NEED TO SHOW — There exists a d.c.e. degree d which is not discretely splittable over a avoiding b, some $a, b < d$.

THE REQUIREMENTS:

$$\begin{align*}
\mathcal{P}_\Theta & : \hspace{1em} B \neq \Theta^A \\
\mathcal{Q}_{\Psi, \Phi, \Theta, \Xi, W, \overline{W}} & : \hspace{1em} D = \Psi(\Phi^{A,B,D}, \Phi^{A,B,D}, A) \\
\Rightarrow & \hspace{1em} B = \Gamma^{\Phi^{A,B,D}, A} \lor B = \Lambda \Phi^{A,B,D}, A \\
\lor & \hspace{1em} \Omega(\Phi^{A,B,D}, A) \neq \Theta^A \\
\& [\Xi \Phi^{A,B,D}, A = \Delta \Omega(\Phi^{A,B,D}, A), A] \\
\lor & \hspace{1em} \Upsilon(\Xi \Phi^{A,B,D}, A, A) \vdash W^A \\
\lor & \hspace{1em} \overline{\Upsilon}(\Xi \Phi^{A,B,D}, A, A) \vdash \overline{W}^A
\end{align*}$$

Note — If $X \vdash W^A$ for each A-c.e. W^A, then $X \oplus A$ is 1-generic over A.
Corresponding picture:

- Write \mathcal{P}, \mathcal{Q}, \mathcal{P}', \mathcal{Q}', respectively, for \mathcal{P}_Θ, $Q_{\Psi, \Phi, \hat{\Phi}, \Xi, \overline{W}, \overline{W}'}$, $\mathcal{P}_{\Theta'}$, $Q_{\Psi', \Phi', \hat{\Phi}', \Xi', \overline{W'}, \overline{W}'}$.

- Write \mathcal{R} for the last 3 lines of $Q_{\Psi, \Phi, \hat{\Phi}, \Xi, \overline{W}, \overline{W}}$ above — its auxiliary clause — and \mathcal{S} for the final disjunct of \mathcal{R}.
Module for \mathcal{P} below \mathcal{Q}:

Notes:

(a) **Define**: \mathcal{Q}-expansionary stage to be a stage at which $\ell(D, \Psi(\Phi_{A,B,D}, \hat{\Phi}_{A,B,D}, A))$ — the length of agreement of the arguments of ℓ — reaches a new maximum $> \text{any existing parameter observed at } \mathcal{Q}$.

(b) **Assume** that the module only acts at \mathcal{Q}-expansionary stages — so ignoring outcomes other than those infinitary ones in which \mathcal{Q} implements the Γ or Λ strategies — and perhaps the Δ or $\Upsilon/\overline{\Upsilon}$ strategies — above \mathcal{P}.

(c) A number is *new* if it is greater than any number previously referred to.

(d) At the end of each stage $\Gamma_{\Phi_{A,B,D}, A}$, $\Lambda_{\Phi_{A,B,D}, A}$, $\Delta_{\Phi_{A,B,D}, A}$, $\Upsilon(\Xi_{\Phi_{A,B,D}, A}, A)$ and $\overline{\Upsilon}(\Xi_{\Phi_{A,B,D}, A}, A)$ are defined on an initial segment of the numbers.
The phases of the module:

1. Select a new y as D-agitator for \mathcal{P} (at Q).

2. Select a new x to follow \mathcal{P} — so $x > \varphi(\psi(y))$ and $> \hat{\varphi}(\psi(y))$,
 - designate the current values of $\Phi^{A,B,D} \upharpoonright \psi(y)$ and $\hat{\Phi}^{A,B,D} \upharpoonright \psi(y)$ their rectifying values, and
 - agitate via $y \searrow D$.

3. Ask:
 - Is it (a) $\Phi^{A,B,D} \upharpoonright \psi(y)$, or (b) $\hat{\Phi}^{A,B,D} \upharpoonright \psi(y)$, which has diverged from its rectifying value?

