.3.14. Note that since in this case we do not have non-
trivial vertical morphisms, the unity therein is identity and so is the counit.
Therefore, a discrete (op) bration induces isomorphisms on (co)slices.

(iv) One of the simplest non-discrete brations is constructed as follows: consider
anl -indexed familyf G;g;», of groups wheré is a set. The groupoid;,, G;
is bred over the discrete categoty. Obviously, the bres are not discrete
(set) but groups.

ExaAMPLE2.3.45. Non-discrete brations are commonplace in mathematics.

(i) Fora suitable monoidal categofy; ;I),thereisacategomy od(V) of (left)
modules (See Appendix A.8), and there are forgetful functors

M od(V)

N

Indeed M od(V) is bi bred (both bred and op bred) over the categoi on(V)

of monoids inV. The most familiar special case of this construction is when
V is the monoidal categorfAb; 2;Z) of abelian groupsM on(V) is the cat-
egory of rings, and od(V) is the category of all pairéR; M) whereR is a
ring andM is anR-module. First, let us show that for any precartesian mor-
phism(f; ): (R;M)! (S;N) the morphism of abelian groups must be an
isomorphism. Take in N. Consider thdR-moduleRhyi of formal elements
hr;yi wherer 2 R. Of course, it is an abelian group with the group structure

Mon(V)
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inherited fromR. It is also anR-module with the scalar multiplication given

by r4r;yi = hr%;yi. Moreover, there is a morphis(fi;i ): Rhyi ! N in

Mod whereitr;yi := f (r)y. Since(f; ) is precartesian, the morphigifyi )

can be lifted along it. This means there is a unique elementM such that
(x) = y. Therefore, is an isomorphism of abelian groups.

Furthermore, for als-moduleN, any ring homomorphisth: R ! S has a
canonical cartesian lift with the codomdig; N), namely(f; id): (R;+N) !
(S;N). Note that theR-module; N has the same underlying group ldsbut
different scalar multiplication given by y := f (r)y wherey 2 {N. Also,
for an R-moduleM , any ring homomorphismi: R ! S has a canonical
opcartesian lift with the domaifR; M ), namely(f; ): (R;M)! (S$;§ r
M), where (X) = 1s X. Note thatS; is regarded as a lef-, right-R-
bimodule; the left action being the canonical actionSobn itself, and the
right action being the restriction of scalars action albng

The bi brations structure gives the adjunctibh a f : sMod! gMod
wheref | given by the formuld (N) = N, is known as theestriction of
scalarsfunctor whilef,, given by the formuld,(M) = S r M, is known
as theextension of scalarunctor. Moreoverf has a further right adjoirft
which is know as theoextension of scalars

f.

m
rMod«+—f —sMod
N

f

Sincef (N)=: =S sN =1 (S) s N, natural in any leflS-module
N,wehavd =f (S) s( ),andtherefore by tensor-Hom adjunction (See
A.17),we havd = Homg(f (S); ). Thus,wehavé (M) = Homg(f (S);M),
natural inM . The left action ofS onf (M) is given bys h: s® 7! h(s%).
Curiously, the unit of adjunctioh a f is precisely the structure of scalar
multiplication of N as a leftS-module. The whole story above holds at the
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more general level of brationdMod(V) ! Mon(V), and even more gener-
ally within the framed bicategories of [Shu08].

The following example shows how powerful the universal property of cartesian
morphisms could be in codifying the substantial amount of coherence data of
a symmetric monoidal category.

(i) Consider the categorffin of pointed nite sets which is constructed as the
comma category # Set,) where : 1! Set, takes the only object df to

morphismsas : m ! n where xes 0. In particular, dene :2, ! 1,
by (1) = (2) =1,and :0, ! 1, the unique such morphism. By
the Bar construction (A.6.1) a symmetric monoidal cateddty ;1) can be
identi ed with a pseudo functoBar : Fin ! CatwhereBar (n,):= V "
and =Bar( ): vV ™! V "dened by the action

0!

In particular, (c;;¢) = ¢ G, and = 1.” Applying Grothendieck
construction tdar yields an op bred category overFin which has as its
objects (possibly emptyn-tuples(c,;::: ¢y) for all non-negative integemn,
and as its morphisms paifsf ): (¢i;:::¢n) ! (dy;:::dy) where :m. !

n, andf = (fq;:::;f,) wheref;: o 1(i)c" I d, fori =1;:::;n, are
morphisms inV. Let's denote the resulting op bration byy: V ! Fin .
Note that both morphisne: (c;;c) ' ¢ ¢ and®: (c;c) ! ¢, and

e: (c;) ! ¢, are respectively opcartesian over , and all morphisms
from2, tol, with 1(1)=f1;29, *(1)= fig,and (1) = f2g. Now,
the associator and unitors of monoidal categégnd the coherence equations
are all encoded to the uniqueness of opcartesian lifts up to unique isomorphism.
For instance, there exists a unique vertical isomorphisrfc; ¢,) Cz!

"By convention, we take empty tensor product to be the unit| of monoidal category.
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c. (& c3) which makes the diagram below commute since obviously
( +id) = (id+ ).

(ca  c2;c3)

(c1;¢2;¢3)

\ o+
e

(c1;c2 c3)

Similarly -but using different opcartesian morphisms- we obtain the left and
right unitors and their coherence equations. Where does the symmetry come
from? Consider thewitchendomorphism : 2, ! 2, in Fin which takesl
to2and2to 1. Both morphism® e andeinV lie above , since evidently

= . Therefore there is a unique vertical isomorphisnt; ¢! ¢ ¢
suchthatt e = — e. Observe that the op brationy, is special in the sense
that the breV, is equivalent to the-fold product of breV, . Therefore,
we have comparison equivalencés ! "V " which are calledSegal maps
It can be checked that every op bratidh: C! Fin with the data of Segal
maps is equivalent to an op bration of the formp for some monoidal category
V. For symmetric monoidal categori®s ;I andV®% %1%an op bration
mapL: ! \ooverFin takes opcartesian morphism (¢;;c)! ¢ ©
to opcartesian morphisin(e): (L(cy);L(c)) ! L(c;  ¢) which lies over

. Therefore, we have a unique opcartesian isomorphisin(c;) °L(c,) !

L(c; ¢) which makes the diagram below commute.

(L(C)iL(G)) —— L(cr) °L(c)

m v (2.21)
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Similarly, we obtain : 1°! L(l) by opcartesianness ¢®. It is straight-
forward to verify that and equipL with a structure of a strong monoidal
functor. Therefore, we have

8 9 8 9
< Strong symmetric monoidal functors | < Op bration maps =

VARRYE : ! ! winFib(Fin) :

Notice that only invertibility of in diagram(2.21) relies on the fact that
preserves opcartesian morphisms not its existence. Indeed, we have

8 9 8 9
< Lax symmetric monoidaF | < Inert cartesian-preserving =

functorsv! VO : - morphisms !  \in Cat=Fin

By v-inert morphism inV we mean a morphism, say which lies over a
morphism : m, ! n, with the property that (i) is a singleton for any
1 i n

(i) The category of vector bundles over manifolds, the category of topological
spaces over sets, and the category of groupoids over sets are all exmaple of
bred categories. The common phenomenon shared among them all is that
the base change functor is given by pulling back the given structure. For in-
stance, for the last example, given a groupdié (Y;  Yp) and a function
fo: Xo! Yo, we dene the liftf = (f;fg) of fo by the following pullback
of sets:

(iv) The idea ofstackis a categori cation of sheaves: given an indexed functor
X: &SP Catand acovering familyU; ! Uji 2 Igin S, we would like to
see under what conditions we can glue bre categoX€d;) together to get
X(U) up to an equivalence. This condition is knowndescent conditioand
is a generalisation of matching families for presheaves. The brational view
of stacks is originally due to Grothendieck. See [Joh02a, B1.5] for a precise
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de nition. In connection to non-abelian cohomology see [Moe02]. For a great
exposition in connection to the use of stacks in algebraic geometry see [Vis05].

2.4 Chevalley-style brations internal to
2-categories

In [Str74] (and later in [Str80]), Ross Street develops an elegant algebraic
approach to study brations, op brations, and two-sided brations internal to
2-categories (resp. bicategories).

In the case of (op) brations the 2-category is required to be nitely complete,
with strict nite conical limits 8 and cotensors with the (free) walking arrow
category 2. Given those, it also has strict comma objects. Then he de ned a
bration (op bration) as a pseudo-algebra of a certain right (resp. left) slicing
2-monad. In the case of bicategories they are de ned via “hyperdoctrines” on
bicategories.

For (op) brations internal to 2-categories, he showed [Str74, Proposition 9]
that his de nition gave rise to Chevalley criterion for brations.

Also, Street weakened the original Chevalley criterion of [Gra66], by allowing
the adjunction to have counit an isomorphism. Note that, even when we
can use the Chevalley style, there are questions about strictness to which we
shall deal with in §2.4.2. Is a certain counit of an adjunction an isomorphism
(as in [Str74]) or an identity (as in [Gra66]) and how do they relate to the
structure of pseudo-algebra? We will note that the relationship is not a direct
correspondence. In chapter 3 working in the 2-categoryCon we shall revert
to the original requirement for an identity, and we shall call the involved
adjunction the strict Chevalley adjunction

8i.e. weighted limits with set-valued weight functors. They are ordinary limit as opposed to a
more general weighted limit.
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We do not wish to assume existence of all pullbacks since our main 2-category
Conin Chapter 3 does not have them. Instead, we assume our 2-categories
in this section to have all nite strict PIE-limits [PR91]. All PIE limits exist in
Con This is enough to guarantee existence of all strict comma objects since for
any opspanA "B %cCina 2-category K with (strict) nite PIE-limits, the
comma object(f #g) can be constructed as aninserterof ;g c:A C B.
Pullbacks are not PIE-limits, so sometimes we shall be interested in whether
they exist.

For all these reason, in the 2-categoryCon we prefer to mainly work with the
Chevalley criterion (See chapter 3). Nonetheless, we will give an overview of
Street's characterisation using pseudo algebras. We rst describe the Chevalley
criterion in the style of [Str74], and then go into details of Street's work which
connects Chevalley brations to pseudo algebras.

SupposeB is an object of K, and p is an object in the strict slice 2-categoryK=B.
By the universal property of (strict) comma object (B #p), there is a unique
1-morphism 1: (E#E)! (B #p) satisfying @(p) 1 = do(p#p), 2 1 = ey,
and , 1=p E.

(E #E) e
(p#p)l 1
(B#B) (B#p) > E (2.22)
@(p) * p
K"J P J
B—B

1

DEFINITION 2.4.1 (Chevalley). Considem as above. We cafl a bration if the
morphism ; has a right adjoint ; with counit” an identity in the 2-categorg=B.
Dually one de nes (Chevalley)p brations as 1-morphismpg: E ! B for which
the morphism o: (E #E) ! (p#B) has a left adjoint o with unit an identity.

NOMENCLATURE We shall call the adjunctions abo@hevalley adjunctions .

2.4 Chevalley-style brations internal to 2-categories
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Gray [Gra66] showed that Chevalley brations in the 2-category Catof (small)
categories correspond to cloven Grothendieck brations. We give an illustrated
and elementary discussion of this in below.

In the case wherep is carrable, the comma objects(p#B) and (B #p) can be
expressed as pullbacks along the two projections from(B #B) to B.

REMARK 2.4.2. A consequence of the counit of the adjunctiona ; being the
identity is that the adjunction triangle equations are expressed in simpler forms; we
have ; ;=id ,and ; 1=id ,.

Using the tools developed in the next section, we shall prove that@(f ) is a
(Chevalley-style) bration for any morphism f in K (See 1.9.36). An implica-
tion of this result is that any morphism f : A! B in K can be approximated
by a bration: the 2-morphism id; factors through the comma 2-morphism ¢,
and this yields a unique morphismi(f): f I @(f) in K=Bwith , i(f)=1,
and ¢ i(f)=id¢

1

A - » (B#f) —— A

Nl b
f
B

B 1

Indeed , a i(f) with identity counit. In particular, i(f) is fully faithful. If
B is groupoidal then @(f) (f) = f and @(f) .(f) =id are invertible
and therefore (f) is invertible. Hence, the adjunction , a i(f) is indeed
an adjoint equivalence with identity counit. Therefore, any functor with a
groupoid codomain is equivalent to a bration.

ExaMPLE2.4.3. Let's takeK = Catto be the strict 2-category of categories, func-
tors, and natural transformations. First and foremost, for a fulttdé ! B, the
comma categoryB #P) is given as a category whose objects are of the form shown
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in the left diagram and and whose morphisms are of the form of right diagram in

below, wheree 7! by indicates thap(e) = by.

e i
Ny
P f
b —— b tb\ bl\hlp

4G

A functorF: A ! B is approximated to a bratio@(F) wherebyi(F): F !
@(F) is given by the functorial assignmeat7! hF (a);idr,;ai. The unit of ad-
junctioni(F) a , is given by component-wise bip; :b! F(a);ai i
hF (a);idra; ai.

In the next part we shall overview the construction of brations as pseudo
algebras of the slicing 2-monad introduced originally in [Str74] with one small
difference: since we primarily work with brations (instead of op brations)
we emphasize on co-KZ-monads (instead of KZ-monads).

2.4.1 A swift review of pseudo algebras and KZ
2-monads

In this part by a 2-monad we mean a strict 2-monad: it consists of a strict
2-functor T: K ! K, and strict natural transformations :T2 ) T and
: Idx ) T satisfying unit and associativity laws strictly. A strict 2-monad
is precisely aCat-enriched monad. As with the case with monads, 2-monads
provide us with the right tools to discuss 2-dimensional universal algebra.
Many examples of 2-monads are concerned with studying 2-categories with

additional structures, such as nite limits and colimits.

We saw in Chapter 1 that the theory of 2-categories really goes beyond the
theory of Cat-enriched categories, not merely with respect to the size of 2-
categories but more importantly due to the existence of weak morphism of
2-categories (i.e. pseudo and lax) and weak notions of limits and colimits.

2.4 Chevalley-style brations internal to 2-categories
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Same phenomenon occurs with 2-monads: passing to 2-dimensional monads,
we are faced with several choices of algebra morphisms of 2-monads. For
instance, the notion of pseudo algebrdor a 2-monad is a weakening of the
notion of algebra for a monad: a pseudo algebra isweakly associative and
weakly unital. For a precise de nition of pseudo algebras and their morphisms
see Appendix A.10.

As an example consider thelist (aka free monoig 2-monad on Cat It is de ned

by List (C) = C ", and a functor F: C! D induces canonical functors
n2N

F " C"! D " oncomponents byF "(c;;:::;¢) = (F(c);:::;F(c)).
With the obvious action on functors and natural transformations, List is a 2-
monad on Catwith unit ic being the inclusion of elements of C as one-element
lists in List (C) and the multiplication being the concatenation of lists into a

single list. A strict List -algebra is precisely a strict monoidal category while
a pseudoList -algebra is anunbiased monoidal catego In both cases, the
tensor product is given by the structure map : List(C)! C.

Even if we restrict to strict algebras there are still three notions of morphisms
between them: strict, pseudo, and lax.

To illuminate this point, we give the world's simplest example of a 2-monad:

consider the 2-categoryCat, and let the 2-monad T : Cat! Cattake a category
to its free completion with a terminal objecti.e. T(C) is C together with a

freely added terminal object). A strict algebra of T is a category with a
marked terminal object, and a strict algebra homomorphism is a functor
which preserves the marked terminal object up to equality, while a pseudo
homomorphism of algebras preserves the marked terminal object only up
to a speci ed isomorphism A colax homomorphism of algebras is simply a
functor while any lax homomorphism of algebras is automatically a pseudo
homomorphism.

