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(Discrete) gauge theory and holonomy
I Let M be a manifold.
I A path in M is a piecewise smooth map γ : [0, 1]→ M.

We consider paths up to homotopy, relative to the end-points.

Paths γ1 and γ2 are homotopic.

I Denote paths as (x
γ−→ y), x and y are initial and end-points.

I Paths (x
γ−→ y) and (y

γ′−→ z) can be concatenated:

(x
γ−→ y)(y

γ′−→ z) = (x
γ γ′−−→ z).



Gauge Theory and Holonomy
Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.
If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Conversely, G -connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G -connection
we only need to know the holonomy along a finite number of paths.
The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G -connection over M looks like:

a, b, c ,
d , e, f , g ∈ G .

Labels on edges denote holonomy along them.
Flatness conditions are satisfied on triangles:
the holonomy around each triangle is trivial.

The holonomy around a more complicated
polygon (plaquette) should also be trivial. abc = 1G



Discrete G -gauge fields: G a finite group
I Let M be a manifold with a CW-decomposition L into ‘cells’:

vertices v , v ′, v ′′ ∈ L0, edges t, t ′, t ′′ ∈ L1,
plaquettes P,P ′ ∈ L2, blobs b, b′ ∈ L3, ...

M

v
v’

v’’

t
t’

t’’

P

P’

(M,L)

(The interior of each plaquette P should be an open disk.)

I An edge t = (v
t−→ v ′′) ∈ L1 is assigned gt = F(v

t−→ v ′′) ∈ G ,
the holonomy along t.
Multiplicativity of holonomy lets us know holonomy along
paths homotopic to paths obtained from concatenating edges.

I Each vertex v ∈ L0 carries a copy of G (to be the group of
gauge operators supported in v).

I Each plaquette P ∈ L2 imposes a flatness condition on the
colours of the edges around P.



Kitaev Quantum Double Model for topological phases
Define: a) Hilbert space V (M, L) = C{Functions F : L1 → G}.

(One copy of G for each edge t ∈ L1.)

b) a group T (M, L) =
∏

v∈L0 G of gauge operators U : L0 → G .
(One copy of G for each vertex v ∈ L0.)

Given v ∈ L0, g ∈ G , put Ug
v ∈ T (M, L) to be the gauge

operator (called vertex operator) such that:

Ug
v (x) =

{
g , if x = v

1G , otherwise

Left-action of T (M, L) on V (M, L), by gauge transformations:
Let F ∈ V (M, L) and U ∈ T (M, L), define:

(U.F)(x
t−→ y) = U(x)F(x

t−→ y)U(y)−1.

So (Ug
v .F)(x

t−→ y) =


g F((x

t−→ y)); v = x , v 6= y ,

F((x
t−→ y)) g−1; v = y , v 6= x ,

gF((x
t−→ y)) g−1; v = x = y .

Uv
g : V (M, L)→ V (M, L) is unitary and called a vertex operator.



Plaquette operators
I Each plaquette P must be assigned a base-point vP .
I A plaquette P ∈ L2 attaches to M1 (the union of all 1-cells)

along a path in M1, namely ∂L(P) =

(
vP

∂L(P)−−−→ vP

)

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

F(vP
∂L(P)−−−→ vP) = g−1

γ4
gγ3gγ2γ1

I Given a plaquette P and g ∈ G , define the plaquette operator:

Dg
P(F) =

{
F , if F(vP

∂L(P)−−−→ vP) = g

0, otherwise

I Plaquette operator Dg
P : V (M, L)→ V (M, L) is self-adjoint.



The Kitaev Quantum Double Model (quant-ph/9707021)
(Slightly different language, as in 1702.00868 [math-ph])
M with CW-decomposition L. V (M, L) = C{F : L1 → G}.
Consider the Hamiltonian H : V (M, L)→ V (L,M) :

H = −
∑
v∈L0

1

|G |
∑
g∈G

Ug
v −

∑
P∈L2

D1G
P = −

∑
v∈L0

Av −
∑
P∈L2

D1G
P

All the Av and D1G
P are commuting, self-adjoint, projectors.

Av imposes gauge-invariance at v ∈ L0.
D1G

P imposes ‘flatness’ around the boundary of P ∈ L2.
Topological excitations are modules over the algebra 〈{Ug

v ,Dh
P}〉.

Theorem: The ground state GS(M, L) of H is:

GS(M, L) =

{
F ∈ V (M, L)

∣∣∣∣∣U
g
v . F = F , for all g ∈ G , v ∈ L0

D1G
P F = F , for all P ∈ L2

}
GS(M, L) ∼= C{Maps M → BG}/homotopy , canonically.
Here BG is the classifying space of G .
Hence GS(M, L) = V (M) does not depend on L and only on M.



‘Extension’ of Kitaev model to Higher Gauge Theory

I Higher gauge theory is a higher order version of gauge theory.