 - For (a), define $\Gamma_{\Phi^{A,B,D},A}(x) = B(x)$ with $\gamma(x)$ new $> \psi(y)$ (x suits Γ), and otherwise —

 - For (b) — Define $\Gamma_{\Phi^{A,B,D},A}(x) = B(x)$ and $\Lambda_{\hat{\Phi}^{A,B,D},A}(x) = B(x)$ — with $\gamma(x)$ new $> \max \{\varphi(\psi(y)), \hat{\varphi}(\psi(y))\}$ and $\lambda(x)$ new $> \psi(y)$ (x suits Λ).

4. Wait for $\ell(B, \Theta^A) > x$.
5. Then check whether either (i) x suits Γ or (ii) x suits Λ and $\gamma(x) > \psi(x)$.

- If so, in either case, define $B(x) \neq \Theta^A(x)$ — let $y \not\in D$ — and restrain $A \upharpoonright \psi(x)$ and $A, B, D \upharpoonright \max \{ \varphi(\psi(y)), \hat{\varphi}(\psi(y)), \psi(y) \}$.

- And in case (ii), rectify Γ at x with an $A \upharpoonright \gamma(x)$ change.

Outcome: P is satisfied, and in case (i) Γ is rectified at x via a return of $\Phi^{A,B,D} \upharpoonright \psi(y)$ to its rectifying value.

6. Otherwise:

- Change $A \upharpoonright \gamma(x)$ via $\gamma(x) \searrow A$, and return to 3 for x — and initiate a new cycle via 1 (needed for the Λ strategy).
Relating the strategies to the outcomes:

1. Select a new D-agitator y for \mathcal{P}

2. Select a new follower x for \mathcal{P}
 - Note the rectifying values of $\Phi^{A,B,D} \uparrow \psi(y)$ and $\hat{\Phi}^{A,B,D} \uparrow \psi(y)$
 - Agitate via $y \searrow D$

3. Is it (a) $\Phi^{A,B,D} \uparrow \psi(y)$ or (b) $\hat{\Phi}^{A,B,D} \uparrow \psi(y)$ differing from its rectifying value?
 - (a) Define $\Gamma^{\Phi^{A,B,D},A}(x) = B(x)$, $\gamma(x)$ new $\rightarrow x$ suits Γ
 - (b) Define $\Gamma^{\Phi^{A,B,D},A}(x) = B(x)$ and $A^{\hat{\Phi}^{A,B,D},A}(x) = B(x)$, $\gamma(x)$, $\lambda(x)$ new $\rightarrow x$ suits Λ

4. Wait for $\ell(B, \Theta^A) > x$

5. Does either (i) Γ suit x, or (ii) Λ and $\gamma(x) > \hat{\theta}(x)$?
 - 5. (cont.) Yes:
 - Define $B(x) \neq \Theta^A(x)$ and $y \not\nearrow D$
 - Restrain $A, B, D \uparrow \max \{\varphi(\psi(y)), \hat{\varphi}(\psi(y)), \psi(y)\}$ and $A \uparrow \hat{\theta}(x)$

 And $\gamma(x) \searrow A$ to rectify Γ
Analysis of outcomes:

w_1: Only finitely many \mathcal{Q}-expansionary stages.

Outcome: \mathcal{Q} becomes trivially satisfied via $D \neq \Psi(\Phi^{A,B,D}, \widehat{\Phi}^{A,B,D}, A)$ — and offers no obstacle to the eventual satisfaction of \mathcal{P}.

- *Otherwise:* The module cannot terminate at any of phases 1, 2 or 3 — in the case of 3, either (a) or (b) being guaranteed by the choice of $\gamma(x)$ in 3.

w_2: Module terminates at 4.

Outcome: \mathcal{P} trivially satisfied, and provides no further impediment to the strategies for \mathcal{Q}.

s_1: The module terminates at 5.