%ltincludes an n-ary tensor productc; ¢, ::: ¢, foralln O(for n =0, the tensor gives
the unit I = () ), with associativity isomorphisms ((¢; ¢) () (&) =(c1 ¢ ),
etc. satisfying appropriate axioms. The biased (aka the usual de nition of monoidal
category) and unbiased are indeed equivalent and the proof of equivalence uses a non-
trivial coherence theorem.
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In the case of the list 2-monad, a lax homomorphism of pseudo algebras is
a lax monoidal functor, and an oplax homomorphism is an oplax monoidal
functor. The various notions of algebras and homomorphisms of algebras has
been systematically studied in various places, perhaps most notably in the
celebrated paper [BKP89]. For instance, it is proved therein that for a nitely
complete 2-categoryK and a 2-monadT: K ! K, the 2-category Alg,s(T) of
algebras and pseudo homomorphisms has all PIE-limits as well as inverters
and co-tensors. Moreover the forgetful 2-functor Alg-(T) ! K creates these
limits.

There is a certain symmetry between lax morphisms and colax morphisms of
algebras, and, following [Kel74a], this is known as doctrinal adjunction. Given
an adjunction f a u in a 2-category K, there is a bijection

8 9

8 _Tu, TX% %TXLTA%
X X f’\k a
ﬁ ST T T O

between lax algebra homomorphisms(u;u) from a to x and colax algebra
homomorphisms (f; t’\) from x to a. This bijection is obtained by the operation
of mating (8 A.7) using the counit ": fu ) 1, of adjunction f a u, and the
unit T( ): 1rx ) T(u)T(f) of adjunction T(f) a T(u).

Generally we are more interested in certain structured 2-categories, and we
ask ourselves what are the monads whose algebras provide those structures.
Usually it is the algebras which we care more about, but nding the 2-monad
itself is not always straight-forward.

A good motivation for the following de nition is the well-known example of
free cocompletior{under a certain class of diagrams) 2-monad. consider the
2-monad T: Cat! Catwhereby T(C) is the free cocompletion of C under
a given class of colimits and the algebrasT (C) ! C are the categories with
chosen colimits of that particular class (for example nite coproducts) and the
strict morphisms of algebras are the functors which not only preserve these
colimits, but also preserve the chosen colimits. Then the pseudo morphisms
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of algebras are the functors preserving the colimits in the usual sense. Now,
for any diagram D of that particular class in C, we get a unique morphism
colimT(F(D)) ! F(colimD) by the universal property of colimits. This is
the idea behind the lax idempotent monads. Any structure arising from an
algebra of such monad is necessarily unique up to unique isomorphism. They
are called “property-like structures” [KLW97].

DEFINITION 2.4.4. A 2-monadT: K! K s said to bdax idempotent if given
any two (pseudoJ -algebrasa: TA! A,b: TB! B anda 1-morphismh: A'!
B, there exists a unique 2-morphismb Tf ) f arendering(f; f) a lax
morphism of pseud® -algebras.

TA ", TB

Lo
Af—>B

REMARK 2.4.5. Dually, reverse the direction df in De nition 2.4.4, then we get
the notion ofco-lax idempotent monad.

Lax idempotency is aproperty of algebras of the 2-monad rather than the
2-monad itself. To see the difference, compare it to the analogous situation of
knowing a property of a group G versus a property of the category ofG-actions.
It turns out (See Theorem 2.4.11) that it can be de ned purely in terms of
structure of monad itself without appealing to its algebras.

DEFINITION 2.4.6. A 2-monadT : K! Kissaidtobe &Z- monad®®ifmai T
with identity counit in the 2-categoi; K].

REMARK 2.4.7. Dual to the de nition above, we de ne a monddto be aco-KZ-
monad by requiringi T a m with identity unit.

In what follows the discussion takes place in the 2-categoryK; K] = 2 Caty, (K; K)
and we choose our notations accordingly. Therefore, 2-morphisms are re-
ally modi cations. Suppose T is a co-KZ-monad. In particular, the identity

10K Z: short for “Kock-Zéberlein'
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m (i T) =1 isthe unit of this adjunction. Moreover, the identity 2-morphism
anditsmate :i T) T i

T 25T T 25T
1] id + Tm 1J + li T (2.23)
2 2
T Ti T T Ti T
satisfy the equations
m =id

T (2.24)
P =id(ri) i

The rst equation follows directly from the left triangle equation of adjunction

i T a m whereas the second equation in above follows from the right triangle
equation of adjunction i T a m together with the equation (i T) i=(T i) i
which in turn expresses the naturality of i.

THEOREM?2.4.8. LetT be a KZ-monad, and an object ofK. There is a one-to-
one correspondence between the pseluddgebras o\ and the left adjoints to unit

ia with invertible counit. Dually, there is a one-to-one correspondence between the
pseudo algebras of a co-KZ-monad and the right adjoints to unit of the monad with
invertible unit.

Proof. We give the proof of the theorem for the case of co-KZ-monads. We rst
establish that any pseudo algebraa: TA! A is aright adjointto ia:

A
TAT? ZA
a
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The (invertible) unit of adjunction above is given by : 1) aia (Recall that
is part of the data of pseudo algebra(A.20)). Here is the putative counit!!
using the mate , introduced in diagram (2.23).

A '
iTa P\
T

TA ] T2A—5TA

1 (2.25)

To prove the adjunction triangle equations, we need the following lemma
whose proof is given in the Appendix A.10.

LEMMA 2.4.9. Supposdqa; ; ): TA! Ais a pseudo algebra for a KZ-monad
T:K! K.We have

iTA

iA/}TA\a

TA +] T2A"5TASA = TASAT LA
~_
TiA T 14 \/\

1

(2.26)

We prove the triangle identities of adjunction with the proposed unit and
counit:

a (T ' (Ta a) ( @ '

I
.~

a ( a {by Lemma 2.4.9}

=id, {factoring out a}

Also,

(T ' (Ta a) ia) (a )=(T *ia) (a ) { A ia=id}
=(in Y (ia ) {2-naturalityofi:1) T}

=id;, {factoring out ia}

1The dual of this situation, i.e. unit in the case of KZ-monad, is calculated in page 112 of
[Str74].
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]

REMARK 2.4.10. For a (co-)KZ-monadr', any object admits at most one pseudo
T-algebra structure, up to unique isomorphism. So a (co-)KZ-monad is a nicely-
behaved 2-monad whose pseudo algebras are “property-like'.

Indeed, the theorem above ensures that

THEOREMZ2.4.11 ([Str74],[Koc95]) . Any KZ-monad (resp. co-KZ-monad) is lax
idempotent (resp. co-lax idempotent).

Proof. Given algebrasa: TA! Aandb: TB! B ofa (co-)KZ-monad and a
morphism f : A! B in K, the mate of identity 2-morphism ig f = Tf ia
exhibits f as a (co)lax morphism of algebras. H

In [Str74], we also see a converse of the theorem above.

LEMMA 2.4.12. Supposel : K  Kis a co-KZ-monad and suppose a objacta
morphisma: TA! A, and an iso 2-morphism: 1) a i, are given inK, and
furthermore, ! satis es pasting equalit{2.26) . Then, we have:

(i) isthe unit for an adjunctior, a awhose counit is givenby(T 1) (Ta
a) (composite 2-morphism in diagraff.25) ).

(i) The 2-morphism : a Ta) a ma, obtained by taking thee double mate of
A Ia =1id,is aniso 2-morphism.

T2A <2 TA T2A — T2, TA
iTA/l\ id * /l\iA ! mAl + la
TA«—— A TA——— A

The double mate is obtained by rst using the uniif a ma and the counit
ofin a a, and secondly by using the unitigf a aand the counitoT i, a Ta.

(ii) The 2-morphism enricheqA; a; ) with the structure of a pseudo-algebra.
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2.4.2 Fibrations as pseudo-algebras of slicing
co-KZ-monad

Let K be a representable 2-category. Recall thatk=B is the strict slice 2-
category over B (See Construction 1.4.13). Consider the strict 2-functor
@: K=B! K=B which takes an object(E; p) to its lax pullback ((B #p); @(p))
along the identity morphism 1z, that is

(B#p) —— E
@(p)l p* lp

B ———B

(2.27)

Is a comma square inK.

REMARK 2.4.13. If pis carrable then the 2-morphisrg can be obtained by the
pasting of pullback op alongd;: (B #B) ! B and the generic comma square for

B.
(B #p) —— E

(B #p) —2o E o P JD
@("’J o* JD = (B #B) —, B
B —1> B dol * ll

The action of @ on morphisms is given as follows: iff : (E%p%) ! (E;p)isa
morphism in K=B, then de ne @(f ) to be the unique morphism induced by the
universal property of comma object (B #p). Therefore, » @(f)=f 2and
@(p) @)= @Y. Similarly if :f ) gisa2-morphism in K=B, then we
have a unique induced 2-morphism@( ): @(f)) @(g)with , @( )= 9
and @ @( )=id g-

PROPOSITION2.4.14. The 2-functor@: K=B ! K=B is a co-KZ-monad.
Proof. Theuniti: id) @ atcomponent (E;p) is given by the unique arrow

i(p): E ! (B #p) with property that @(p) i(p) = p, 2 i(p) = 1lg, and
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moreover , i(p) =id, all inferred by the universal property of comma object
(B #p).

It also follows that , a i(p) with identity counit. Indeed, i(p) is v in Proposi-
tion 1.9.34, when f =1 and g = p. From there, we also get the unit ,(p) of
adjunction with @(p) 1(p) = .

The multiplication m: @ ) @ at component (E;p) is given by the unique
arrow m(p): (B#@(p)) ! (B #p)

m(p)
—
(B#@() —— (B#p) —— E
@(@(p))l @@ @(p)l P Jp (2.28)
B il B - B

with the property that @(p) m(p) = @(p), = M(P)= 2 2, and moreover,
o MP)=( p 2) @), all derived by universal property of comma object
(B #p). Now, it follows that i @ a m with unit being identity. O

ExamMPLE2.4.15. In this example we shall see examine the special case of above
situation for the 2-monad®: Cat=B ! Cat=B. First recall from the Example
2.4.3 that for a functoP : E! B, the objects of B #P) are of the formitf; ei
wheref : b! Peis a morphism inB. The functor@(P) takes a paitf; ei to

lbh =dom(f),and ,: (B #P)! Eissimplythe second projection; it takidsei to

e. Theuniti(P): E! (B #P) takes an objeat of E to the objectidp ¢); € (below,
onthe left)and 1(P): 1g#)) i(P) 2inducesafuncto{B #P)! 2t (B #P)
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which takes an objedf; ei of (B #P) to the morphism depicted in below on the
right.

° AN
e lp\ e
Je |
by —— lP
P(e) = P(o ~ N
by o]

Also, the functors , and the multiplicatioom(P) are given by the following actions:

7!

S —

Q@ — o

g — o
~

b — b - b -

Finally, Observe that functor@(i(P)): (B #P) ! (B #@(P)) (on the left) and
I(@(P)): (B#p)! (B #@(P)) (on the right) are given as follows:

O < @
~

& < D

& < D
~

& — o

The counit ofi@(P) a m is illustrated on the left hand side in below, and the mate
2-morphism appears as a natural transformations wherei(@(P)) ) @(i(P)),
which is the whiskering of this counit wit@(i (P)), is illustrated on the right hand
side.

e e
N N
}) e 1 }, e
-
by b -2 b lp by b —— b lp
N N N N N N
b —— b 5 b b —— b by
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Now going back to the case of a general 2-categorK, we would like to see
what a pseudo algebraa: @(p) ! pin K=B looks like. The fact that a is a
morphism in K=B provides us with a morphism a which makes the diagram

(B#p) ——— E

@(p\ B % (2.29)

commute. Moreover, being a co-KZ-monad,@ generates an adjunctioni(p) a a
whose unit is the invertible 2-morphism : 1) a i(p) by remark 2.4.10. The
counit " of this adjunction is given by @( ') (@a p). Whiskering with
yields a 2-morphism , ":a) ,Observethatp ( > ")= pandp =idp.

(2.30)

The example below shows that a pseudo algebra of@: Cat=B ! Cat=B is
exactly a cloven Grothendieck brations.

EXAMPLE2.4.16. Leta: @(P)! P be a pseudo algebra for the 2-mor@d By
commutativity of diagran{2.29) we know thatP (atf; ei) = dom(f) (below, the
left diagram). As observed in above, we get an invertible [{#) of identity idp (¢
(below, the right diagram).

(e)

arf; ei e ——— ahidpg); €
d | §
b —— b p(e) P(e)

In addition, the invertible natural transformatio(P): a @(a)) a m(P) pro-

vides us with an isomorphisatf; ahg; di! = ahgf;ei, for any pair of composable

morphismsf : Iy ! by andg: by ! b in B, and anye in E overb,. Notice that
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@(a) @(i(P))H;ei = Hf; ahdy,; eii , and@( )H; ei may be illustrated as in be-

low.
(e
™~

e

lp ahidy, ; ei
(2.31)

by

&
V4
5’+*

P
- |
- by
Now, the coherence conditions of weak unicity and weak associativity of A.10.1,
translated to the special situation of this example, are expressed by the commutativity
of diagrams of morphisms iB.

af;ei —20 ., aHf; ahidy,; eii alf: ahg:ath: i —2 agf: ath; eii
al \ J@’“(P” aal Jm(@)(P»
ahidy,; aft; eii W alf; ei ahf; ahhg; di W ahhgf; ei

More speci cally, the above commutativities occur in the bEg . Finally, we are
interested in calculating the counit of adjunctigR) a a. The counit, computed in
the diagran(2.25), gives us the lifft= , "= , (@ ! (@a »))off.The
picture below illustrates the couriit i(P) a) Idgsp) at the componerif;ei.

alf; ei

2(@a( )
It
P didyie
by by ‘ lp > e
N T~
by ~ by S k’
b - by

It remains to prove thaff is P-cartesian. One couldan try to prove this directly.
However, we prove this in a more general setting in Example 2.4.21.

REMARK2.4.17. Instead of notatiomhidp ¢); € , Which has certain redundant data,
we shall from now on use the notatiahei .
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2.4.3 Chevalley criterion

Supposep is a object in K=B. Recall the situation in De nition 2.4.1: we have
a unique morphism : (E#E) ! (B #p) satisfying @(p) 1 = do (p#p),
2 1=¢e,and , 1=p E.

The lemma below will be crucial in certain calculations of 2-morphisms in the
proof of proposition 2.4.19. Recall that :ig € ) 1e#) is the counit of
adjunction ig a €, and 1: Les) ) ie € isthe unit of adjunction e, a ig
(Remark 1.9.36). Also, (p) is the unit of , a i(p) (Proposition 2.4.14).
Furthermore, by the triangle equations of adjunction, we have ey o =id¢,,
et 1=ide,and 5 (p)=id ,.

In K= Cat, we have o(u) = hd;ui: ide, ! u, 1(u)= hu;idi:u! ide, and
1(p)HF; ei = If; idei.

LEMMA 2.4.18. In the situation above, we have
() 1ie =i(p)

() 21 o= €

(i) @) 1 o=idgep .

(iv) 1(p) 1= 1 1,whichis bestexpressed diagrammatically:

i(p)

1 2/—>EN el/%E\if 1
(E#E) —5 (B#p) »* (B#p) = (E#E) + (E#E)—5 (B#p)
~_ 7 ~_ 7
1 1

M(P ) (1 )=1iP €

Proof. The rst of these equations holds due to the facts that , jig = ejig =
id=5i(p), @(p) iie = poie = p= @i(p), and the 2-dimensional universal
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property of comma cone (B #p). The second equation holds sincee;, o= .
For the third one observe that @(p) 1 o= P& o =idpe = id g(p .- Using
the equations , ; ;=ide, and @(p) 1 1= P &, we getthe following
equations.
2 1(p) 1=id , =ideg= 2 1 1
@p 1(p) 1= p 1=p =@M 1 1

Hence, by the 2-dimensional universal property of (B #p) we obtain 1(p) 1=
1 1. The last equation follows from the penultimate one and the rst one:

(2P) 1) (1 0= 1 (1 0= 10 e=ipP) €

]

PROPOSITION2.4.19. Given morphism : (E #E)! (B #p) as de ned before,
we have a bijection

8 9 8 9
< pseudo-algebrass | < Chevalley adjunctions

(3, ; )of@atp - : 1@ 1

Moreover, the pseudo algebra is normal (i.es identity.) if and only if the counit
"1 1) Lg#p Is the identity 2-morphism.