I Higher gauge theory formalises non-abelian holonomy along
paths, and also non-abelian holonomy along surfaces.

I Non-abelian holonomy along surfaces is multiplicative with
respect to the several ways we can concatenate surfaces.

(This is why higher category theory arises here.)

I We need a higher order version of a group: called a “2-group”.

I 2-groups are equivalent to crossed modules.

A crossed module of groups G = (∂ : E → G , .) is given by:
I a group map ∂ : E → G ,
I and a left-action of G on E , by automorphisms, such that:

1. ∂(g . e) = g∂(e)g−1, if g ∈ G and e ∈ E ;

2. ∂(e) . e′ = ee′e−1, if e, e′ ∈ E .

Crossed modules will mostly be finite throughout the talk.



Examples of crossed modules of groups G = (∂ : E → G , .)

1. G a group; A and abelian group.
Consider a left-action . of G on A, by automorphisms.

We have a crossed module G = (A
a∈A 7→1G−−−−−→ G , .).

In the general example above we can for instance put:
I G = {±1,×}. A = (Z3,+). g . a = ga (mod 3).
I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.

A = (Zp)n. Here p is a prime.

2. Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



2-dimensional (i.e. surface) holonomy functors
Given G = (∂ : E → G , .) we can define “bigons” in G.

∂(e)−1g

&&

g

88⇑ e , g ∈ G , e ∈ E .

These compose horizontally and vertically:

∂(e)−1g

&&

g

88⇑ e

∂(e′)−1h

&&

h

88⇑ e ′ =

∂(e)−1g ∂(e′)−1h

((

gh

66⇑ (g . e ′)e

⇑ e ′

g

AA∂(e)−1g //

∂(e′)−1∂(e)−1g

�� =

⇑ e
g

??

∂(e′)−1∂(e)−1g

��⇑ (ee ′)



2-dimensional holonomy functors
Horizontal and vertical compositions of bigons in G are:
associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

## //;;
&&// 88 =

##;;

does not depend on the order whereby it is performed.
As a consequence evaluations of more complicated diagrams like:

## ��

00

//;;
$$## //;;
&&// 88 CC=

//

OO DD
##;;

do not depend on the order whereby we apply compositions.
A very general result is in 1702.00868 [math-ph]
This leads to a notion of non-abelian multiplication along surfaces.
This notion underpins surface-holonomy in higher gauge theory.



2-dimensional holonomy
A geometric bigon on in a manifold M is given by:
Two paths γ, γ′ : [0, 1]→ M, with the same initial and end-point.
A homotopy (i.e. a ‘surface’) Σ: [0, 1]2 → M, connecting γ and γ′.
Σ is considered up to homotopy relative to ∂([0, 1]2).
Geometric bigons are represented as:

x

γ′

((

γ

66⇑ Σ y ,

Geometric bigons can be concatenated horizontally and vertically.

I Definition Let M be a manifold; G a crossed module.
A 2-dimensional holonomy (i.e. a higher gauge field) is a map:

{Geometric bigons in M} F−→ {Bigons in G}

Preserving horizontal and vertical compositions.
The underlying G-2-bundle can be reconstructed from F .



2D holonomy along Σ

=

∂(eΣ)−1gγ2

''

gγ2

77⇑ eΣ
,

Note: for Lie crossed modules (∂ : E → G , .), 2-dimensional
holonomies arise from pairs A ∈ Ω1(M, g) and B ∈ Ω2(M, e),
with ∂(B) = CurvA = dA + 1

2 [A,A].



The HGT analogue of Kitaev quantum double model
Let G = (∂ : E → G , .) be a crossed module.
Let M be a compact manifold, possibly with boundary.
Let L = (L0, L1, L2, L3 . . . ) be a CW-decomposition of M.
In HGT 3-cells b ∈ L3 (called blobs) have an important role.

A discrete 2-connection F is given by an assignment:

γ ∈ L1 7→ gγ ∈ G and P ∈ L2 7→ eP ∈ E ,

satisfying the fake-flatness condition, namely:
If we have a configuration like:

Then:

∂(eP) = g−1
γ4

gγ3gγ2gγ1 .



The Hilbert space for the higher Kitaev model

I M a compact manifold, with a CW-decomposition L.

I We put Φ(M, L) = {Discrete 2− connections F}.
I And V (M, L) = CΦ(M, L). Hilbert space for discrete HGT.

I The group of gauge operators puts together gauge
transformations along vertices and along edges:

T (M, L) = (
∏
v∈L0

G ) n (
∏

σ(t)
t−→τ(t)∈L1

E )

= {Functions L0 → G}n {Functions L1 → E}

Where U ∈
∏

v∈L0 G left-acts in η ∈
∏

t∈L1 E as:

(U.η)(σ(t)
t−→ τ(t)) = U(σ(t)) . η((σ(t)

t−→ τ(t)))

For S1 with one vertex and one edge T (S1, L) = G n E .