Outcome: \mathcal{P} is satisfied via $\Theta^A(x) \downarrow \neq B(x)$.

- And in subcase (i) — as observed above — Γ is rectified at x via a return of $\Phi^{A,B,D} \uparrow \psi(y)$ to its rectifying value. Where —
• This return is ensured by the return of $D(y)$ to its value at the start of phase 2, and by the conservation of $A, B, D \uparrow \varphi(\psi(y))$ following 2 — these uses being intact following phase 5, by the choice of $x > \varphi(\psi(y))$ in 2 — and also following any intervening visit to phase 6 by the newness of any $\gamma(x)$ appointed via 3.

• While the sufficiency of this return for the rectification of Γ at x is guaranteed by the newness of x in 2 — so that $\Gamma^{\Phi^{A,B,D},A}(x) \uparrow$ at all stages previous to that at which 3 is implemented in relation to x, and by the maintenance of this situation until 3 applies by $y \smallsetminus D$ in 2 —

• By which time x suits Γ, and one defines $\gamma(x)$ new, and so $> \text{ any previous value of } \psi(y)$ — including that pertaining to the rectifying value of $\Phi^{A,B,D} \uparrow \psi(y)$.

Note: In this simple module, the newness of $\gamma(x)$ in 3 precludes any switch from (a) to (b) — or vice versa — consequent on repeated visits to 3 on behalf of x.
\(i_1 \): Infinitely many applications of phase 6.

- One first notices that in this case \(\mathcal{P} \) is satisfied via \(\Theta^A(x) \uparrow \) — since each time 5 fails, one must have \(\vartheta(x) \geq \) the current value of \(\gamma(x) \) — which is renewed on each return to 3 in relation to \(x \).

- Also involves \(\Gamma^{\Phi^{A,B,D},A}(x) \uparrow \) in the limit —

- \textbf{But} one can verify that the \(\Lambda \) strategy for \(\mathcal{Q} \) — elaborated below in relation to the other \(\mathcal{P} \) requirements — has been progressed.

- This is because — just as for \(\Gamma \) in subcase (i) of outcome \(s_1 \) above — one can verify that the timing of the definition of \(\Lambda^{\Phi^{A,B,D},A}(x) \) and the conservations of uses implicit in the implementation of the module ensure that \(\Lambda \) is rectifiable at \(x \) via any return to the rectifying value of \(\Phi^{A,B,D} \uparrow \psi(y) \).

- The initiation of new cycles following 6 will provide infinitely many such numbers \(x \) for the \(\Lambda \) strategy.
Note: The satisfaction of \(P \) is not essential to outcome \(i_1 \) — since that may also be accomplished via a lower priority copy of \(P \) within the context of the \(\Lambda \) strategy for \(Q \) — But then phase 6 is integral to the outcome \(\hat{i}_1 \) below.

The module for \(P' \) below \(P \) below \(Q \):

Note: Only need to examine the module for \(P \) in the cases of either —

(a) Finitary \(P \) or \(P' \) activity disrupting \(P' \)- or \(P \)- led rectification of \(\Gamma \) or \(\Lambda \), or —

(b) Infinitary activity on \(P \) — leading on to implementation of the \(\Lambda \) strategy for \(Q \) above \(P' \).
Case (a): \mathcal{P}' implements the Γ strategy for \mathcal{Q} (according to the previous module).

- One needs to examine the various modes of \mathcal{P} activity in relation to the possible \mathcal{P}' activity, according to their potential for mutual disruption of rectifying strategies.
- The only relevant \mathcal{P}' activity is \mathcal{P}' satisfaction via 5, or finitary implementation of 6 by \mathcal{P}'.
- And the only relevant \mathcal{P} activity is D-agitation via 2 — implementation of a $B(x)$ change via 5 — or of an $A(\gamma(x))$ change via 6.