A major part of the proof we are about to give is present in [Str74] in a much
denser form. However the last statement of the proposition and its proof is
new.

Proof. Given a pseudo algebraha: @(p) ! p; ; i, we construct a right adjoint
1 and show that the counit of adjunction is isomorphism. Note that the
unit 4(p) of adjunction , a i(p) de nes a unique morphism k: (B #p) !
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2t (B #p) with ddk = 14, and dik = i(p) 2, and ° k = 4(p). Dene
1. =(a#a) k.

2t (B #p)
k/, dio
(B #p) : . E
1\) V(a#a) A li(p)
11 (E #E) (B #p) (i=1;2)

(B #p)

We note that

& 1= ela#a)k {de nition of 1}
= addk {de nition of (a#a)}
= a {de nition of k}

(2.32)

This establishes that ; is indeed a morphism in K=B from pe, to @(p), since
pe 1= pa= @(p). Also, a diagram chase shows that the front square in the
diagram above commutes:

21 1= € 1 {de nition of 1}
= g (a#a)k {de nition of 1}
= ad%k {de nition of (a#a)}
= a(p) > {de nition of k} (2.33)

We also note that

@) 1 1= do(p#pP) 1= p& 1= pa= @(p)

p (11)=p & 1=pa ?B#p) k=pa 1(p)= @/P) (D= »
(2.34)

Equations (2.33) and (2.34), and the de nition of @(ai(p)) altogether prove
that

1 1= @@(p)= @a @i(p)
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and we propose the counit": 1 ;) 1to be given by @( ') which is
invertible.'2 This guarantees that the counit lives in K=B sincep , " =
p: @ H=p ' 2=idp,,and @) "= @P) @ ') =idagp.
Moreover, the de nition of @( ) impliesthat , " = ,. Now, we propose the
unit; de ne the 2-morphism :1) | ;to be the unique 2-morphism with

&@ =(ai1 o) ( &)
€1 = €1

(2.35)

Note that the vertical composition of 2-morphisms in (2.35) is possible since
ai(p)ep = a 1ig € which holds in virtue of Lemma 2.4.18. Of course in order
for equations above to de ne the a 2-morphism atall, e ande; must
be compatible. The compatibility is checked in below.

(e 11 (& )=(e (@#a)k 1) (& ) {de nition of 1}
=(a gy kK1) (20 ) {de nition of (a#a)}
=(aup) 1) (&) { de nition of k}

=(ayp) 1) (@1 o ( @) {substiutinge }
=a((1(p) 1) (1 o) ( e) {factoring out 2}

=(a(P e) ( &) {Lemma 2.4.18}
=( &) E {exchange rule
=(er ) € {substituting e,  }

Perhaps, it is illuminating to see what the unit , constructed in above, looks
like in the case of K = Cat Indeed, for a morphismf : e ! e in (E #E), (f)
is given as follows:

eo(f) . a1 o(f) .
€& —— ahegi ——— alp(f ); el

f[ Jll(f)

€ amli
e1(f)

2When K = Cat, @( ) is illustrated in diagram (2.31).
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Here is a proof that the unit and counit " satisfy triangle equations of
adjunction. We rstshowthat ; o 1= @(a) ,, expressed diagrammatically
as

e ie i@ (p)
. s E — L P a
(B#p) > (E#E) .. (E#E) 5@B#p = @D & @O -2 @)
\1/ @(i(p)

First we verify that the domain and codomain of the involved 2-morphisms

match. Indeed, iige 1 = i(pPe 1 = i(P)e 1 = @Q)i(@(p)), and as we
observed earlier ; 1= @@ @(i(p)). Now, using Lemma 2.4.18, observe

that
> (1 0 1= e 1=7aip=a p= 2 @a ,

@p (1 o 1)=idpg, 1=id= @(p) p= @P@@)

To prove the rst identity, we notice that

QP [(" 1) (1 )=[@PE (" ] [@P (1 )]=(dagp 1) (Po )=idgp

where the last identity follows from the fact that pey = idpg, = idgr() ;-
Similarly, we have

2 [C ) (a2 N=C 1 22 (& )=( 'e) ( e)=id,,

Therefore,( 1) ( 1 )=id ,. Toprovethesecondidentity,( 1 ) ( 1)=
id |, we rst prove the following lemma: Using lemma above we have,

& (1) ( JI=(a ) (@10 (€ 1
=(a R( ) (@R@ ) (a)
=( 'a) (9
=id

- € 1
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The penultimate equality comes from equality of pasting diagrams 2.26. Simi-
larly, using the fact that e; ; = ai(p)d\l, we get

e [( 1) ( 1)]=(ai(p)é|‘1 ) (e 1)=(ai(p) 16\1) ( ai(p)d\l)zid91 1

The last identity is by the exchange law of horizontal-vertical composition of
2-morphisms. From these two equations we deduce the second adjunction
identity.

Conversely, suppose we are given a Chevalley adjunction, that is to say a right
adjunction ; of ; overB:

mlﬁ

(E#E) _2 ~ (B#p)

e

such that the counit " is an isomorphism, @(p) 1 = P&, P& 1 = @(p),
@(p) " =id g, andpe =id pe,. We de ne the pseudo-algebraa: (B #p) !
E as the compositeey ;. Note thatpa = peg 1 = @(p) 1 1 = @(p). We
proposee; ig for :1) ai(p). First we prove that g is invertible and
thence is invertible. We have the following pasting equality *3:

(2.36)

(E#E) — (E #E) . (E #E) (E#E) — . (E #E)

N Dt S B R
"+

E—>(B#p)H(B#p)>’>E E E

i(p) 1

13This equality in fact lies over B. Also, all of triangles and squares without a designated
2-morphism commute.
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1 1ie /1\)
E 'Y, (E#E) . (E#E) .

i(p)l /U ll \'Elf llx 1i(p)<:> 1 (p)

B#p) —— (B#P) | (B#p) — (EHE) (E #E)
~_

i(p) 2

The rst pasting equality is deduced from the adjunction triangle equalities
and the second one is deduced from the Lemma 2.4.18. Therefore,

(ie 2" (@) (1 1 4e) ( ig)=idj,
( ig) (g2 " i) (1 14e)=id

This proves that ig is indeed an iso 2-morphism. To be more explicit,
whiskering with e; unveils the inverse of :

Y=(eig 2 " i(P) (&1 1 1dE)= 2 " i(p)
Indeed, 1!is the counit of composite adjunction in below:

/E\ TN /2\
E ? (E#E) 2 (B#p ? E

& - i(p)

It is straightforward to show that ! satis es the pasting equality of diagram
(2.26). So, Lemma 2.4.12 completes the proof. O

REMARK2.4.20. Notice that we have proved that= e, Ig Is invertible regard-
less of invertibility of".

ExAamMPLE2.4.21. We now return to prove our promise at the end of Example 2.4.16.

We would like to show thaff;, obtained by whiskering, with counit ofi(P) a a, is
indeed cartesian. Here, we appeal to the bijection

Homese) (1 1(9); M, e1i) = Homesg) (95 1HF; e40)

2.4 Chevalley-style brations internal to 2-categories
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natural ing: do ! d; in (E#E) andhey;fi in (B #P). This bijection states that any
diagram of the form on the left hand side, where the square in base commutes and
u; lies aboveh,, can be extended to the diagram on the right hand side via a unique
morphismhy.

dl do R 2 dl
o o o
p S l ahe;;fi ahe;i €
P (do) % P@ , b’ P (do) l P@) l l
b ———— b o A

Takingg to be identity we obtain the usual condition which expresses cartesian prop-
erty of lift f~ Also, one can easily show that unique morphfsgrover h, is calcu-

lated by the expressidi®, 1hho; hi;ki) (a 1 0(9)) (€o(9)).

We have the following bijections:

8 9 8 9 8 9
< cleavages= < pseudoalgebras= < right adjointsof ; =

ofp - (& ; )ofRatp - - with isomorphism counit -
It follows that any two cleavages of p are isomorphic in a unique way.

CONSTRUCTIONZ2.4.22. The situation inCat can be encapsulated as follows: The
forgetful 2-functorU: clvFib(B) ! Cat=B is 2-monadic: thdree bration of
afunctorP: E! B isthe bration@(p): (B #p) ! B. In general, a cleavage
(aka bration structure) of? is uniquely (in fact unique up to unique isomorphism)
determined by a pseudo algebra structure for 2-ma@ad UF. Strict algebra
structures of@ correspond to normal splitting bration structures Bn

clvFib(B)

(s

Cat=B i) @

We also note that for a categoB the domain functodom: B #B) ! B is
the free Grothendieck bration on identity functdr: B ! B, that isdom =
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@(ld). The situation above generalizes 1-categorical case where f8firgernal
categoryC = (C;  Cy), the forgetful functodFib(C) ! S=GC, taking( : X !
Co; X 4,C ! X)to ismonadic and the category of discrete brations
the category of algebras for the corresponding monad.

2.5 Fibrational objects for 2-functors

Our discussion of the Johnstone criterion in 82.6 will involve a use of cartesian
morphisms and 2-morphisms for a 2-functor, and the present section discusses
those. It is important to note that, although our applications are for 2-functors
between 2-categories, the de nitions we use are the ones appropriate to
bicategories.

[Her99] generalizes the notion of bration to strict 2-functors between strict
2-categories. His archetypal example of strict 2- bration is the 2-category
Fib of Grothendieck brations, bred over the 2-category Cat of categories
via the codomain functor cod: Fib ! Cat This result can be generalized
to a 2- bration cod: Fib(K) ! K where K is a 2-category andFib(K) is the
2-category of internal Chevalley-style brations in K. Later [Bak12] in his
talk, and [Bucl4] in his paper developed these ideas to de ne bration of
bicategories. Bakovic even de ned a notion of bration internal to general tri-
categories and proved that brations of bicategories are the internal brations
in the tricategory Hom .

Borrowing the notions of cartesian 1-morphisms and 2-morphisms from their
work, we reformulate Johnstone (op) brations in terms of existence of cartesian
lifts of 1-morphisms and 2-morphisms with respect to the codomain 2-functor.
This reformulation will be essential in giving a concise proof of our main result

in Chapter 4. Johnstone's de nition is quite involved and this reformulation

effectively organizes the data of certain iso 2-morphisms as part of structure
of 1-morphisms in the 2-category GTop of “Grothendieck toposes over varying
base”. This approach simultaneously makes it fairly painless to mix bounded
and unbounded geometric morphisms. It uses the 2-functorcod to ETop
(81.6), so that the bre GTop(S ) is equivalent to BTOP/ g . Our formulation

2.5 Fibrational objects for 2-functors
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uses the cartesian 1-morphisms and 2-morphisms for this 2-functor, and we
review the theory of those, in its bicategorical form.

We introduced the display 2-categoryKp and its “upstairs-downstairs' notation.

In this chapter we shall denote a chosen bipullback of a bicarrable morphism

x: X! xin Kby

f x f—7> X

Joow, l
X

f

f

< ——

H
where the 2-morphism f is an iso 2-morphism.

DEFINITION 2.5.1. Supposé: X! B is a 2-functor.

(i) A 1-morphismf :y ! xin X is cartesian with respect td® whenever for
each objectv in X the following commuting square is a bipullback diagram in
2-categoryCat of categories.

X(w;y) _r 5 X(w; X)

Pwy ‘ - ‘Pw;x

B (Pw;Py) ETOR B (Pw;Px)

This amounts to requiring that, for every obj&ctthe functor

Puy;f it X(w;y) ! P(f) # Pux

should be an equivalence of categories, where the category on the right is the

isocomma. (Note that the image X{w;y) has identities in the squares, not
iS0S.)

(i) A 2-morphism :f ) g:y ! xin X iscartesian if it is cartesian as a
1-morphism with respect to the functBy, : X(y;x) ! B (Py;PXx).
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The following lemma, which proves certain immediate results about cartesian
1-morphisms and 2-morphisms, will be handy in the proof of Proposition 2.6.10.
The statements are similar to the case of 1-categorical cartesian morphisms
(e.g. in the de nition of Grothendieck brations) with the appropriate weak-
ening of equalities by isomorphisms and isomorphisms by equivalences. They
follow straightforwardly from the de nition above, however for more details
see [Bucl4]. In what follows, in keeping with the nomenclature of 2.3.1, we
regard vertical 1-morphisms (resp. vertical 2-morphisms) as those 1-morphisms
(resp. 2-morphisms) in X which are mapped to identity 1-morphisms (resp.
2-morphisms) in B under P.

LEMMA 2.5.2. Suppose®: X! B is a 2-functor between 2-categories.

(i) Cartesian 1-morphisms (with respectR9 are closed under composition and
cartesian 2-morphisms are closed under vertical composition.

(i) Supposek: w! yandf:y! x are1l-morphismsiX . If f andfk are
cartesian therk is cartesian. The same is true with 2-morphisms and their
vertical composition.

(iii) 1dentity 1-morphisms and identity 2-morphisms are cartesian.

(iv) Any equivalence 1-morphism is cartesian.

(v) Any iso 2-morphism is cartesian.

(vi) Any vertical cartesian 2-morphism is an iso 2-morphism.

(vii) Cartesian 1-morphisms are closed under isomorphismé: #f g thenf is
cartesian if and only iy is cartesian.

REMARK 2.5.3. We unwind the essential surjectivity and fully faithfulness condi-
tions on the functohP,.,;f i in the de nition above to give a more explicit and
elementary description of cartesian 1-morphisms. A 1-morpliism! X in Xis

P -cartesian if and only if the following conditions hold.
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(i) Forany 1-morphismg: w! xandh: P(w)! P(y)andanyiso-2-morphism
_:Pf h) Pg, thereexista l-morphismand iso-2-morphisms: P(h) )

hand :fh ) gsuchthaP( )= _ (P(f) ). Inthis situation we call
(h; ) aweaklift of h. If is the identity 2-morphism then we simply chla
lift of h.

(i) Given 1-morphismda;h% w vy, and 2-morphisms: P(h) ) P(h% and
:fh ) fhOsatisfyingP(f) _ = P( ), there exists a unique 2-morphism
:h) hOsuchthaf = andP()= _.

P (2.37)

Also, in elementary terms, a 2-morphism :fg) fi;:y X is cartesian iff
for any given 1-morphism e:y ! x and any 2-morphisms :e) f; and
_P(fo)) P(e)with P( )= P( ) _,there exists a unique 2-morphism
over suchthat =
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%
X P x

REMARK2.5.4. De nition 2.5.1 may at rst sight seem a bit daunting. Nonetheless

the idea behind it is simple; We often think ¥fas bicategory oveB with richer
structures (in practice often as a bred bicategory). In this situafiory,! X being

cartesian in means that we can reduce the problem of lifting of any 1-morgghism
(with same codomain afs) alongf (up to an iso 2-morphism) to the problem of
lifting of P(g) alongP(f) in B (up to an iso 2-morphism). The latter is easier
to verify sinceB is a poorer category thad. The second part of de nition says
that we also have the lifting of 2-morphisms aldngnd the lifted 2-morphisms are
coherent with iso-2-morphisms of lifting structure. This implies the solution to the

lifting problem is unique up to a (unique) coherent iso 2-morphism.

REMARK 2.5.5. Note thatf : y ! x beingP-cartesian for a 2-functd? does not
imply f is cartesian with respect to the underlying fungjejj L of P, since the lifts
in the 2-categorX exists only up to an iso 2-morphisms. Howetess cartesian in
the classifying category of (Construction 1.4.4).

DEFINITION 2.5.6. LetP: X! B be a 2-functor. We de ne an objeetof X to be
brational iff

(B1) everyf : P! b= P(e) has a cartesian lift,
(B2) for every objec€’in X, the functor
Peoe: X(e5€) ! B (P(€);P ()

is a Grothendieck bration of categories, and

(B3) cartesian 2-morphisms X between morphisms with common codomaare
closed under whiskering on the left with any morphism.

