Total Degrees and Nonsplitting Properties of Σ^0_2
Enumeration Degrees

Joint work with Marat Arslanov, Iskander Kalimullin
and Mariya Soskova
Two different models of relative computability

Compute using an oracle - i.e., call deterministically on values of a total function

Compute using emergent or enumerated information - i.e., call non-deterministically on values of a partial function
Two different models of relative computability

- Compute using an oracle - i.e., call deterministically on values of a total function
- Compute using emergent or enumerated information - i.e., call non-deterministically on values of a partial function
Enumeration reducibility

Let's consider a computation process:

- \(b_0, b_1, \ldots \in B \)
- \(a_0, a_1, \ldots \in A \)
- \(\Psi \subseteq B \times A \)
- \(\Psi \) is a relation between elements of \(B \) and \(A \)

The process is defined as:

\[
\exists \text{ a finite } D \subseteq A [\langle n, D \rangle \in \Psi].
\]
Enumeration reducibility

\[b_0, b_1, \ldots \in B \text{ in some order} \]

\[\exists a, a_0, a_1, a_2, \ldots \in A \text{ enumerated in any order} \]

\[n \in \Psi_i^A \iff \text{defn} \left(\exists \text{ a finite } D \subseteq A \right) [\langle n, D \rangle \in \Psi]. \]
The link with NT-reducibility

If g is total, we have $f \leq_{NT} g \iff f \leq_T g$.

THEOREM

Let f, g be partial functions. Then

$$f \leq_{NT} g \iff \text{Graph}(f) \leq_e \text{Graph}(g).$$
The link with NT-reducibility

If \(g \) is total, we have \(f \leq_{NT} g \iff f \leq_T g \).

THEOREM

Let \(f, g \) be partial functions. Then

\[
f \leq_{NT} g \iff \text{Graph}(f) \leq_e \text{Graph}(g).
\]
Define $A \equiv_e B \iff \text{defn } A \leq_e B \& B \leq_e A$.

The **enumeration degree** — or **e-degree**, written $\text{deg}_e(A)$ — of A is

$$\text{deg}_e(A) = \text{defn } \{X \mid X \equiv_e A\}.$$

We define $\text{deg}_e(A) \leq \text{deg}_e(B) \iff \text{defn } A \leq_e B$.

We write $\mathcal{D}_e = \text{defn }$ the set of all e-degrees with the ordering \leq.

The **partial degree** of a partial function f is

$$\text{deg}(f) = \text{defn } \{g \mid \text{Graph}(f) \equiv_e \text{Graph}(g)\} = \{g \mid f \equiv_{NT} g\}.$$

We write \mathcal{P} = the set of all partial degrees, with ordering \leq defined by $\text{deg}(f) \leq \text{deg}(g) \iff \text{defn } \text{Graph}(f) \leq_e \text{Graph}(g) \iff f \leq_{NT} g$.

We say that an e-degree a_e is **total** if there is a total function f with $\text{Graph}(f) \in a_e$.

We write $\text{TOT} =$ the set of total e-degrees.
Define $A \equiv_e B \iff \text{defn } A \leq_e B \land B \leq_e A$.

The enumeration degree — or e-degree, written $\text{deg}_e(A)$ — of A is

$$\text{deg}_e(A) = \text{defn } \{ X \mid X \equiv_e A \}.$$

We define $\text{deg}_e(A) \leq \text{deg}_e(B) \iff \text{defn } A \leq B$.

We write $\mathcal{D}_e = \text{defn}$ the set of all e-degrees with the ordering \leq.

The partial degree of a partial function f is

$$\text{deg}(f) = \text{defn } \{ g \mid \text{Graph}(f) \equiv_e \text{Graph}(g) \}$$

$$= \{ g \mid f \equiv_{NT} g \}$$

We write $\mathcal{P} = \text{the set of all partial degrees, with ordering } \leq \text{ defined by}$

$$\text{deg}(f) \leq \text{deg}(g) \iff \text{defn } \text{Graph}(f) \leq_e \text{Graph}(g) \iff f \leq_{NT} g.$$

We say that an e-degree a_e is total if there is a total function f with

$\text{Graph}(f) \in a_e$.

