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(Discrete) gauge theory and holonomy

» Let M be a manifold.
» A path in M is a piecewise smooth map v: [0,1] — M.
We consider paths up to homotopy, relative to the end-points.
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x@” Paths 1 and ~» are homotopic.

» Denote paths as (x z, y), x and y are initial and end-points.

» Paths (x - y) and (y - z) can be concatenated:

(x L y)y L 2) = (x 25 2).
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Gauge Theory and Holonomy
Let G be a group (G will be finite throughout the talk).
Given a principal G-bundle P — M —i.e. a gauge field —,
we have the parallel transport (a.k.a. holonomy) of P:
F:{Paths in M} — G
Y boll(y) = g, € G
Recall parallel transport preserves concatenation of paths:

Flx By B 2)=FxSy) Fly - 2)

/
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NB: must specify elements p, € F,, the fibre of P at each v € M.
If G is a Lie group we need G-connection A. Locally A € Q'(M, g).



Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G-connection
we only need to know the holonomy along a finite number of paths.
The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G-connection over M looks like:

Labels on edges denote holonomy along them.
Flatness conditions are satisfied on triangles:
the holonomy around each triangle is trivial. “ b

The holonomy around a more complicated c

polygon (plaquette) should also be trivial. abc = 1¢



Discrete G-gauge fields: G a finite group
» Let M be a manifold with a CW-decomposition L into ‘cells’:
vertices v, v/, v’ € L0, edges t,t',t" € LI,
plaquettes P, P’ € L2, blobs b, b’ € L3, ...

(The interior of each plaquette P should be an open disk.)

> Anedge t = (v 5 v) € L1 is assigned g; = F(v 5 V") € G,
the holonomy along t.
Multiplicativity of holonomy lets us know holonomy along
paths homotopic to paths obtained from concatenating edges.

» Each vertex v € L? carries a copy of G (to be the group of
gauge operators supported in v).

» Each plaquette P € L2 imposes a flatness condition on the
colours of the edges around P.



Kitaev Quantum Double Model for topological phases

Define: a) Hilbert space V(M, L) = C{Functions F: L' — G}.
(One copy of G for each edge t € L1.)

b) a group T(M, L) =[],c.0 G of gauge operators U: L°— G.
(One copy of G for each vertex v € L°.)

Given v € L% g € G, put U§ € T(M, L) to be the gauge
operator (called vertex operator) such that:

_Jg itx=v

Ug (x
v 1, otherwise

Left-action of T(M, L) on V(M, L), by gauge transformations:
Let F € V(M,L) and U € T(M, L), define:
(UF)(x = y) = UX)F(x = y)U(y) ™
gF((x = y)iv=xv#y,
So (UE.F)(x L y) = F((x LN y)g hiv=y,v#x,
gF((x = y)g iv=x=y.

Ug: V(M,L) — V(M,L) is unitary and called a vertex operator.



Plaquette operators

» Each plaquette P must be assigned a base-point vp.
> A plaquette P € L2 attaches to M (the union of all 1-cells)

along a path in M, namely 9,(P) = <VP LGN VP)

v trem
p———— VP)

)= gvi;lg%gvz 71

» Given a plaquette P and g € G, define the plaquette operator:

. oL (P
DE(F) = {f, it F(ve 20 o) = g

0, otherwise

> Plaquette operator D% : V(M, L) — V(M, L) is self-adjoint.



The Kitaev Quantum Double Model (quant-ph/9707021)
(Slightly different language, as in 1702.00868 [math-ph])
M with CW-decomposition L. V(M, L) = C{F: [} — G}.
Consider the Hamiltonian H: V(M, L) — V(L, M) :

T DR ST DL SIS o

veld geG pel? velLod pel?

All the A, and D,l,G are commuting, self-adjoint, projectors.

A, imposes gauge-invariance at v € 9.

D,lf imposes ‘flatness’ around the boundary of P € 2.
Topological excitations are modules over the algebra ({US, Dh}).
Theorem: The ground state GS(M, L) of H is:

GS(M,L) = {fe V(M, L)

USo F=F, forallgec G,vel®
DEF =F, forall P € [?

GS(M, L) = C{Maps M — Bg}/homotopy, canonically.
Here Bg is the classifying space of G.
Hence GS(M, L) = V(M) does not depend on L and only on M.



‘Extension’ of Kitaev model to Higher Gauge Theory

» Higher gauge theory is a higher order version of gauge theory.