2.5 Fibrational objects for 2-functors
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P is a2- bration if every object of X is brational. It is also noteworthy that
conditions (B 2) and (B 3) together make the 2-functor P : X°? ! (Cat#Cat)
liftto P ..: X°°! Fib for every object e of X.

REMARK2.5.7. Our de nition of bration of bicategories differs from [Bucl14, Def-
inition 3.1.5] in only one criterion: the latter requires the whiskermmgboth sides

to preserve cartesian 2-morphisms. The main motivation behind this is to achieve
Grothendieck construction on bicategories. Since in this chapter and the rest of this
thesis we have no use of such construction we only suf ce to the weaker version of
our de nition. Incidentally, our weaker condition also appears in [Her99] which is
arguably the rst time a de nition for the concept of 2- bratidéhwas ever proposed.

PROPOSITION2.5.8. A morphism inKp is cod-cartesian if and only if it is a bip-
ullback square irK.

(2.38)

Before giving the proof there is one step we take to simplify the proof.

LEMMA 2.5.9. Supposen: w ! 'y is a morphism irK. Any weak lift (ho; ) of

h w.r.t. cod can be replaced by a lift in which is replaced by the identity 2-
morphism. Therefore, conditions (i) and (ii) in Remark 2.5.3 can be rephrased to
simpler conditions in which is the identity 2-morphism.

4 Although a strict de nition unlike our case!
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Proof. De ne h = hy, and H =(_

w y
w| ho+ ly
W — hO ~ X
N
h

Thenh = rﬁ;ﬂ ;hi is indeed a lift of h. Moreover, if ¢ is a lift of 2-morphism
_:f h) gasinpart (i) of Remark 2.5.3, then obviously _,= _ (f ),
and it follows that = (7 _) is a 2-morphism in Kp from f h to g which lies
over _. [

Proof of Proposition 2.5.8.We rst prove the “only if' part. Suppose that

f:y ! xis a cartesian 1-morphism in Kp. For each objectc of K, let us

write WCone(c; x; f ) for the category of weighted cones (in the pseudo- sense)
from c to the opspan (x;f), in other words pairs of 1-morphisms g: c! X

and h: c! vy as in diagram below, and equipped with an iso 2-morphism

g - x g) f h. We have chosen the notation so thatif we deneg=f h,

and if we allow c also to denote the identity on c as object inKp, theng: c! x

is a 1-morphism in Kp.

Then for each ¢c we have a functor F.: K(c;y) ! WCone(c; x;f ), given by
_ . _ H

h7!' (f h;y h),with the iso 2-morphism got by whiskering f , and we must
show that each F. is an equivalence of categories.

First we deal with essential surjectivity. Sincef is cartesian we can lift h
and the identity 2-morphism f h = gtoa 1-morphismh:c! yin Kp with

2.5 Fibrational objects for 2-functors
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isomorphism = (7id): f h) g, where we have used Lemma 2.5.9 to obtain
h as a lift rather than a weak lift.

C--h-»Y—f —X
Fl'*’ ly F+ hx

C y X
nooof

To prove that F. is full and faithful, take any 1-morphisms h and h’in K. In
_ H

the diagram above we candeneh =y hand h the identity 2-morphism on

hto geta 1-morphismh: ¢! yin Kp, and similarly h% ¢! .

Now suppose we have 2-morphisms : yh ) yh’and —:Th) fh°such that
they form a weighted cone overf and x, i.e. they satisfy compatibility equation

¢ O m=(f ” x .

Ifwedene _=f _, thenthatequationtellsusthat = (7 _)isa2-morphism
from fh to fh %in Kp. Now the cartesian property tells us that there is a unique

*h! hPover suchthatf = ,and this gives us the unique :h) h°
that we require for F. to be full and faithful.

Conversely, suppose thatf and y exhibit y as the bipullback of f and x

as illustrated in diagram (2.38). We show thatf:y ! x is a cartesian 1-
morphism in Kp, in other words that, for every w, the functor G,, = hPy;f i

in De nition 2.5.1 is an equivalence.
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To prove essential surjectivity, assume that a 1-morphismg: w! x in Kp is
given together with a 1-morphism h: w! yand aniso 2-morphism_:fh) g

in K.
g
m
W---h-»Yy—X
wl b+ yl £y hx
w y X
h 7, f
9
The iso 2-morphism = (_ 1 w) QH] :xg) gw ) fhw factors through

the bipullback 2-morphism with apex y, and therefore it yields a 1-morphism
h:w! yandiso 2-morphismsH :y h) h w (making a 1-morphism
h:w! yinKp)and —:f h) gsuch thatfH and rH1 paste to give  (x 7).
From this we observe thath := rﬁ;lq ;hiisaliffof hand :=(7 _)isaniso
2-morphism from fh to g over _ as required for cartesianness.

To show that G, is full and faithful, suppose we have 1-morphismsh; h% w !
y.If :h) h%and :fh ) fh°with f _= _, we must show that there is a
unique :h) hPover_with f =

=y 70

We have 2-morphisms—:fh) fh
_(Ho1 H. B =
=(h°H(C w)h):yh) hw) hW) yh,
and moreover

( RO(x 9 =(f hOHFYH(x ) =(f h°HC x)(th) = (f ) ).

It then follows from the bipullback property that we have a unique : h) R°

suchthaty = _ w(sowe have a 2-morphism :h) hPover )andf = —,
sof = asrequired. O

2.5 Fibrational objects for 2-functors
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2.6 Johnstone-style brations refashioned

Another de nition of (op) bration rst appeared in [Joh93]; see also [Joh02a,
B4.4.1] for more discussion. Johnstone's de nition does not require strictness
of the 2-category nor the existence of comma objects. Indeed, it is most
suitable for weak 2-categories such as various 2-categories of toposes where
we do not expect diagrams of 1-morphisms to commute strictly. Moreover,
although this de nition assumes the existence of bipullbacks, in fact we only
need bipullbacks of the class of 1-morphisms one would like to de ne as
(op) brations. This enables us to generalize some of Johnstone's results from
BTop (where all bipullbacks exist) to ETop (where bounded 1-morphisms are
bicarrable).

We have adjusted axiom (i) (lift of identity) in Johnstone's de nition so that
the (op) brations we get have the apposite weak properties. That is to say,
unlike Johnstone's de nition, we require lift of identity to be isomorphic,
rather than equal to identity.

Johnstone's de nition is rather complicated, as it has to deal with coherence
issues. We have found a somewhat simpler formulation, so we shall rstlook at
that. It is simpler notationally, in that it uses single symbols to describe two lev-
els of structure, “downstairs” and “upstairs” (See Construction 1.4.12). More
signi cantly, it is also simpler structurally in that it doesn't assume canonical
bipullbacks and then describe the coherences between them. Instead it bor-
rows from the techniques and results of last section on use of cartesian liftings
as bipullbacks. This enables us to show (Proposition 2.6.10) that the Johnstone
criterion is equivalent to the brational property of De nition 2.5.6.

DEFINITION 2.6.1. Suppose« is a 2-category. A 1-morphism: X! xinKis a
Johnstone-style bration if the following two conditions hold.

(i) xis bicarrable.

(i) Any 2-morphism_:f ) g:y X has a lifting 1-morphisnT: Xg !
X:, and a lifting 2-morphisnT: f 1~ ) 0, together with an invertible 2-
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morphismrH IXf T7) Xg,wherex; i Xp ! X = yandXxg: Xg! Xg=Yy
are respectively bipullbacks afalongf andg.

«

>

/

g

(2.39)

/

N —
[{e]

X — X
\ "
[>

<

To proceed further in completing the de nition, we rst simplify this by takiBgto
be the class of all bicarrable 1-morphism&iand working inKp . (We could equally
well work with D any class of display 1-morphismsky as in Construction 1.4.12.)
Thus we have cartesian 1-morphisisx; ! x andg: x4 ! X, and avertical
1-morphisnr : Xy ! X (Xg =Y = X;, andr is the identity).

The data is subject to the following axioms:

(J1) = (7 _) make a 2-morphism iKp of the form where s vertical andf
andg are cartesian.

/ . / (2.40)

(J2) Suppose we have two composable 2-morphismE ) gand :g) hinK
wheref ;g;h:y! x;wewrite = _.Llet;;;r ;r;r beasabove.
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Then there exists a vertical iso 2-morphism : r  r = r inKp such that

( r)= (& ;)

Xh

h

r<;:)(g %
AN
g
N

-

We can phrase this condition by saying tha@trovides a vertical iso 2-morphism
between the composition of lifts and the lift of composition.

(J3) For any 1-morphisnf : y ! x the lift of the identity 2-morphism of is
canonically isomorphic to the identity 2-morphism on theflifvia a vertical
iso 2-morphism; : 1, ) Trig in Kp such thaf Lis the lift of identity
2-morphismid; . -

(J4) The lift of the whiskering of any 2-morphism: f ) g:y X with any
1-morphismk: z ! vy is isomorphic, via vertical iso 2-morphisms, to the
whiskering of the lifts.

In the following diagram, the right hand square is as udisndg’are carte-
sian lifts of f k and gk, and the 1-morphismk; andk, are overk and the
vertical iso 2-morphisms and are got from cartesiannessfofandg. Then
the condition is that there should be a vertical iso 2-morphism (oyar the
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left hand square, which pastes with the others to give thelift & o) g¢°of

_ k.
gO
m
Xgo —— Xg —— X
r O‘ = ‘I’ ﬂ
X 0 Xs X

(J5) Given any pair of vertical 1-morphismg: y ! x; andvy:y ! Xg, any 2-
morphism o:f Vo) g v;over_ factors through uniquely, that is there
exists a unique vertical 2-morphism vy ) r v; such that the following
pasting diagrams are equal.

y —— X yﬂ”—°>/xf
\ . \ ] ”\/ru \

Xg ——5— X Xg ——5— X

REMARK 2.6.2. Dually, op brations are de ned by changing the direction of.
For each_:f ) g, we require a 1-morphism : x; ! Xy and a 2-morphism

:f ) g with the axioms modi ed accordingly. The lettersandr used here
correspond to Street's 2-mona@and@ in 82.4.2 (In Street's notation they ake
andR).

PROPOSITION2.6.3. A bration p: E ! B is also an op bration precisely when
every 2-morphism_ induces an adjunction a r . In this situation we calp a
bi bration

Proof. The unit and counit of adjunction are respectively obtained by choosing
(L5 5 ) and (r ;1,; ) for (vo;vi; o) in axiom (J5) above. Conversely,
given the left adjoints ~ , the op bration structure of p is exhibited by the
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composition of 2-morphism ~ :fr °~ ) g andf :f) fr ° foreach
2-morphism _:f ) g. O

Both Chevalley-style brations and Johnstone-style brations can be con-
sidered as two avours of the notion of representable bration For a mor-
phismp: E! B ina 2-categoryK, consider the 2-natural transformation of
category-valued representable presheave&( ;p): K( ;E)) K( ;B). Then
we have:

« If K has comma objects, thenp is a Chevalley-style bration in K iff
K( ;p) is a Grothendieck bration (in the sense of De nition 2.3.7), i.e.
for any object X of K, K(X; P ) is a Grothendieck bration of categories,
and K(X;p) !

» If pis bicarrable in K, then pis a Johnstone-style bration in K iff K( ;p)
Is a weak bration (in the sense of De nition 2.3.41).

Now, we describe how Johnstone-style (op) brations can be obtained from
Chevalley-style (op) brations. If K has pullbacks of p, then these can be
considered the bres of p. Suppose we have :g! f betweenB°and B.
Then by the representable de nition ~ f p has a cartesian lift % ¢°! pf:

Jp (2.41)

g° now gives us a morphism fromf E to g E, in other words a morphism
between the bres over f and g but in the opposite direction to that of . This
brings us closer to the “indexed category” view of brations, with 2-morphisms
between base points § and g) lifting to maps between the bres ( f E and

g E).

CONSTRUCTION2.6.4. In Propositions 2.3.14 and 2.3.42 we characterized the struc-
tures of Grothendieck bration and Street bration of categories respectively as the
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right inverse right adjoint and the fully faithful right adjoint to the induced functors
on slice categories. In the construction below, originally due to Johnstone in [Joh93],
we obtain the structure of Johnstone bratienx ! x in K asthe unit semi-oplax
right 2-adjointx of the 2-functor ,: K. X! K. x (See Construction 1.4.13).
The basic idea here is that we consider the 2-morphisiih) g of K as morphism

hi; i:g! f inthe lax slice 2-categorit . x and—:f ) gof K as morphism
h—;—i:g! f inthe lax slice 2-categori . X. Out of the structure of bra-
tion of x we construct a pseudo functer: K. x ! K. X which takes object
f:a! xtoits bipullback along, i.e.f: X; ! X. Moreover, it takes the vertical
morphismhl; _i to br—;—i. Using the fact that in lax slices we have factorization
of 1-morphisms into vertical followed by strict morphisms, we dexneon general
morphisms oK . x by the action below:

b . a b—t-b—"-a Xg —— Xin — Xy
= - éf‘h ) 4 <:fr‘1 ¢
g £ 9 j P g L F
X X X
Thereforex th; i =M 1= ( t:n T 1). The action ofx on 2-morphisms is

slightly more involved: given a 2-morphism: hh; i) h h®% 9 in the 2-category
K. X, we obtain the following 1,2-morphisms by the bration propertyxof

Xih 0 fh © b fho
r% m: / @
Xg /:\r(f )Q//\ Xi —f = X Ad b = 1 % a—f-x
r(\ {/ XJ ho=
Xth th b

—_
|=

By pasting 2-morphismé  and o we geta 2-morphisrfhr (1)) fh%( 9,
namely(f ) (fh 70} ), and moreover, by cartesian property of morphfsm
this 2-morphism uniquely?actors througihto a 2-morphisnfd  : hr(f  )) h°
shown in the diagram above. Pastirlglf andfd vyields the desired 2-morphism
X (). Alternatively, by the 2-dimensional universal property of bipullbackof
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the 2-morphisnx () is uniquely determined by a pair of 2-morphismg ), and
X ()1 depicted as

fx e 9
Xq Or ix
fx hh; i
X (o x
xix e G| < |x.x th: i
a X

—

which furthermore satisfy the compatibility condition expressed by the commutativ-
ity of the diagram of 2-morphisms K in below.

f
fx¢x hh; i *X:();Jfox hh® 9

fo fh;i“ = “f'—{x hho: O (242)

xfx hh; i = xfx th® 9

We proposex (_)o andx ()i to be the dashed 2-morphisms which make the dia-
grams below commute.

" HH = “rH ho fh ﬁ W

Xg = —

_ f X m,7| Coscoogcooocosocoagc) f X mo; q

-
o
(=]
-
—
=y
=
~~
—n
~
=
—~
<
—
>
o
—
—~
=)

—
=
o

Note that' rH1 andr’ rH1°are invertible'® It can be readily checked that( )o
andx (). satisfy the compatibility condition of diagra@.42). Therefore, they
constitute a unique 2-morphism(_): x hh; i) x hh® 9 with x; x ()=
X (Joandf x ()= x ()1

15The notation s introduced in Construction 1.4.12.
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We now show the pseudo functoriality ®f. Consider morphismih; _i:g) f
andrk; i:f ) einK. x. The brational property of gives us the following
morphisms and vertical iso 2-morphisms.

@ ) M

(kh)e
Since by de nitionx (hk; i hh;_i)=(kh)e r(_ (_ h)), therefore, we have
x (hk; i hh;_i)=xhk i xhh_i

We have x (f:y! x)= x f,andthe counit of the 2-adjunction  a x

is given at the componeftby hx; ;F 'i. For amorphisnth; ig! finK. Xx,
we have a iso-square, on the left hand side below in x, and the corresponding
diagram inK is drawn on the right hand side, whetds = (T ) and ¢ is
the canonical iso 2-morphism between cartesiat-morphisms.

This proves the pseudo naturality of the couhitThe unit, however, is only lax
natural.
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REMARK 2.6.5. We presented the construction above in a manner that it is now
straightforward to see that the right adjoint pseudo functaondeed factors through
Ko . x whereD is the chosen class of display morphisms.