Discrete surface holonomy. arXiv:1702.00868
Let G = (∂ : E → G , .) be a crossed module.
Let F ∈ Φ(M, L) be a discrete 2-connection.

I Theorem Let Σ be a 2-sphere cellularly embedded in M,
v ∈ Σ, an ‘initial point’. We have a surface-holonomy:
Hol2

v (F ,Σ) ∈ ker(∂) ⊂ E .
This surface-holonomy depends only on the starting point
v ∈ Σ, and not in the way whereby we combine 2-cells.

For example, consider the discrete 2-connection on the
tetrahedron Σ, below, based on the bottom left corner v0.

Then Hol2v0
(F ,Σ) = e1 e−1

2 e−1
3 g01 . e4



Action of the group of gauge operators

I We have an action of the group of gauge operators T (M, L)
on Φ(M, L), preserving 2D holonomy, up to acting by g ∈ G .

Given t ∈ L1, and e ∈ E , let Ue
t be the unique gauge operator

supported in t with Ue
t (t) = e. (Called an edge gauge spike.)

Given v ∈ L0, and g ∈ G , let Ue
t be the unique gauge operator

supported in v with Ug
v (v) = g . (Called a vertex gauge spike.)



Action of the group of gauge operators

Some examples of vertex gauge transformations:



Action of the group of gauge operators

Some examples of edge gauge transformations:



Vertex, edge and blob operators

Let G = (∂ : E → G ) be a crossed module.

I All vertex operators Ug
v : V (M, L)→ V (M, L) are unitary.

I All edge operators Ue
t : V (M, L)→ V (M, L) are unitary.

I Given a 3-cell b, a blob, let ∂b ⊂ M be its boundary.

Hence ∂b is a 2-sphere cellularly embedded in M.

The blob operator Ck
b is defined as (here k ∈ ker(∂))

Ck
b (F) =

{
F , if 2hol(F , ∂b) = k

0, otherwise
.

I Clearly Ck
b : V (M, L)→ V (M, L) is self-adjoint.



The higher gauge theory Kitaev model

V (M, L) = C{Discrete 2− connections F}.
Hamiltonian H : V (M, L)→ V (M, L).

H = −
∑
v∈L0

1

|G |
∑
g∈G

Ûg
v −

∑
t∈L1

1

|E |
∑
e∈E

Ûe
t −

∑
b∈L3

C1E
b .

H = −
∑
v∈L0

Av −
∑
t∈L1

Bt −
∑
b∈L3

C1E
b .

All operator in the last sum are commuting self-adjoint projectors.

C1E
b forces the surface-holonomy of a discrete 2-connection F to be

trivial along the boundary of the 3-cell b.

Algebra generated by the Ug
t , Ue

t and C k
b is our proposal for a

local operator algebra A. Relations are in arXiv:1702.00868.
Physically relevant (i.e. topological) excitations are module over A.



Ground state degeneracy of higher Kitaev model

Theorem The ground state of H : V (M, L)→ V (M, L) is

GS(M, L) =

F ∈ V (M, L)

∣∣∣∣∣∣∣∣
Ug

v F = F , for all v ∈ L0, g ∈ G

Ue
t F = F , for all t ∈ L1, e ∈ E

C1G
b F = F , for all b ∈ L3


∼= C{Maps M → BG}/Homotopy , canonically .

Hence G (M, L) = V (L) depends only on M and not on L.

Here BG is the classifying space of the crossed module G.



Classifying space BG of a crossed module G
As the geometric realisation of a simplicial set BG has:

I one 0-simplex {∗}
I One 1-simplex ∗ g−→ ∗ for each g ∈ G .
I 2-simplices have the form (where g , h ∈ G and e ∈ E ):

∗
h

$$JJJJJJJ
eP

∗

g
::ttttttt

∂(e)−1gh
// ∗

Plaquette P is based at bottom left
vertex, and attaches clockwise.

I 3-simplices have the form (where e1 e−1
2 e−1

3 g01 . e4 = 1G ):

I The n-simplices are analogous. Colourings of 1 and 2-cells of
the n-simplex, fake-flat on trianges and flat on tetrahedra,
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I Bullivant A, Calçada M, Kádár Z, Martin P, and Faria Martins J:
Topological phases from higher gauge symmetry in 3+1 dimensions.
PHYSICAL REVIEW B 95, 155118 (2017)

I Faria Martins J, Picken R..: Surface Holonomy for Non-Abelian
2-Bundles via Double Groupoids, Advances in Mathematics Volume
226, Issue 4, 1 March 2011, Pages 3309-3366

I Faria Martins J, Porter T : On Yetter’s Invariant and an Extension
of the Dijkgraaf-Witten Invariant to Categorical Groups, Theory and
Application of Categories, Vol. 18, 2007, No. 4, pp 118-150.