» Higher gauge theory formalises non-abelian holonomy along
paths, and also non-abelian holonomy along surfaces.

» Non-abelian holonomy along surfaces is multiplicative with
respect to the several ways we can concatenate surfaces.

(This is why higher category theory arises here.)

» We need a higher order version of a group: called a “2-group”.

» 2-groups are equivalent to crossed modules.
A crossed module of groups G = (0: E — G,1) is given by:

» agroup map 0: E — G,
» and a left-action of G on E, by automorphisms, such that:

1. d(gre)=gd(e)g™ ! ifgec Gand ecE;
2. d(e)>e =ee’e7!, ife e €E.

Crossed modules will mostly be finite throughout the talk.



Examples of crossed modules of groups G = (0: E — G,>)

1. G a group; A and abelian group.
Consider a left-action > of G on A, by automorphisms.

We have a crossed module G = (A 22271, G ).

In the general example above we can for instance put:
» G={=£1,x}. A=(Z3,+). g>a= ga (mod 3).
» G = GL(Zp, n); i.e. nx ninvertible matrices in Z,.
A= (Z,)". Here pis a prime.

2. Given a group H, put G = (H Ciniii R Aut(H)).
Here Adg(x) = gxg L.

Aut(H) is the automorphism group of H.



2-dimensional (i.e. surface) holonomy functors
Given G = (0: E — G,>) we can define “bigons” in G.

de) g
/,\
\ﬂi/v gcG,eckE.

g

These compose horizontally and vertically:

d(e) g a(e")"th d(e)"lg d(e’)"th
g h gh
a(e’)to(e) g ae')o(e) g
m /\
d(e) g = 1 (ee’)

W/ \/

g g



2-dimensional holonomy functors
Horizontal and vertical compositions of bigons in G are:
associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

N s T

does not depend on the order whereby it is performed.
As a consequence evaluations of more complicated diagrams like:

£ T\ m _ N
T
do not depend on the order whereby we apply compositions.
A very general result is in 1702.00868 [math-ph]

This leads to a notion of non-abelian multiplication along surfaces.
This notion underpins surface-holonomy in higher gauge theory.




2-dimensional holonomy
A geometric bigon on in a manifold M is given by:
Two paths v,~": [0,1] — M, with the same initial and end-point.
A homotopy (i.e. a ‘surface’) X: [0,1]> — M, connecting v and 7.
Y is considered up to homotopy relative to 9([0, 1]?).
Geometric bigons are represented as:

!

~

/\
X ﬂZ Y,
\/

~

Geometric bigons can be concatenated horizontally and vertically.

» Definition Let M be a manifold; G a crossed module.
A 2-dimensional holonomy (i.e. a higher gauge field) is a map:

{ Geometric bigons in M} Z, {Bigons in G}

Preserving horizontal and vertical compositions.
The underlying G-2-bundle can be reconstructed from F.



2D holonomy along %

7

2
holl(v1)

— ® hol2(2 °
\ﬂy (ex) gy,
ho]l(rm) _ /ﬁ\ 7
\w/

8o

Note: for Lie crossed modules (0: E — G,1>), 2-dimensional
holonomies arise from pairs A € Q*(M, g) and B € Q3(M,e),
with O(B) = Curva = dA + 1[A, A].



The HGT analogue of Kitaev quantum double model

Let G = (0: E — G,) be a crossed module.

Let M be a compact manifold, possibly with boundary.

Let L= (L% L' L2 [3...) be a CW-decomposition of M.

In HGT 3-cells b € L3 (called blobs) have an important role.

A discrete 2-connection F is given by an assignment:
WGLngWEGaHdPELZHepEE,

satisfying the fake-flatness condition, namely:

If we have a configuration like:
Then:

d(ep) = 8, 8:818n -




The Hilbert space for the higher Kitaev model

» M a compact manifold, with a CW-decomposition L.
» We put ®(M, L) = {Discrete 2 — connections F}.
» And V(M, L) = C®(M, L). Hilbert space for discrete HGT.

» The group of gauge operators puts together gauge
transformations along vertices and along edges:

Tm=(][ox( [ B

0
vel o(t)Sr(t)ell

= {Functions L° — G} x {Functions [* — E}

Where U € [],¢;0 G left-acts in 1) € [],;1 E as:

(Un)(o(t) = 7(2)) = U(o(2)) > n((o(t) = 7(2)))

For S? with one vertex and one edge T(S',L) = G x E.