Kp . X — cyl_(K). X

EXAMPLE2.6.6. Let's takeCatto be the 2-category of (small) categories, functors
and natural transformations. Here we show that a Johnstone bratidatiis indeed

a weak Dbration of categories (See §2.3.6). et E! B be a Johnstone bration
in Cat Let1 be the terminal categorg,2 E and_: b! PeamorphismirB. The
latter can be viewed as a natural transformatiorb) Pe. The bipullbackE, has

as objects all pairlsx 2 E; : Px = ki, and as morphisms all morphismsx ! x°

in E making the triangle

Px —P1 - PxO

N,

commute. Similarly, the bipullback categoBs. can be described. Notice that
he;idpei is an object ofEp.. Applying r to it yields an objecix in E with an
isomorphism : Px = b. Axiom (J1) impliesP(™) = _ . The 2-morphism™

is the lift of _ and the axiomsJ4) and (5) state that this lift is cartesian. Axioms
(J2) and @ 3) give coherence equations of lifts for identity and composition.

EXAMPLE2.6.7. Let Poset be the 2-category of posets and monotone maps with
specialization order as 2-morphisms. There is (at most one) 2-morphism between
(monotone) map§; G: E B whenever(e) G(e) in B foreverye2 E. A
mapP : E ! B of posets is a Johnstone-style bration iff

(i) for all pairsa;b2 B witha band everye 2 E with P(e) = bthereis a
canonical elemerd, 2 E with P(e;) = aande, e,

(i) e, is the largest element with property (i), and
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(i) for all elementsc b ain B, and any elemerg with F (e) = a, we have
(&), = &

EXAMPLE2.6.8. SupposeB! L D 7 Cisan opspan in a 2-categokyequipped
with bicomma objects and bipullbacks. We prove that rst projection morphism
p: f#g ! B of comma object is a bration irK. We note that by taking

to be identity morphism we obtain a bicategorical analogue of free bration in 2-
categories (See 2.4.22). To see why, take arbitrary 1-morpHiskisA B and

a 2-morphism : h) k. First, we construct 1-morphisnm and 2-morphism™ as
shown in diagram below.

O

Bipullbacksh f #g andk f #g may be identi ed with comma object$ h) #
g and(f k) # g, respectively. We de ne 2-morphism: f hp, ) gogk to be the
following composite of 2-morphisms:

H
froipx fk)*

f hpe =— %k p,

¥ pk — %ok

We invoke the universal property of comma objett#g to obtain a morphism
m:k f#g ! f#g corresponding to 2-morphism and iso 2-morphisms
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o: hpy = pmand ;: gm = gk in such a way that they make the following pasting
diagrams equal.

k f#g “

C
hpyk JQ
D

B f

Thereforewe have=(g 1) ( m) (f . Wecannowusarand ,*and

universality of pullbackh f #g to get our desired morphism: k f #g !
h f #g together with an iso 2-morphis

" pn T = pk. Additionally, we
obtain an iso 2-morphism: h == m.

k 1#9

h(f#g —">f#g

H

r+
phl H+ ‘p
A

— B

Now, each ofmmr andk, when composed with andg, yield a comma cone over span

it ; D; gi, and moreover the resulting comma cones are compatible in the sense that
the following diagram commutes:

fpm —=— fpk
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where ::(E) ' (_ p) o Observethat k) (f )= f o=
(g 1) ( m). Sothere must be a unique 2-morphisnm ) ksuchthap ~ =

andqg — = ;. =~ T~ isindeed a lift of_ which completes the ingredients of
bration p.

Our goal now (Proposition 2.6.10) is to show that, for the 2-functor cod: Kp !
K, a 1-morphism x: X! x in K is a Johnstone-style bration iff itis a bra-
tional object in Kp in the sense of De nition 2.5.6.

LEMMA 2.6.9. Suppos« in Kp is a Johnstone-style bration in the sense of De ni-

tion 2.6.1. Lef ,gand_ be as in the de nition, givingrisetb: x; ! X,g: xg! X

and :fr ) g,andletu: z! x4 beany 1-morphism iKp. Then the whiskering
u: fr u) guis cartesian.

Proof. First, we deal with the case whereu is vertical. Note that this also
shows that itself is cartesian.

Suppose o: &) guisa2-morphisminKp suchthatcod( )= ,=_ _inK

We seek a unique 2-morphism ¢: &) fr uover suchthat( u) o= o.

Lete: X ! X be a cartesian lift of e,, obtained as a bipullback. Then we
can factor e, up to a vertical iso 2-morphism, as ev where v is a vertical
1-morphism. We can neglect the iso 2-morphism and assume, = ev. Also, let

e r ) fand e r ) gbelftsof :e=¢) fand = :1e) ¢
obtained from the bration structure of x.

From axiom (J2) we get an iso 2-morphism . :r r ) r .
Xe (— = } Xg ¢——— 2
= | =
e f [*]
1
\ X /
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Using axiom (J5), the unique o: ev) fr uthatwe seek amounts to a unique
vertical o:v) r r usuch that the diagram on the left below pastes with

utogive ¢:ev) gu. Bringingin ; ,thisamountsto nding a unique
vertical i:v) r usuch that the equation on the right holds, and this is
immediate from axiom (J5).

z — 1 v X, z —V X, z —1 5 Xe z —1 5 Xe
Yo 7 \
r u r e = ru \U/() e u r e = u U/O e
P "
Xf ———— X Xf ———— X Xg ——5— X Xg —5— X

Now we prove the result for general u. We can factoru up to an iso 2-morphism
askv, where v is vertical and k is cartesian. Because of Lemma 2.5.2 (i),(v)
we might as well assume thatu = kv. Axiom (J4) implies that, up to an iso
2-morphism,  k can be obtained as the lift of _ k. We can thus apply the
vertical case, already proved, to see thatf k) v is cartesian. O

PROPOSITION2.6.10. A morphismx: X! x in D is a Johnstone-style bration
(in the sense of De nition 2.6.1) iff it is a brational object iKp.

Proof. By Proposition 2.5.8, we know that condition (B1) is equivalent to
bicarrability of x. Now supposex is a Johnstone-style bration.

To show (B2), assume thatg,:y! xand _:f) g;:y Xisa2-morphism
in K. We aim to nd a cartesian lift of .

Letf:x; ! xandg:xy! X be cartesian lifts off and g, sog = g,, and

suppose the Johnstone criterion gives them structure : fr ) g. Then we
factor go through g and obtain a lift v of 1, and an iso 2-morphism :gv) go
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in Kp. Pasting and together we get a 2-morphism g := ( v),lying
over _, from fq:= fr vto g in Kp.

Note that g is indeed cartesian. This is because is a an iso 2-morphism,
and therefore it is cartesian by Lemma 2.5.2(v), v is cartesian according
to Lemma 2.6.9, and also vertical composition of cartesian 2-morphisms is
cartesian.

For (B3),let o:fpo) go:y! X beany cartesian 2-morphism inKp, and let
k:z! yany 1-morphism in Kp. We will show that the whiskered 2-morphism

o Kis again cartesian. First, letf : x; ! xandg: xq! x be cartesian lifts of
f,andg, andlet :fr ) gbe gotfrom ,inthe usualway. Then we factor
fo and gy up to vertical iso 2-morphisms as :fo=f wuvand :g =g Vv,
where u, v are vertical. De ne = 0 1, Obviously, Jis cartesian and

o kiscartesianif and only if § kis cartesian. By axiom (5) of bration,
we get a (unique) vertical 2-morphism suchthat( v) (f )= 3. By
Lemma 2.6.9 v is cartesian and it follows that f  is cartesian since § is
cartesian. Now the 2-morphism f is both vertical and cartesian and thus
it is an iso 2-morphism, according to Lemma 2.5.2(vi). So, our task reduces
to proving that ( v) Kk s a cartesian 2-morphism, and this we know from
Lemma 2.6.9.

Conversely, supposex: X! x is a brational object in Kp. We want to extract
the structure of Johnstone-style bration for x out of this data. First of all
according to (B1), x is bicarrable. Suppose_: f ) gis any 2-morphism in K.
Let g be a cartesian lift of g obtained as a bipullback ofg along x in K. By (B2)
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_ has acartesian lift % f°) g. Factorf® up to aniso 2-morphism ,asf r
where r is verticaland f : x; ! X is cartesian. From °and we obtain a
cartesian 2-morphism :f r ) gwhich satis es axiom (J1).

g
o
T f

o

-

d

To show (J 2), take a pair of composable 2-morphisms_:f ) gand :g) h.
Carrying out the same procedure as we did in diagram(2.43), we obtain
cartesian 2-morphisms :f r ) gand :g r ) h,andalso :f r ) h
lifting = _. By (B3), the 2-morphism ( r):fr r ) hiscartesian.
Therefore, there exists a unique vertical iso 2-morphism :fr r ) fr such
that = ( r).

(2.43)

x/\f
.

)

Xf4>x

r

r

Sincef is cartesian, Remark 2.5.3 (ii) yields a unique vertical iso 2-morphism
:rr ) r suchthatf . = .Thus,( ) (f . )= ( r).

For condition (J3), if _ =id, then is both cartesian and vertical, and hence
an isomorphism. Now we can use Remark 2.5.3(iij) with ! for and an

identity for _toget : 1, ) r aswellasaninverse forit. It has the property
required in (J3).
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Now we prove condition (J4), using the notation there, and we wish to de ne
the isomorphism in the left hand square. We nd we have two cartesian lifts
of _© kto gky. The rstis the pasting

! O( ro): fksr o) gkg

This is cartesian by Lemma 2.5.2(i),(v), being composed of isomorphisms and
the cartesian ° The second is kg, cartesian because is cartesian and,
according to (B 3), its whiskering with any 1-morphism is cartesian. These two

cartesian lifts must be isomorphic, so we get a unique iso 2-morphism between
fkir oand fr kg, over f idy, that pastes with , cand to give ° Now we

use Remark 2.5.3(ii) to get a unique isomorphism in the left hand square of

the diagram with the required properties.

Finally, we shall prove (J5), which is similar to ( J4). Assume vertical 1-
morphisms vp and v; and a 2-morphism  over _ as in the hypothesis of
axiom (J5). We use the cartesian property of the 2-morphism v, to get a

unique vertical 2-morphism :fvgy) fr vy suchthat( i) = . Bythe
cartesian structure of the 1-morphismf , we can factor asf for a unique
vertical 2-morphism  with f = .Hence,( vy (f )= o O

REMARK?2.6.11. The proof above is rather long and technical. So, we thought our
reader may appreciate a summary of various dependencigésaoidJ conditions.

The following table shows how the various structures in a Johnstone bration relates
to structuresi 1)-(B 3). That is whichB's we need to prove each

De nition 2.6.1 | De nition 2.6.10

X is carrable (B1)
Axiom (J1) (B1), (B2
Axiom (J2) (B1), (B2

Axiom (33) | (B1), (B2), (B3)
Axiom (J4) | (B), (B2), (B3)
Axiom (J5) | (BY), (B2), (B3)

On the other hand, the table below shows that wireatve need to prove ead:
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De nition 2.6.1 De nition 2.6.10
(B1) X is carrable
(B2 (J1), (J3), (J5)
(B3) (J1), (J3),(J4), (IS5
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Theories and contexts 3

In this chapter, we present the third model of generalized spaces, that is the
2-category Conof AU-contexts (83.3) and study its features. We quickly review
the main aspects of the theory of AU-contexts, our AU analogue of geometric
theories in which the need for in nitary disjunctions in many situations has
been satis ed by a type-theoretic style of sort constructions that include list
objects (and an nno). The contexts are “sketches for arithmetic universes”
[Vic19], and we review the principal syntactic constructions on them that are
used for continuous maps and 2-morphisms.

We also introduce the notion of bration of contexts (83.4) and in the next
chapter we prove that they beget brations of toposes.

This accomplishes rst steps in ful lling the bigger goal to see to what extent

AUs can replace Grothendieck toposes as models of spaces. In this approach,

geometric theories are replaced by AU-contexts, thought of as a kind otypesof
type theoryof AUs, presented by sketches ([Vic19]), and geometric morphisms
are replaced by AU-functors, corresponding to the inverse image functors.

AU-contexts are presented by sketches in [Vic19]. We start by an overview
of rst order geometric theories and their link to sketches for AUs which is
followed by a selective overview of AU-sketches.

The main references for this chapter are [AR94], [Joh02b], [Vic19], [Vicl7],
and [HV19].
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3.0 Introduction

Arithmetic Universes (AUs) were introduced by André Joyal with the insight to
provide a categori ed proof of the celebrated Gddel Incompleteness theorem.
This insight was communicated in his lectures ([Joy73Db], [Joy73a]). What
initially remained of this insight and the alleged proof in written form was a
set of notes taken by Gavin Wraith. Although this signi cant insight of Joyal
never appeared in a published format, it undoubtedly triggered attention and
research into Arithmetic Universes (See [Mai99], [Mai00], [Mai03], [Mai05b],
[MailOa], [MailOb], [MV12], [Vic19]).

What is the idea behind the notion of AU? A philosophical view of the Gddel
Incompleteness theorem is that it is a self-re ective ability of a formal system
based on its expressiveness and its proof involves the famous arithmetization
argument. Joyal proposed an AU to be a structured category whose structure
is expressive enougto allow the “internal type theory of the category' to build
a replica of the original AU inside itself, analogous to Gddel's arithmetization.
The rest of the argument then should use the machinery of internal language
to give a categorical incarnation of the Godel sentence constructed from the
AU and its replica.

The “enough structure' in above has been proposed to be formalized as the
structure of a list-arithmetic pretopos : a category with nite limits, stable
disjoint coproducts, stable effective quotients by monic equivalence relations
and parameterized list-objects.

Equivalently an AU is a nitely extensive Barr-exact category with parametric
list objects. Note that an AU has all coequalizers, not just the quotients of
equivalence relations. This is because the list object allows one to construct
the transitive closure of any relations [Mail0a].

The theory of AUs is local, i.e. slices of AUs are AUs. Comma objects of AUs

are constructed as comma categories. Therefore, the comma construction is
created by the forgetful functor AU ! Cat [MV12].
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The above de nition of AU parallels (relativized) Giraud's characterization of
relative Grothendieck toposes, except that AUs have only a nitary fragment
of geometric logic, and instead of in nitary disjunctions being supplied extrin-
sically by a base topos (e.g. the structure of small-indexed coproducts), they
have sort-constructors for parametrized list object that allow some in nities
intrinsically: e.g. point-free continuum. AUs are presented via sketches in
[Vic19].

Sketches(French esquiss@swere introduced by differential geometer Charles

Ehresmann, a student of Cartan, and forerunner of the Bourbaki seminar. He
later became a leading proponent of categorical methods and by 1957 he
founded the mathematical journal Cahiers de Topologie et Géométrie Différen-
tielle. Collectively, the development of sketches together with contemporary
work of Bill Lawvere and earlier work ! of Halmos (e.g. Halmos's polyadic
algebras), Tarski (e.g. his work on cylindric algebras) and Birkhoff has come
to be understood under the umbrella term “categorical logic'.

The simplest kind of sketch is a directed multigraph possibly with loops.
Sketches can be underlying graphs of categories but in general they do not have
to. The point is that in sketches we do not have the structure of compositions
of arrows. Note that models of such sketches inSet cannot accommodate for
any nullary, binary, or higher arity operation nor any equations. A remedy is to
add more structure to the sketch such as nite products. To express equations,
we add commutativities in some extension of our sketch. Starting with a sketch
T, we can specify a composition of two composable arrows by adding a third
arrow and a commutativity.

Also, to add higher arity operations one works with limit sketches. To still
add more structures such as those of regular theories one can work with
sketches with cocones. For the purpose of expressing structure of arithmetic
universes one has to work with sketches whose models can accommodate for

These earlier work, sometimes refereed to as algebraic logic, arose from the effort of
formulating logical notions and theorems in terms of universal algebraic. It has been
argued in [MR11] that categorical logic is logic in an algebraic dressing.

