You could have invented crossed modules 2*
CROSSED MODULES' USES IN ALGEBRAIC TOPOLOGY.

From last time:

Def A crossed module \(G = (\partial : E \rightarrow G, \triangleright) \) is given by a homomorphism \(\partial : E \rightarrow G \) and a group action \(\triangleright : G \times E \rightarrow E \) by automorphisms, where the homomorphism \(\partial \) satisfies the following compatibility axioms:

1. **(Peiffer laws)** \(\forall g \in G, \forall e \in E : \partial(g \triangleright e) = g \partial(e) g^{-1} \)
2. \(\forall e, e' \in E : \partial(e) \triangleright e' = e e' e^{-1} \)

Exercises:

1. **Ker \(\partial \) is central (in particular, Ker \(\partial \) is abelian)**
 Suppose \(e \in E \), \(k \in \text{ker} \(\partial \) \)
 \[\text{ker} \partial^{-1} = \{ g(k) e \partial(k)^{-1} = e \} \Rightarrow \text{ker} \partial = Z(E) \]
 Remark Ker \(\partial \) is sometimes denoted by \(\pi_2 G \).

2. **The image of \(E \) is a normal subgroup of \(G \).**
 Take \(g \in \text{Im} \partial \). Then there exists a \(e \in E \) such that \(\partial(e) = g \).
 Let \(\ell \in G \), and consider
 \[\ell g e^{-1} = \ell \partial(e) e^{-1} \stackrel{(i)}{=} \partial(\ell \triangleright e) \Rightarrow \ell g e^{-1} \in \text{Im} \partial \]
 Remark \(G / \text{ker} \partial \) is sometimes denoted by \(\pi_1 G / \text{Im} \partial \).

Def Squares in crossed modules.

Def Given two crossed modules \(G_\partial = (\partial : E \rightarrow G, \triangleright) \) and \(G'_\partial = (\partial' : E' \rightarrow G', \triangleright) \)
Let \(\lambda : E \rightarrow E' \), and \(\mu : G \rightarrow G' \) be group morphisms satisfying:

1. \(\lambda \triangleright = \partial \circ \mu \)
2. \(\forall e \in E \) and \(\forall g \in G : \lambda(g \triangleright e) = \mu(g) \triangleright \lambda(e) \)

*If you did not get the reference, go and read T.Y Chow's paper "You could have invented spectral sequences" on Notices.
Moreover \(\pi_1(A, x_0) \) acts on \(\pi_2(X, A, x_0) \) as described by:

![Diagram](image)

(resealing the domain)

Denote by \(\triangleright \) this action.

\[
\text{CLAIM} \quad \left(\partial: \pi_2(X, A, x_0) \to \pi_4(A, x_0), \triangleright \right) \text{ is a crossed module.}
\]

we will call this the **FUNDAMENTAL CROSSED MODULE** \(\pi_4(X, A, x_0) \).

Exercise: find a proof.

END FOR FRIDAY 15/11/2019

2. AN APPLICATION

2a. The classical Seifert - Van Kampen theorem

Method for computing the fundamental groups of spaces that can be seen as unions of "simpler" spaces, having a path-connected intersection.

Theorem (Seifert - Van Kampen)

Let \(X \) be a path-connected topological space, and \(U, V \) path-connected open subsets of \(X \) such that \(X = U \cup V \) and \(U \cap V \) is non-empty and pathwise connected.

Let \(x_0 \in U \cap V \). Then the following diagram is commutative:

\[
\begin{array}{ccc}
\pi_1(U \cap V, x_0) & \xrightarrow{j_1} & \pi_1(U, x_0) \xrightarrow{\psi_1} \pi_1(X, x_0) \\
\downarrow{j_2} & & \downarrow{\psi_2} \\
\pi_1(V, x_0) & \xrightarrow{\psi_3} & \pi_1(V, x_0)
\end{array}
\]

where arrows denote homomorphisms induced by inclusion maps.

This means that

\[
\pi_1(X, x_0) \cong \pi_1(U, x_0) \ast_{\pi_1(U \cap V, x_0)} \pi_1(V, x_0). \quad \text{Amalgamated product.}
\]

Moreover \(\pi_1(X, x_0) \) is the freest possible group to make the diagram commutative, meaning that it respects the following universal property:

\((UP)\) Let \(H \) be a group, and \(\phi_1: \pi_1(U, x_0) \to H \) and \(\phi_2: \pi_1(V, x_0) \to H \) be homomorphisms, such that
\[\pi_4(U \cup V, x_0) \xrightarrow{\phi_1} \pi_2(U, x_0) \xrightarrow{j_1} \pi_2(X, x_0) \rightarrow \pi_2(V, x_0) \xrightarrow{j_2} \pi_2(Y, x_0) \rightarrow \pi_2(H, x_0) \]

Then there is a unique homomorphism
\[\Phi : \pi_4(X, x_0) \rightarrow H \]

such that \(\Phi = \phi_1 = \phi_2 \).

Operationally:

- **Amalgamated product:**

 Let \(G = \langle S_G \mid \mathcal{R}_G \rangle \), \(S_G = \{ s_{a_1}, \ldots, s_{a_k} \} \)

 \(H = \langle S_H \mid \mathcal{R}_H \rangle \)

 \(J = \langle S_J \mid \mathcal{R}_J \rangle \) a subgroup with inclusions

\[
\begin{array}{c}
\chi_s \\
\chi_t
\end{array}
\]

Then \(G *_J H = \langle S_{G} \cup S_{H} \cup S_{J} \mid \mathcal{R}_{G} \cup \mathcal{R}_{H} \cup \{ j_1^{-1}(s_{a_1}), j_2^{-1}(s_{a_2}), \ldots, j_k^{-1}(s_{a_k}) \} \rangle \)

In particular \(G *_J H = \langle S_{G} \cup S_{H} \cup S_{J} \mid \mathcal{R}_{G} \cup \mathcal{R}_{H} \cup \{ j_1^{-1}(s_{a_1}), j_2^{-1}(s_{a_2}), \ldots, j_k^{-1}(s_{a_k}) \} \rangle \)

Corollary: If \(U \cup V \) simply-connected, then there is an isomorphism
\[\pi_4(U, x_0) \times \pi_4(V, x_0) \cong \pi_4(X, x_0) \]

Exercise: \(\pi_4\left(\infty\right) = ? \)

Limitations: we can't compute \(\pi_4\left(S^4\right) \)

2.6 The fundamental groupoid