Discrete surface holonomy. arXiv:1702.00868

Let G = (0: E — G,p) be a crossed module.
Let F € ®(M, L) be a discrete 2-connection.

» Theorem Let ¥ be a 2-sphere cellularly embedded in M,
v € X, an ‘initial point’. We have a surface-holonomy:
Hol?(F,X) € ker(0) C E.

This surface-holonomy depends only on the starting point
v € ¥, and not in the way whereby we combine 2-cells.

For example, consider the discrete 2-connection on the
tetrahedron %, below, based on the bottom left corner vy.

1

o1 912

0

go2 2
9g(e1) = gorgia(gos) ™" Dg(ea) = 912923(913) ™" g(e2) = go2g23(gos) ™t Dg(es) = gor1g12(go2) *

Then Holao(]:, Y)=ee'eglgve




Action of the group of gauge operators

» We have an action of the group of gauge operators T(M, L)
on ®(M, L), preserving 2D holonomy, up to acting by g € G.

Given t € L, and e € E, let Uf be the unique gauge operator
supported in t with Ug(t) = e. (Called an edge gauge spike.)

Given v € L° and g € G, let Uf be the unique gauge operator
supported in v with U$(v) = g. (Called a vertex gauge spike.)

P

A
’ ) N
9t a(e)ge,
o(e)gt,

g1



Action of the group of gauge operators

Some examples of vertex gauge transformations:

1

G

dgler) = »9: 93 '92 ' 0 dg(er) = 59395 (992) " (9g1)



Action of the group of gauge operators

Some examples of edge gauge transformations:

95((9597 9595 " >e) ep) = gsgr g5 95 ' 0(e)g1
6(5)92

oz,

9glep) = 959195 '95 ‘o1 dg(ep gitpe™) = gsg5 g5 951 0(e) " n



Vertex, edge and blob operators

Let G = (9: E — G) be a crossed module.
> All vertex operators U$: V(M, L) — V(M, L) are unitary.
> All edge operators Us: V(M, L) — V(M, L) are unitary.
» Given a 3-cell b, a blob, let 9b C M be its boundary.
Hence 0b is a 2-sphere cellularly embedded in M.
The blob operator Cf is defined as (here k € ker(9))

F, if 2hol(F,0b) = k

0, otherwise

Ch(F) = {

» Clearly CK: V(M, L) — V(M, L) is self-adjoint.
b



The higher gauge theory Kitaev model

V(M, L) = C{Discrete 2 — connections F}.
Hamiltonian H: V(M, L) — V(M,L).

1 ~ 1 N
TEED 1 ST B DEB ST it S

velLo geG tell ecE bel3
1
H==> A=Y B:— > CF.
veld tell bel3

All operator in the last sum are commuting self-adjoint projectors.

Cif forces the surface-holonomy of a discrete 2-connection F to be
trivial along the boundary of the 3-cell b.

Algebra generated by the U, U¢ and C{; is our proposal for a
local operator algebra A. Relations are in arXiv:1702.00868.
Physically relevant (i.e. topological) excitations are module over A.



Ground state degeneracy of higher Kitaev model

Theorem The ground state of H: V(M, L) — V(M,L) is

USF=F, forallvelg,gecG
GS(M,L)={ Fe V(M,L)|USF=F, forallte Ly,ec E
CleF =F, forall be Ls

= C{Maps M — Bg}/Homotopy, canonically .
Hence G(M, L) = V(L) depends only on M and not on L.

Here Bg is the classifying space of the crossed module G.



Classifying space Bg of a crossed module G
As the geometric realisation of a simplicial set Bg has:
» one 0-simplex {x}
> One 1-simplex * £ « for each g € G.
» 2-simplices have the form (where g,h € G and e € E):

*
g h .
/GP\ Plaquette P is based at bottom left
 ——— > % .
2(e)1gh vertex, and attaches clockwise.

» 3-simplices have the form (where e; e2_1 e3_1 go1> e = 1g):

0 o2 0 o2 2

dg(e1) = gorgna(gos) ™ Oglea) = g12923(g13) " g(e2) = go2g23(go3) ™t Dgles) = gorg12(g02) "

» The n-simplices are analogous. Colourings of 1 and 2-cells of
the n-simplex, fake-flat on trianges and flat on tetrahedra,
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