3.0 Introduction
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all operations that a generic arithmetic universe allows. Sketches for arithmetic
universes are dealt with in [Vic19].

3.1 A swift overview of (geometric) rst
order theories

In the rst part we begin by recalling the notion of syntactic category of a rst
order theory. The idea here is that we would like to organise the data of T into
a category so that the models ofT in a category S correspond to the S-valued
functors from the syntactic categonyg/n(T) and the elementary embeddingsf
models correspond to natural transformations between corresponding functors.
As we will see, the syntactic categoryS/n(T) comes equipped with ageneric
model M+ inside it, in such a way that a formula is provable in T (as it
is customary we write T~ for the provability relation) if and only if its
interpretation in $n(T) is satis ed by the model M+ (as it is customary we
write Mt F  for the satisfaction relation).

We follow the approach of [JohO2b, p. D1.1], in fact as we shall see in the

next part that is necessary in order to deal correctly with geometric logic. We

warn the reader that there are some differences from traditional logic. Two

major differences from standard approaches are the use of contexts (which is
a natural way to make the logic sound for empty carriers), and that axioms

are presented by sequent$ ", in context %, and are not the same as
sentences.

Also, it is important to allow the logic, the fragment of rst-order logic, to
vary. Wherever we feel it is necessary we shall point out these differences in
practice. Here is a simple example.

ExaAMPLE 3.1.1. The theory of posets has one s&rtand a binary relatiofiR
X; X (whereR(x;y) has the intended meaning Yy ) which satis es the re exivity,

2indicated by turnstile symbol ~ and annotated with the context in which derivation takes
place
3i.e. formulae with no free variables
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the antisymmetry, and the transitivity axioms; they appear on the left hand side in
their traditional form while on the right hand side they appear in contexts.

(8X)R(X; X) >« R(X;x)
(8x;y; Z)(R(Xy) M R(Y;2)) ) R(x;2)) (R(X;y) " R(Y;2)) ~ xyz R(X;2)
B Y)(ROGY) M R(Y: X)) (x=1Y)) (ROGY) N R(Y; X)) " xy (X=1Y)

For instance the axioms above are expressed in the so-called “Horn fragment”
of (geometric) rst order logic (See Table 3.1). Notice that in geometric logic
(and its fragments) we do not have the operation of universal quanti cation
over variables, nor do we have implications of formulae (e.g. such as the
transitivity axiom on the RHS* of Example 3.1.1). The sequent style derivation
comes to our rescue. Also, for rst order theories, (8x) (x) 0 (9x) (x),
however, we have (8x) (x) "¢ (9x) (x) for some other variable c. Writing
down our axioms in sequent-style rei es the importance of the contexts.

Another motivation for introducing contexts comes from the phenomenon
of enlarging its scope in the process of passing a variable across a logical
connective. For instance, in a single sorted rst order theory, one can prove
that for formulae and ,

(29 )09 x(_)

where x: X is not a free variable of . Now, in any interpretation where
the domain of interpretation (i.e. interpretation of sort X) is empty, the
equivalence above fails to satisfy which is bad news from the perspective of
soundness. To see this, consider the sentence above with = 8y(y = y) and

= (x = x). In classical model theory of rst order theories, the remedy is to
require non-emptiness of domain of interpretation. Without the use of contexts,
however, in categorical model theory where the the domain of interpretations
are objects of categories (possibly other thanSet) it is not always clear what
‘non-emptiness' of an object means.

4Right Hand Side
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Finally, it is possible for a particular language to have sorts with no closed

terms. Using variables of this sort carries with itself a tacit existential assump-
tion, and therefore we should record each occurrence of such assumption by
bookkeeping the variables in the context in our inferences.

The full derivation rules for sequents-in-context are given in [Joh02b, p. D1.3],
and it is important to note that they are sound even for empty carriers

In full rst-order logic not every structure homomorphism is natural for all
formulae, and therefore, it's interesting to look at the restricted class of those
that are: these are the so-called elementary embeddings (aka elementary
morphisms). In geometric logic the problem doesn't arise, because structure
homomorphisms are natural for all geometric formulae. Since in this thesis
we are mostly concerned with geometric logic and its fragments we are not
paying as much attention to the elementary embeddings.

Brie y, recall that a rst order theoryisapair T =(; ) where isa rst
order signature, and is the set of axioms of T. A rst order signature
comes with a set of sorts and a setP = fP;gj;, of predicates such that each

One usually writesP ~ Xq;:::; X,. See [Joh02b, p. D1.1.1 ] Let's call this the
spartan version.

One may add bells and whistles to this de nition and include, in addition to
predicate (aka relation) symbols, function symbols (with arity) as well. Notice
that for any cartesian theory® T there is a cartesian theory T°which is Morita
equivalent’ to T and does not have any function symbols. (See Example 3.1.2
and [Joh02b, Lemma D.1.4.9].) We take the liberty of using either style of
presentation depending on the context of discussion and also as a matter of
convenience. So a full presentation of a theory includes

STraditionally, each axiom is a sentence (meaning a formula without any free variables)
which become valid sentences in every model of theoryT. For us, axioms are going to be
sequents, not formulae in general.

5The notion of cartesian theory will be de ned in Remark 3.1.4.

’i.e. Two theories are Morita equivalent if their respective categories of models are equivalent.
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o f:Xyg; i Xy ! X, for each function symbol.

Two special cases of proposition and constant symbols are included by consid-
ering empty arities in the above:

* P 1, for each proposition, and
 c:1! X fora constant symbol.

The example below contrasts the spartan and the embellished styles of presen-
tation.

EXAMPLE3.1.2. One can present the theory of groups (on LHS) with one Gort
a ternary relation symbd  G; G; G, where the intended meaning M (x;y; z)

is thatz “equals the (binary) multiplication ot anyy”. It also comes equipped
with a constant symbdke: G. Altogether this structure should satisfy the following
axioms:

MOGy;u) * M(y;Z;v) N M (U Z3 W) syzuww M (X5 V5 W)
MOGYy;u) * M(y;Z;v) N M (X VW) seyzuww M (U5 25 W)
> x M(x;e;x) " M(e; ;%)
> xy (92) M(X;y; 2)

M(Xy;2) * M(X Y, W) xyizw (Z= W)
> (9y: G9z: G) M(X;y;e) N M (z;X;¢€)

The fourth and fth axioms say tha#l is a functional relation.

8which can be regarded as a constant unary predicate.
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Alternatively, instead of ternary relation symidl, we could have a function symbol
m: G G! G satisfying the following axioms:

~

> xyz M(M(X;y);2) = m(x;m(y; 2))
>, m(x;e) = x” m(e;x) = X

>, (9y: G9z: G) m(x;y)= e m(z;x) = e
It is often easier and clearer to use function symbols.

3.1.1 Fragments of rst order theories

Before we present examples of some well-known theories, we would like to
explain some of the nomenclature pertaining to different fragments of rst
order theories. The table below illustrates the hierarchy of different fragments
of rst order theory °. Each row shows that the axioms of the corresponding
fragment are formed by the marked logical operations; for instance, a theory
which has any of its axioms formed using implication is hot geometric.

9First order refers to the fact that quanti cation is over variable individuals rather than over
subsets or functions of them.
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binary | truth exist. binary | falsity | neg. | impl. | univ. inf. inf.
coni. quant. dis;. quant. | disj. | coni.
™) @ O @ ooy e GO
Horn X X
theories
Cartesian X X | cartesian
theories
Regular X X X
theories
Coherent X X X X X
theories
(Full) rst X X X X X X X X
order
theories
Geometric X X X X X X
theories
In nitary rst X X X X X X X X X X
order
theories

Fig. 3.1.: Fragments of rst order theory

We give a few examples of theories using context-style axioms. In the next

sections, we give a different presentation based on AU-sketches.

EXAMPLE 3.1.3. The theory oflinear ordersis obtained from that of posets by

adding the axiom below:

> xy (ROGY) _R(y; X))

3.1 A swift overview of (geometric) rst order theories
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Note that the theory of linear orders, unlike that of posets, is not a Horn theory. Itis a
coherent theory. We can extend it to the theorystifict) linear intervalsby adding
two constant$ andb of sortX together with the following axioms:

> x R(b;x) * R(x; 1)
(b=1t)"?

REMARK3.1.4. The word “cartesian” in the above table requires further explication.
We give an inductive de nition of cartesian formulae rst. Suppdses (at least) a
regular theory. A formula is callecartesianif it is either (i) atomid?, or (ii) nite
conjunction of cartesian formulae, i) of the form9y where (;y) is cartesian
and moreover the sequent

(" [29) xyz (Y= 12) (3.1)

is provable inT. A sequent ", is cartesian if both and are cartesian.

A regular theoryT is cartesian if there is a well-founded partial ordering of its
axioms such that each axiom is cartesian relative to the subtheory, formed by the
axioms which precede it in the ordering. As indicated in the table above cartesian
theories lie between Horn and regular theories, but they are really closer to Horn
theories rather than to regular theories for the following reason: in models, the in-
terpretation of existential quanti ers corresponds to forming images of projection
morphisms. By cartesianness, these morphisms are already monic and hence their
images are isomorphic to themselves. What we are doing really is to take images of
morphisms which are already known to be unique.

It is worth noting that Palmgren and Vickers ([PV07]) show that cartesian theories
are equivalent tpartial Horn theories, i.e. Horn theories in a logic of partial terms.

ExaMPLE 3.1.5. The theory of “lattices equipped with prime Iters” can be pre-
sented with one soit and predicate® L, GIb L;L;L andLub L;L;L
together with constants : L, b : L. The intended meaning & (x) is “X is an
element of the prime Iter P of the latticeL”, and we need appropriate axioms
expressing- as a lattice andP as a prime lter ofL. Glb(a; b; 9 exhibitsc as the

0Either of the form % = ¥ or P (%) for some predicateP.
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greatest lower bound @fandbwhile Lub(a; b; 9 exhibitsc as the least upper bound
of aandb. The constant is the top element anidlis the bottom element. The lattice
axioms are as usual, that is idempotency, commutativity, and associativity laws of
meet and join plus the identity laws foandb with respect to meet and join, and the
absorption laws. The axioms (xii), (xiii) expreBsas a Iter and the axioms (xiv),
(xv) say thatP is indeed a prime lter.

(i) > 2 Glb(a;a;d)

(i) > 5 Lub(a;a;d

(i) Glb(a;b;9 * an.c Glb(b;a; 9

(iv) Lub(a;b;9 " apc Lub(b;a; g

(v) Glb(b;c;9 " Glb(a;b; g~ Glb(a; d;f) ~ apcaer Glb(e;c;f)

(vi) Lub(b;c;d " Lub(a;b;9 ™ Lub(a;d;f) ~ apcaer LUb(e;c;f)

(vii) > 5 Glb(a;t;a)

(viii) > 4 Lub(a;b;a)

(ix) Glb(a;b;Q ~ apc Lub(a; c;d)

(x) Lub(a;b;9 " anc Glb(a; c; )

(xi) Glb(a;b;9 " P(a)” P(D) " apcL P(C)

(xii) Lub(a;b;9 " P(@) " apeL P(0)

(xiii) > P(t)

(xiv) P(b) " ?
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(xv) Lub(a;b;9 " P(C) " apcP(a) _ P(b

REMARK 3.1.6. The theory of posets and groups are cartesian regular, while the
theory of linear orders is not regular. The theory of “lattices equipped with prime
Iters” is not cartesian. Similarly, the theory of local rings is not cartesian.

3.1.2 Homomorphism of theories

DEFINITION 3.1.7. There is a category of ( rst-order) geometric theories whose
morphisms are known a&eory homomorphismsFor signatures and °, asig-
nature homomorphism F: ! Ois an assignment to each softof a
sort F(X) of © to each function symbdl : X;:::; X, ! Y a function sym-
bol F(f): F(X41);:::;F(X,) ! F(Y) of © and to each relation symb&

Xy X, of  toarelation symboF (R)  F(X4);:::;F(X,) of © Note that
the above setup ensures tkatakes terms to terms and formulae to formulae while
keeping their corresponding contexts xed.

For theoriesT = ( ;) andT°=( % 9, atheory homomorphism F:T! T°
is a signature homomorphism which in addition takes an axiony of T to an
axiomF( ) xF( ).

There are many obvious examples of theory homomorphisms: for instance the
forgetful homomorphism from the theory of monoids to the theory of groups,
or the inclusion of theory of groups in the theory of rings.

3.1.3 Interpretations and models

Interpretation of signature of a language

DEFINITION 3.1.8. Suppose we have a rst order signatureandSis a category
equipped with all nite products. A -structure (akainterpretation ') M consists
of the data

1This is Tarksi interpretation and should be distinguished from BHK (Brouwer-Heyting-
Kolmogoroy interpretation where the interpretation of relation symbols is de ned differ-
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(i) an assignmentto each soft2 an objectM [X] of S,
(i) an assignment to each sequenteg :::; X, of sorts the producM [X]
M [X,] in Swhere the empty sequenfjeof sorts is interpreted to be the

terminal object of5,i.,e. M[] =1,

(i) an assignment to each function symibal Xq;:::; X, ! X in  amorphism

MI]:M[X4] 0 M[X,]! M[X]inS and
(iv) an assignment to each relation symisdl  Xq;:::; X, in  a subobject
M[R] M[X:] ::: M[Xy]inS

DEFINITION 3.1.9. Suppose is a rst order signature antfl andN are interpre-
tations of in a categony5. A -morphism from M to N is an assignment to each
sortX 2 amorphism x: M[X]! N[X]such that for every relation symbol
R Xg;:i:;Xpin , there is a (unique) morphismg: M[R] ! N[R] which
makes the diagram

M[R] —— M[X4i] ::: M[X,]
R% ‘/ Xq o Xn
N[R] ——— N[Xi] ::: N[Xa] (3.2)
commute and moreover, for every function symbolX 1;:::; X, ! X the diagram
MI[f]
MI[X:] ::: M[Xp] —— MI[X]
N[Xa] i N[Xa] — NIX] (3.3)

commutes.

ently [Joh02b, Remark D.1.2.2]. BHK interpretation provides semantics of intuitionistic
logic.
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Notice that if we interpret our signature in the category of sets, then the

above commutativity condition 3.2 states that for every n-tuple (a;;:::;a,) 2
M [X 4] M [X ], we have
M F R(ai;::7an)) N F R( x,(a1);::i5 x,(an)) (3.4)

REMARK3.1.10. The commutativity conditio3.3) is a special case ¢8.2) once
we describe the functioh instead by its graph relation. Recall that in any cartesian
category thgraph of morphism f: X ! Y isasubobject: Gr(f) X Y

with the property that := is an isomorphismand = 1
Y
%
Gr(f) —— X Y f

Moreover, a square

commutes iff there is a morphisgt Gr(f) ! Gr(f9 suchthat3g= y 4=
hY :hoandfg=xog:kx: 0-

REMARK 3.1.11. An immediate consequence of the above de nition is MgR]

iIsasubobjectof; ::: ) N[R]. We will soon see that for a class of special
morphisms (elementary embeddingd)[R] = ( 1 ::: n) N[R] as subobjects
of M[X1] ::: MI[X,]

CONSTRUCTION3.1.12. For any categony, and a signature , the -structures
and -morphisms form a category-Str where the identity -morphism and the
composition of -morphisms is de ned component-wise as identity morphism and
composition of morphisms i8.
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EXAMPLE3.1.13. A -morphism : 1 ! J for the theory of (strict) linear inter-
vals is a function which respects the order (commutativity of diagfa:/®)) and
moreover, preserves the top and bottom elements (commutativity of dig@ra).