We write $\text{TOT} = \text{the set of total e-degrees}$.
The Natural Embedding

\[\text{TOT} \cong \mathcal{D} \]

\[\mathcal{P} \cong \mathcal{D}_e \]
Extending the Jump Operator

Let \(K_A = \{ x \mid x \in \Psi^A_x \} \).

Then the \textbf{e-jump} of a set \(A \) is \(J_e^A = \text{defn} A \oplus \overline{K}_A \). And the \textbf{jump} of an e-degree \(a = \deg_e(A) \) is defined to be \(a' = \deg_e(A \oplus \overline{K}_A) = \deg_e(J_e^A) \).

We iterate the jump in the usual way to obtain the \(n^{\text{th}} \) jump \(a^{(n)} \) of \(a \).

\textbf{PROPOSITION}

The e-jump agrees with the natural embedding of the Turing jump — that is, for each \(A \subseteq \mathbb{N} \) we have \(\iota(\deg(A')) = \deg_e(J_e(\chi_A)) \).
Extending the Jump Operator

Let $K_A = \{ x \mid x \in \Psi^A_x \}$.

Then the **e-jump** of a set A is $J_e^A = \text{defn } A \oplus \overline{K}_A$. And the **jump** of an e-degree $a = \text{deg}_e(A)$ is defined to be $a' = \text{deg}_e(A \oplus \overline{K}_A) = \text{deg}_e(J_e^A)$.

We iterate the jump in the usual way to obtain the n^{th} jump $a^{(n)}$ of a.

PROPOSITION

The e-jump agrees with the natural embedding of the Turing jump — that is, for each $A \subseteq \mathbb{N}$ we have $\iota(\text{deg}(A')) = \text{deg}_e(J_e(\chi_A))$.
Local information content

THEOREM

For each $A \subseteq \mathbb{N}, n \geq 0$ we have $\deg_e(A) \leq 0_e^{(n)} \iff A \in \Sigma_{n+1}$.

The most important case is $n = 1$, telling us that:

$\mathcal{D}_e(\leq 0'_e) =$ the set of all Σ_2 e-degrees
THEOREM
For each $A \subseteq \mathbb{N}$, $n \geq 0$ we have $\deg_e(A) \leq 0^{(n)}_e \iff A \in \Sigma_{n+1}$.

The most important case is $n = 1$, telling us that:

$D_e(\leq 0'_e) =$ the set of all Σ_2 e-degrees
Some key questions

☐ Characterise the local structure $D_e(\leq 0_e')$ of the enumeration degrees.

☐ Are the Turing degrees definable - locally or globally - in the enumeration degrees.

NOTE: The natural embedding of the computably enumerable Turing degrees is a proper subclass of the total e-degrees - the Π_1 enumeration degrees.

☐ QUESTION: Are the computably enumerable Turing degrees definable in D_e?
A splitting of a over b

\[a = c \cdot u \cdot d \]

- **Ahmad and Lachlan**: There exist non-splittable Δ_2 enumeration degrees $>0_e$.

Question: What about splittings of total or Π_1 enumeration degrees in $\mathcal{D}_e(\leq 0_e')$?
So known results ...

- Arslanov, C, Kalimullin (2003): Results on local distribution of total e-degrees and of degrees of semirecursive sets used in natural embedding to get results on embedding of diamond lattices etc. - e.g. a simple derivation of a generalisation of the Ahmad Diamond Theorem.

- M. Soskova (2007): There is a (properly) Σ_2 e-degree a_e over which $0_{e'}$ is not splittable.

- Arslanov and Sorbi (1999): One can always split $0_{e'}$ over any Δ_2 enumeration degree $< 0_{e'}$.
Theorem 1: If $a < h \leq O_e'$, a is low and h is total and high, then there is a low total e-degree b such that $a \leq b < h$.

- O_e'
- h high total
- $\exists b$ low total
- a low
Corollary: Let $a < h \leq O_e'$, h be a high total e-degree, a be a low e-degree. Then there are Δ_2 e-degrees $c, d < h$ such that $a = c \cap d$ and $h = c \cup d$.

Proof: Use Thm. 6 of ACK, 2003.
... and a negative one

Theorem 2: There is a Π_1-e-degree a, and a 3-c.e. e-degree $b < a$ such that a is not splittable over b.

O_e'

a which is Π_1

c

d

b 3-c.e. and so Δ_2
Thank you!