Interpretation of terms

Terms are interpreted as morphisms while formulae are interpreted as sub-
objectS' given an interpretation M of signature of a IanguageL as above,

morphism Ix:itky : M[X41] ::: M[X,]! MI[Y], wherex;: X;,forl i n.
Depending on the construction of term t, we de ne its interpretations in
context x inductively as follows:

(i) Whent is the unique term of the unit sort 1, Jx:tK, is de ned to be the
unique morphism M [X4] ::: M[X,]! 1inS

(i) When tis a constant terma: X, Jx:tK, is de ned to be the composite

M[X]& M [X ]

N,

(i) Whent is the variable x;: X; , Jx:tk, is de ned to be the ith product

projection :MI[X. ::: M[X,]! MI[Xi],
(iv) whentis of the form f (t1;:::;t,) for some function symbol f and some
termst;: A; in a suitable context x = ( X1;:::;X,), then Ix:tk, is de ned

to be the composite

Q M[Xi] Jx:t Ky

1in
hix:t 1 Ky ;:::;Jx:tm %[f']

° M[A]

1im

M [A]
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Note that (ii) is just the nullary case of (iv). By an inductive argument on
construction of terms, we can easily prove the following important property
concerning interpretation of substitution of contexts. For instance the item (ii)
is when the context ¥ in below is empty.

PROPOSITION3.1.14. Suppose aterm: A inacontexty = (y1: Y1;::7;Ym: Ym)
is given, ands = (S;: Y1;:::;Sm: Yn) IS a string of terms, each in the suitable
contextx = (X1;:::;X,). ThenJd x:t[s;=vi;:::;Sn=Yn] Ku is interpreted as the

composite of arrows in below:

(? M [X,] J x:t[s1=y1;::58n =Yn] Ky M [A]
1 i n
hJx:s1Ku ;:::;JX:SWQ AK\A
- MIYi]
1 i m

Interpretation of formulae

For the interpretation of terms in a category C all we needed was for Cto be

nitely complete. However, for the interpretation of some formulae, we need

more categorical structures depending on the range of logical operators €,?,
W Vv . . : .

9,8 ), , ). Since we are concerned with the geometric logic, we shall

focus on giving the interpretation to terms formed by =;>;9; ;.

Formulae are interpreted as subobjects; given an interpretationM of signature

of a languagelL, we will interpret a formula  in the context % as a subobject
I Ky M[X:] ::: M[X,]. We do this by induction on construction
of formula . Note that in the case of interpretation of atomic formulae, we
need the category S of models to have all pullbacks (of monomorphims),
equalizers, and in the case of interpretation of existential quanti cations to
have stable image factorizations. On the whole, regular categories suf ce. For
in nite joins, we need at least the structure of an in nitary coherent category
(aka “geometric category”, e.g. in [Joh02b, D2.1]). Grothendieck toposes are
in nitary coherent.
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() When is an atomic formula of the form R(ty;:::t,,) for a predicate/relation
symbol R Xq;:: Xm and eacht; is a term of type X; in context

¥=(yi: Y 0 ¥n: Yy), forl i m, then 3% K, is de ned by the
pullback
I Ky M[R]
(-g M [Yl] hdyit 1 Ky 5o dyit m Ky i Q M [XI]
11 n " 1 i m

(i) When is an atomic formula of the form (s = t) for terms s;t of sort A
de ned in a context %, then Jx: K, is de ned by the equalizer

_ e o B:sky
I Ky - M [Xi] /= MIA]
Itk

1in

(i) When is>,then Jx: K, is the top element of lattice Sub(M [X 4]
M [Xn]).

(v) When is ~ ,where and are de ned inthe same context %, then
¢ K, is de ned by the pullback of subobjects Jx: Ky Q M [Xi]

Q 1 i n
and Jx: Ky M [Xi].

1in
(v) When is _ ,where and are de ned inthe same context %, then

Ix. Ky is de ned by the union of subobjects Jx: Ky Q M[X;] and

1in
I Ka Q M [X;]. In practice we work in situations where Sis a

1in
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(vi)

pretopos: then the union of subobjects can be constructed as the image
of a morphism from a coproduct.

I Ky B Ky

/ \Q

I Ky + B Ky M [Xi]

1

In the case of a Grothendieck topos, this can be extended to in nite
disjunctions since in nite set-indexed coproducts exist.

When is (9y) for some formula in context %, and variable y of
sort Y, then the interpretation of  in context x is given by the image
of m o, Wwhere m witnessesJ K., as a subobject of the product
1? MIX] MY,

Iy Ku Fx: Ku

| |

N M [Xi]

1

Q

- MXi] MY] —————

Indeed, originally due to the great insight of Lawvere, there is a universal
property to the content of the existential derivation rules which can
be expressed by the adjunction9 ; a , where the right adjoint is the
reindexing functor. For a locally cartesian closedS, we have the triple
adjoints ; af a ; (the top row of the following diagram) which
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induces the corresponding triple adjoints 9; a f a 8; (the bottom row
of the following diagram) on the lattices of subobjects.

Each inclusion functor on the sides has a left adjoint which is de ned by
the image factorization.

Interpretation of sequents and models of theories

SupposeT is a rst order theory with the signature . Fora -structure M, we
say thatM satis es a sequent ", wheneverJx. Ky  Jx. Ky in the lattice
Sub(l Q M [Xi]). Note that this is more than saying that every global element
of Jx: Imn is also a global element of 3x: Ky, since there might not be enough
global elements: the condition of satis ability of sequents is equivalent to
stating that every generalized element of Jx: K, is also a generalized element

of I Ky.

An interpretation M is a model of T if every axiom sequent in the theory
is satised by M. The category T-Mod (S) of models of T in Sis a full
subcategory of -Str. For any theory homomorphismF : To,! T4, we have a
functor F : S-Mod (T;) ! S-Mod (Tg) which is called the F-reduct functor.
it takes a modelM to F M where the latter is de ned on sorts and formulae
by

I )k wm = IF( )k
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Sometimes the reduct functor has a left adjoint: For instance, if both To and T,
are cartesian theories, then the reduct functor has a left adjoint. A special case
of this occurs when Ty is the empty theory, and the left adjoint to the reduct
functor gives the initial T;-model in the category S.

3.1.4 Model morphisms and elementary
embeddings

Let be the signature for the theory of groups. A -morphism between models
G and H is a group homomorphismf : G! H, because of commutativity
of diagram (3.2). However, the commutativity of this diagram does not
extend to all rst-order formulae. To see this, consider the formula (x) =
(8y; 2)(R(x;y;2) ( R(y; x; z)). For amodel G of T, G[ ] is the centre of G,
i.e. all elements of G which commute with every element of G. It is obvious
that is not natural with respect to all group homomorphisms since elements
of the centre are not necessarily preserved by group homomorphisms. Here is
another example: take the formula (x) = : (9y)(x = y+y). If ais an element
of G which is "not divisible by 2', then commutativity of (3.2) for would mean
that f (&) could not be divisible by 2in H. An arbitrary group homomorphism
need not have this property: e.g. the homomorphismi: Z,! Z;, of (cyclic)
groups with i(1) = 6.

Note that in both examples above we have used logical operators) ;: ) which

are not geometric. It is worth noting that the commutativity of diagram (3.2)

does indeed extend to all formulae in geometric logic (See Proposition 3.1.20).
The rest of the commentary of this section is illustrating the extra stuff that is

needed if we go beyond the geometric logic.

To ensure naturality of all formulae with respect to model morphisms we can
build it into a stronger notion of morphism of structures/models. Perhaps
we should elaborate at this stage on signi cance naturality other than its
categorical signi cance. Consider the following question: Let T be a (fragment
of) rst-order theory. Suppose that, for every (set) model M of T, we specify a
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subsetfl M. Under what conditions does there exist a formula (%) in the
language of T such that = M[ ] for every model M ?

We note that the existence of such formula gives a uniformity in choosing
the subsetsi M. Therefore, at the very least, we need to demand that
the subsetsi{1 have some relation to one another as the modelM “varies”.
To formulate this notion more precisely, we give the de nition of elementary
embeddingof models. It will follow that if the answer to the question above
is yes, then for every elementary embeddingf : M ! N, we must have
1 = f N. So, we arrived at a necessary condition for the question above to
have an af rmative answer.

DEFINITION 3.1.15. Supposq is a rst order theory andl andN are models o

in the language of . Letf : M ! N be a -morphism of models of . Consider
the diagram below:

MK, — M[X{] i M[Xq]
lfl o fn
INK. ——— N[X4] 11 MIX,] (3.5)

The morphisnf : M I N is called

(i) elementarywhenever for everyrst-order formula , the diagram above can
be completed to a commutative diagram. (Notice that any such morphism

M[ (3]! NI (%] that completes the diagram is necessarily unique.)
(i) embeddingwhenever for everyatomic formula the diagram above can b
completed to a pullback diagram @ In this situation,f exhibitsM as a

substructure/submodelof N .

(i) elementary embeddingwhenever for everyrst-order formula in the lan-

e

guage ofT, the diagram above can be completed to a pullback diagram in

C.

3.1 A swift overview of (geometric) rst order theories
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REMARK3.1.16. Note that the notion of "elementary” morphism of models is meant
to depend on the underlying logic. [Joh02b, p. D1.2.10] de nes it only for homomor-
phisms between structures in Heyting categories, and we take that to mean it is with
respect to all rst-order formulae. Most logicians would understand "elementary"” as
conveying the restriction on arbitrary structure homomorphisms that allows natural-
ity for negation, implication, and the universal quanti cation.

REMARK3.1.17. ltis instructive to write down the conditions above in set notation:

(iii) says that
ME (asiisa) 0 NFE (f(a)i:iiif(an) (3.7)
And (ii) says the latter is only valid for atomic formulae.

REMARK 3.1.18. Any embedding and therefore any elementary embedding is a
monomorphism.

Proof. Apply de nition (3.1.15) to the formula (Xx;y) := (X = y), where x;y
are some variables of a typeX. If T does not have any types (hence, no
variables) then existence of elementary embeddingf betweenM and N says
that f =id which is a monomorphism. O

REMARK 3.1.19. For structures/models in a Boolean coherent category every ele-
mentary morphism is an elementary embedding.

The examples from the beginning of this section suggest that the requirements
in de nition of elementary morphism may be too restrictive for morphisms of
models. However, if our underlying logic is geometric, it turns out there is no
such restrictiveness.

PROPOSITION3.1.20. Let Cbe (at least) a cartesian category. Amymorphism of
models inC of a (at most) geometric theoilyis elementary.
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Proof. By induction of formation of geometric formulae and their interpreta-
tion. For more details see Lemma D.1.2.9 in [Joh02b]. ]

3.2 Overview of sketches

Good expositions on theory of sketches are given in [BWO05], [AR94, Chapter
1] and [Joh02b, p. D2]. We start by recalling the concept. We remark that
our de nition follows that of [Joh02b, D2] more closely and is different than
de nition of other two sources mentioned above. The technical difference
is that we de ne a sketch by a directed graph and not a category; we needs
graphs because niteness is important, and a nite graph can generate an
in nite category. Note that there is a forgetful functor from the category of
categories to the category of directed graphs which for a categoryC, gives its
underlying graph jCj. The free functor, the left adjoint to the forgetful functor,
gives us the free category of a directed graph: it has objects for the vertices of
the graph, it has morphisms for each generating edge in the graph together
with morphisms for formal compositions of them.

REMARK 3.2.1. SupposeC is a category which has morphisths a ! b and
g:b! candh =g f:a! c Supposd(jq) is the free category over the
underlying graph o€. InF(jCj),h6 g f.

Before de ning sketches, we need to introduce some preliminary concepts:

DEFINITION 3.2.2. SupposéS is a directed graph andis a category.
(i) A diagram of shapeG in Cis a homomorphismd: G!j G of graphs.
(i) A diagramd: G ! j G is commutative whenever for any two patk&sin G

with the same source and same target, the two morphisms obtair@tyin
composition along the two paths are equal.

12j e. a walk in which all vertices (except possibly the rst and last) and all edges are distinct;
it is given by a nite strings of edges. This string could well be empty in which case the
composition along the corresponding path is assumed to be identity in the category.
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(i) Adiagramd: G!j (is nite whenevelG is a nite.

(iv) Adiagramd: G !j G with an apexgy 2 G is aconeif for every vertexg
distinct fromgo there is a unique edge frogg to g and no edge frong to g.
One can say from theiewpointof apex the diagram commutes. For a cone
(d: G'j ;) with apexgy, we call the the diagram formed by deletigg
and all outgoing edges frogy the base diagranof d.

(v) Dually, adiagrand: G ! j G with an apexg, 2 G is acoconeif for every
vertexg distinct fromg, there is a unique edge frogto g, and no edge from
0o to g. Similar to the above, every cocone has a base diagram.

ExAMPLE3.2.3. Consider directed grapl@ (left) andG° (right) in below.

[
0 J

a a—b

Let C be a non-empty category with at least one non-identity endomorphism, say
f. Letd: G !j ( be the diagram specied bg(a) = A andd(i) = f: A !

A. Observe thatd commutes if and only if = id . Now, consider the diagram

d% GO!'j G withd(a) = A, d(b) = A, andd(j) = f. Observe thati®commutes.

DEFINITION3.2.4. A limitsketch GisatripleG = (G; D;L) whereG is a directed
graph,D is a speci cation of a set of nite diagrams i@, andL is a speci cation
of a set of cones its.

DEFINITION 3.2.5. A modelM of a sketchG in a categoryCis a graph homomor-
phismM : G ! ( such that

(i) Foreachdiagramd: 1! GinD,the compositt d: 1 !j Cisacommu-
tative diagram.

(i) Foreachcond : 1 ! G;ip) in L with apexip 2 |, the image undeM
"1 1) g form alimit cone inCwith apexiq over the base of.

Note that if a sketch G does not have any cones, that id_ is an empty speci -
cation, then a model M of G in a category Cis essentially the same thing as a
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functor F(G) i ! C, where F(G) is the free category over sketchG and
hDi is the smallest congruence onF(G) which is generated by identi cation of
all parallel arrows in F(G) constructed from edges inD. In the case the sketch
has cones, the story is a bit more complicated.

EXAMPLE3.2.6. In this example we sketch the theory of commutative monoids. We
denote the sketch b§M. The graphGey is de ned by four vertices®; a'; &; a®
and the following edges

i,

id

\ ”Lll

2 p°
1

1
cEF 3

The idea is thap' andp’ are meant to express various projectionss meant to
express binary multiplication of monoid, amdthe identity element with respect

to multiplication. To achieve this we must introdubeandL as speci cation of
diagrams and cones to be interpreted in the models by commutativities and limits
cones according to De nition 3.2.5.

TakeL to be the set of following cones (with respective apéya?; a® from left to

right).
a2 ad
(0] 1 0 2
N
at al al al al

Thus for any categorg with nite limits, and any modeM of this sketchM [2°]
must the terminal object &, andM [&?] = M [a}] M [al], andM [a®] = M [al]
M[al] MI[al] andM [p'] will be the corresponding product projection morphisms
in C. ThereforeM [a!] M[al]= M[a?]) M][al] gives the binary multiplication
in C.
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The setD of diagrams is comprised of

3
a
id 0 1 1
p 0:1 p p 1;2 p
0 /Jp\ /Jp\
2 1 1
a e d o a a e d v a

where the rst diagram ensures thdtmust be interpreted as identity morphism in
C and the two others express tipatandp™ are appropriately interpreted as product
projections. We also need to add two more diagramB tim order to express the
equations of the unit involving edgées € e id. Additionally,

id id

a3—>a2 a34>a2

N N

belong toD which express the role od and id, and

id
ad——a

||

& ——a

expresses the associativity of binary product, and

a24>a2

AN\ NS

a2*>324>a2 al%aZ*}al

express the role of as a switch operator and also the commutativity of the binary
product.
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REMARK3.2.7. The sketch above is by no means the unique sketch which presents
the theory of commutative monoids; it is in fact the minimal such sketch. We could
have as well added edges sucHaa! | a°, other identity edgel: a® ! & and

id: a®! a3, etc. We also could have added more equations, by adding to the set
diagrams like

al
id / Xﬁd
aé a2

Notwithstanding these additions, a models in any category (with nite limits) would
remain the same which is exactly an internal commutative monoid.

3.3 The 2-category Conof AU-contexts

In this section we are going to give a brief summary of main aspects of the
theory of AU-sketches and AU-contexts as developed in [Vic19]. We give a
handful of examples, each illustrating some concept of the theory, but we shall

avoid repeating proofs of [Vic19]. The exact references to various results of

Vickers' paper are given so that the reader could nd proofs of various claims

which appear in this section.

The observation underlying [Vic19] is that important geometric theories can be
expressed in coherent logic (no in nite disjunctions), provided that new sorts
can be constructed in a type-theoretic style that includes free algebra construc-
tions. Models can then be sought in any arithmetic universe (list-arithmetic
pretopos), and that includes any elementary topos with nno; moreover, the
inverse image functors of geometric morphisms are AU-functors.

If a geometric theory T can be expressed in an “arithmetic way', then we can
compare its models in AUs and in Grothendieck toposes. One advantage of
working with AUs over toposes is, usually when working with toposes, in nities
we use (for example for in nite disjunction), are supplied extrinsically by base
topos S, however, the in nities in AU hTi come from the intrinsic structures of
arithmetic universes, e.g. parametrized list object which at the least gives us
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N := List(1), Q, and R. In below, we illustrate some of the differences between
the AU approach and the topos approach. To see more details about expressive
power of AUs we refer the reader to [MV12].

Arithmetic Universes Grothendieck toposes
Classifying category AU hTi S [T]
T,! T, AU HT,i ! AU HT i S [T4! SI[T,]
Base Base independent BaseS
In nities Intrinsic; provided by List | Extrinsic; got from S
e.g. N = List(1) e.g. in nite coproducts
Results A single result in AUs A family of results by
varying S

The system developed in [Vic19] expresses those geometric theories using
sketchesThey are, rst of all, nite-limit- nite-colimit sketches: an AU-sketch

is a re exive graph with designated commutativities, initial and terminal
objects, pullbacks and pushouts, and list objects. From these we can easily
construct, for example, the natural numbers N, the integers Z, and the rational
numbers Q.

A model of a sketchT in an AU A is a graph morphism into the underlying
re exive graph of A which actualizes the designated universals in the AU. If
the AU is equipped with chosen limits, colimits, and list objects, then one can
distinguish between “strict' models and "models up to isomorphism'.

In general, non-strict models cannot be stricti ed since the same node can be
marked as being part of different universals, which may be isomorphic, but
not equal in a given AU.

However, AU-sketches that are generated by successively adjoining universals
to the empty sketch (in particular without identifying nodes), do admit stricti-
cation, as is shown in [Vic19]. These special sketches are called contexts and
they are the objects of a 2-categoryCon In [Vic19] it is shown that Conadmits
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PIE-limits and embeds fully and faithfully into the opposite of the category of
AUs and strictly structure preserving functors.

An AU-sketch is a formalization of the sketches (discussed in 83.2), but ne-
tuned for AUs. Any AU-sketch can be used as a system of generators (the nodes
and edges) and relations to present an AU. More precisely, we have various
structures for sorts and operations shown in the diagram below.

yrb a 2 Vst 0 /Yyt (3.8)
1 2 cl|e tm
di (i=0;1,2) di (i=051) 0
&
1 2 i
upe u°

Here, the elements of G%, G, and G? are respectively callednodes, edges,
and commutativities .

In comparing with our presentation of rst order theories in 3.1, nodes play the
role of the sorts, edges play the role of function symbols, and commutativities
enable us to write equations between terms. The operationsd, and d; (of
diagram (3.8) ) give domains and codomains of edges, respectively, whiles
introduces the identity edge for each node. FromG?'; G% dy;d1;s, we get a
re exive graph of nodes and edges. Atriangle in a sketch is given by edges
u; v; w such that do(u) = d (W), do(v) = d 1(u), and d;(v) = d 1(w). We depict
w

such a triangle asxm. The operationsdy; dy; d;: G2 ! G stipulate
di(!)

commutativetriangles %’%’ for any element ! : G2. We write uv  xyz W

for the mere existenceof a commutativity with that triangle. By the unary

commutativity u  xy U% we mean a commutativity s(X)u  xxy UC.

The elements of the other sorts areuniversals and specify universal properties
of their subjects For example, an element of UP? is a pullback universaland
corresponds to a limit cone in a nite limit sketch. Its subjects are the pullback
node and the three projection edges of the pullback cone. We obtain these
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by using the triangle projection operators *!; 2 (to get the two halves of
the pullback square), and further by node and edge projection operatorsd;.
Similarly, the operator tm takes! : U! to its subject node. We have a dual
situation for pushout and initial universals.

An element of U"™t is alist universal. Its subjects are the list object and the
two structure maps " and cons It will also have indirect subjects, since it

needs terminal and pullback universals to express the domains of the structure
maps. More, precisely, for an element! 2 U™ (aka a list universal), the terms

e(' ) and c(! ) are the primary structure morphisms " and consfor List(A(!)),

where A(! ) =d 1(do( *( 2(!)))). The domains of the structure morphisms (1
and A(!') List(A(!))) are limits, and o; > supply universals to stipulate

them.Note that the terminal needed for a product is taken to be the special
case of pullback.

We commonly write the subjects, and those of the dependent limit universals,
e.g. in a diagram of the form

. ocons
T— Iy P A (3.9)

P1

where the node T is terminal universal, edgesp; and p, are a product cone
making P a product (special from of pullback universal) A L, and" and cons
are the structure morphisms to makelL a list object for A.

A homomorphism of AU-sketches preserves all structures: it is given by a
family of carriers for each sort that also preserves operators, and it maps nodes
to nodes, edges to edges, commutativities to commutativities and universals
to universals.

We shall need to restrict the sketches toAU-contexts. These are built up as
extensions of the empty sketch 1, each extension a nite sequence ofsimple

extension steps of the following types: adding a new primitive node, adding

a new edge, adding a commutativity, adding a terminal, adding an initial,

adding a pullback universal, adding a pushout, and adding a list object. From
now on, we shall refer to an AU-context simply as acontext
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REMARK 3.3.1. An important point about sorts of a context is equality between
them: it is an equality that refers to strictness. Any sort is equal to itself. Starting
from equal data, the derived sorts constructed in the same way from that data are
equal. For example, X = Y thenList(X) = List(Y).

For nodes, equality is witnessed by certain edges between them that, in any strict
model, will have to be interpreted as identity morphisms between equal objects. The
base case iglentity edgeof the forms(X) (for some nodeX) in the sketch. In-
ductively we also have the llins for limits/colimits/list nodes de ned over data for
which we already have such edges (e.g. consider extending by a pullback universal
over two opspans whose corresponding sorts are equal). Vickers ([Vic19]) proves
that these edges atmique when they exist, and gives an equivalence relation on
nodes. The uniqueness here is upetige equality for two edges, equality is wit-
nessed by a commutative square (i.e. two commutativities) with the two given edges
and two identity edges. Existence of the equalities is decidable. If two nodes are in-
troduced in different ways then they are not objectively equal; otherwise by recursion
through the data from which they are constructed we can prove their equality.

Note that some of these simple extensions does not have any effect on (strict)
models since they do add nothing new to the (strict) models of the sketch in
arithmetic universes/toposes.

The following is an example of simple extension by adding a pullback univer-
sal.

ExAMPLE3.3.2. Supposd g is a context an&, andX; are two nodes in it. Consider
its equivalent extensiofh; = To+ Tg by a terminal node with

Ul=fg
G°=ftm( )g
G' = fs(tm( ))g

Here byT, = To+ To, we mean that for every sort of sketchT, the sef(T,)
of elements of sort can be expressed as a coprodlict+ , with a coproduct
injectionT ! (T,;) andthat is astrongly nite set(i.e. isomorphic to a nite
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ExaMPLE3.3.3. Supposel is a sketch that already contains data in the form of a
opspan of edges——+—/ 02 Then we can make a simple extensioldab T°by
adding a pullback universal for that opspan, a cone in the form

Along with the new universal itself, we also add a new n&de¢he pullback; four
new edges (the projectioms; p?; p and the identity folP) and two commutativities
u;p*  pandu,p? p. So, more precisely, what is added T:

urb = E pt jl&;

G*=fp'uy p;p°u, pg
G' = fp';p;p%s(P)g
G°= fPg

where signi es a commutativity.

An important feature of extensions is that the subjects of the universals (for
instance, P and the projections in the above example) must befresh— not
already in the unextended sketch. This avoids the possibility of giving a single
node two different universal properties, and allows the property that every
non-strict model has a canonical strict isomorph (e.g. if we were able to impose
an equality between two derived sorts such ad.ist(X) and Y Z it would violate
the canonical strict isomorph theorem).

The next fundamental concept is the notion of equivalence extensionThis
is an extension that can be expressed in a sequence of steps for which each
introduces structure that must be present, and uniquely, given the structure in
the unextended sketch. Unlike an ordinary extension, we cannot arbitrarily
add nodes, edges or commutativities — they must be justi ed. Examples of
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equivalence extensions are to add composite edges; commutativities that
follow from the rules of category theory; pullbacks, llins and uniqueness

of llins, and similarly for terminals, initials, pushouts and list objects; and
inverses of edges that must be isomorphisms by the rules of pretoposes. Thus
the presented AUs for the two contexts are isomorphic.

EXAMPLE 3.3.4. In the case of pullback universal, new edges arise as universal
structure edges and llins.

» A simple extension for a pullback universal is also an equivalence extension.

« Suppose we have a pullback universa UP° where! is given as

P

\PUZ

ui

and i; », are commutativities
Vo 4

N

ui

Vi uz

with equations
do( ) =do( () = u
di( 1)=d1( 2)= V.

specifying that ;; » is another cone on the same data. Then our equivalence
extension has

Gl = fw = hvy Vi

G2=fwp! vi:wp®  Vvu.

Ul;Uzg
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» Suppose we have a pullback univers@ UPP as above, and edges v,; w; w°
with commutativitiesvpt  vi;wp?  vo;wht v, w? Vo, Then our
equivalence extension has

G*=fw wq.

ExXAMPLE 3.3.5. We construct theSierpinski context S by adding two nodes
and1 wherelis a terminal node and a ‘'mono' edgd 1, where being mono is

expressed by two commutativitiss i and il;is ,2, in an equivalence extension
SPof S13

whereP;; is the subject of a pullback universaliadlong itself.

Any sketch homomorphism between contexts gives a model reduction map
(in the reverse direction), but those are much too rigidly bound to the syntax
to give us a good general notion of model map. We seek something closer to
geometric morphisms, and in fact we shall nd a notion of context mapthat
captures exactly the strict AU-functors between the corresponding arithmetic
universesAU hTi. A context map H: To! T, is a sketch homomorphism
from T, to some equivalence extensionT§ of To. In picture, it is given as an
opspan:
To—T§0"—T,

where F is a sketch extension morphism andE an sketch equivalence. We
think of a context map To ! T; as a translation F from T; into a context
equivalent to To. We can say morphismsTy ! T, are models of T, in “stuff

13The upper commutativity is being considered here to express } 4 . The lower
commutativity already existed as derived data fori .
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derivable from T,". Still put in terms of classifying AUs and strict AU-functors
we get an opspan

AU HToi " Eau TG AU h i

SinceE is an equivalence extension AU hEi is an isomorphism ([Vic19, Propo-
sition 18]). Each model M of T, gives — by the properties of equivalence
extensions — a model of T3, and then by model reduction along the sketch
homomorphism it gives a modelM H of T;.

Thus context maps embody a localization by which equivalence extensions
become invertible. Of course, every sketch homomorphism is, trivially, a map
in the reverse direction. Context extensions are sketch homomorphisms, and
the corresponding maps backwards arecontext extension mapsrlhey have some
important properties, which we shall see in the next section. We emphasize
that context maps (1-morphisms in the 2-category Conof AU-contexts) 'go in
the geometric direction’ rather than the algebraic one, i.e. if T is obtained from
S by adjoining new structure, then the corresponding extension map goes in
directon T! S

At this point let us introduce the important example of the hom context
T' of a context T. We rst take two disjoint copies of T distinguished by
subscripts 0 and 1, giving two sketch homomorphismsig;i,: T! T' . Second,
for each node X of T, we adjoin an edge x: Xo ! X;. Also, for each edge
u: X! Y of T, we adjoin a connecting edge ,: Xo! Y; together with two

commutativities:
Xo 4X/X1

N

Yo %Yl

Uo uq

A model of T' comprises a pair Mo; M, of models of T, together with a
homomorphism : Mg ! Mj. In particular, a model of O' in a topos A is

exactly a morphism in A . We can de ne diagonal contextmap +: T! T
by the opspan(id; F) of sketch morphisms whereF sends edges x to (X),
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to u and commutativities to degenerate commutativities of the form ugX) u
and s(Y)u u.

We de ne a 2-morphism between context mapsHg; Hi: To! T; to be a map
H:To! T!l which composes with the mapsig;i;: T!1 I T,togive Hy and
Hj.

Finally, an objective equality between context mapsH, and H, is a 2-morphism
for which the homomorphism between strict models must always be an identity.
This typically arises when a context introduces the same universal construction
twice on the same data.

Let us explain the last point in more details: the (intensional) equality between
context mapsf;g: T, T, is formulated in [Vic19] by using a common
re nement of equivalence extensions, and therefore, we can assume that they
are both sketch homomorphisms fromT, ! T2 where T¢ is an equivalent
extension of context T;. Thus, every sketch ingredient in T, is taken to one of
the same kind in T9.

We de ne the equality in two stages. First, an "object equality” is for ingredients
already in T1 that serve to witness the equality between f and g. After that,
"objective equality” is for when those ingredients can be derived, using an
equivalence extension of T1.

From these material [Vic19] constructs the 2-category Con whose objects
are contexts, morphisms are context maps modulo objective equality, and
2-morphisms are 2-morphisms. It has all PIE-limits (limits constructible from

products, inserters, equi ers). Although it does not possess all (strict) pullbacks

of arbitrary maps, it has all (strict) pullbacks of context extension maps along

any other map.

For instance in Con the Sierpinski context S de ned in Example 3.3.5 has two
global points ?;>:1  Swhere the terminal context 1 has empty sketch.
These global points correspond to the sketch homomorphismg=;F% S 1°
where 1°is the extension of the terminal context by an initial node and a
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terminal node, and F and F°take the node | of the sketch of Sto the initial
and terminal node of 1° respectively. It is easily checked that there is indeed a
2-morphism ? ) > analogous to the specialization order for the Sierpinski
space.

We now list some of the most useful examples of AU-contexts. For more
examples see [Vicl9, §3.2].

EXAMPLE 3.3.6. The contextO has nothing but a single nod¥,, and an identity
edges(X) onX . A model ofO in an AU (or topos) is a “set” in the broad sense

of an object ofA , and sdD plays the role of the object classi er in topos theory. The
classifying topos 00 is [Set,, ; Sef] and with the inclusion functdnc: Set, | Set

as its generic model. There is also cont®xtwhich in addition to the generic node

X has another nodgdeclared as terminal, thatisi( ) = 1, and moreover, it has

an edgex: 1! X (This is the effect of adding a generic point to the context

Its models are the pointed sets. This time we must distinguish between strict and
non-strict models. In a strict modédl]s interpreted athe canonicaterminal object.

The classifying topos dD is the slice topo$Set,, ; Sef|=Inc. The generic model of
O in[Set,;Sef=Inc is the pair(inc; :Inc! Inc Inc) where is the diagonal
transformation which renders the diagram below commutative:

Inc Inc |
Inc

There is a context extension map: O ! O which corresponds to the sketch
inclusion in the opposite direction, sending the generic nod® ito the generic
node inO . As a model reductionJ simply forgets the point. Note that there is
another context map, however not an extension reapg® ! O corresponding to
the sketch map sending the generic nod®ab the terminal node I© .

nc

EXAMPLE3.3.7. The contex©O' comprises two nodeX, andX; and their identi-
ties, and an edgec: Xo ! X;. A model ofO' inan AUA is exactly a morphism
in A. We de ne the diagonal context map ! o' by the opspartid; F) where
the sketch morphisrk takes x to (X), , to uand commutativities to degenerate
commutativities of the fornrmgX) uands(Y)u u.
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