- **Need to check** that in this case the module is obtained by allowing a module as above for each of \mathcal{P} and \mathcal{P}' —
- With the following rule for conjoining —
Whenever the module for \mathcal{P} applies — implement it.

While initialising that for \mathcal{P}' — by cancelling any existing \mathcal{P}' related D-agitator y' or follower x', and — if needed — rectifying Γ at x' by enumerating $\gamma(x') \setminus A$ — and initialising any Λ being built by \mathcal{P}' by removing all its current axioms.

Clearly — no unrectified Γ or Λ remains following an application of the \mathcal{P} module — so long as $\gamma(x') \setminus A$ does not come into conflict with the conservations of uses on which the \mathcal{P} module depends.

And for the latter — one needs to examine the phases of the module for \mathcal{P} — while noting that these are only accompanied by Γ rectification at x' if \mathcal{P}' is currently satisfied via a previous terminal application of 5 for \mathcal{P}' —

And that such rectification is only a problem for \mathcal{P} if it ignores a current conservation needed at \mathcal{P}.
• But if \mathcal{P}' is satisfied, and y already exists — one must have $y' > y$, and — by the description of 2 and 3 for \mathcal{P}', and the corresponding conservations at \mathcal{P}' —

$$\gamma(x') > \max \{ \varphi(\psi(y')), \hat{\varphi}(\psi(y')), \psi(y') \}$$

$$\geq \max \{ \varphi(\psi(y)), \hat{\varphi}(\psi(y)), \psi(y) \}$$

when \mathcal{P} requires attention.

Case (b): \mathcal{P}' implements the Λ strategy for \mathcal{Q} (with Λ being built by \mathcal{P}).

• Here one assumes \mathcal{P} implementing its module as before.

•• But in the case of infinitely many returns to 1 on behalf of $(\mathcal{P}, \mathcal{Q})$ — one needs to describe an auxiliary strategy for $\Lambda = \Lambda_{\mathcal{P}}$ — which synchronises its activities with those of the module for \mathcal{P} working relative to Γ —
1. Select a new y' as D-agitator for \mathcal{P}' (at Q), with $y' < y$.

2. Select a new $x' > x$ to follow \mathcal{P}' (so $x' > \varphi(\psi(y))$ and $> \hat{\varphi}(\psi(y))$), let the current value of $\hat{\Phi}^{A,B,D} \upharpoonright \psi(y')$ be its rectifying value, and agitate via $y' \searrow D$.

3. Define $\Lambda_{\hat{\Phi}^{A,B,D}}(x') = B(x')$, with $\lambda(x')$ new $> \max \{ \varphi(\psi(y')), \hat{\varphi}(\psi(y')), \psi(y') \}$.

4. Wait for $\ell(B, \Theta'^A) > x'$.

5. Assume that 5(i) and (ii) do not apply (otherwise the satisfaction of \mathcal{P}, and the consequent termination of the $\Lambda_{\mathcal{P}}$ strategy, is accompanied by $y \nearrow D$ and $y' \nearrow D$).

 • Check if $\gamma(x) > \vartheta'(x')$.

 • If so, define $B(x') \neq \Theta'^A(x')$, let $y, y' \nearrow D$, restrain $A, B, D \upharpoonright \max \{ \varphi(\psi(y)), \hat{\varphi}(\psi(y)), \psi(y) \}$ and $A \upharpoonright \vartheta'(x')$ — while \mathcal{P} must return to 1. \mathcal{P}' is satisfied.

6. Otherwise: Return to 4 to await an opportunity to accompany \mathcal{P} to 5/5.
Relating the strategies to the outcomes:

1. Select a new D-agitator y for \mathcal{P}

2. Select a new follower x for \mathcal{P}
 - Note the rectifying values of $\Phi^y A, B, D | \psi(y)$ and $\hat{\Phi}^y A, B, D | \hat{\psi}(y)$
 - Agitate via $y \setminus D$

3. Is it (a) $\Phi^y A, B, D | \psi(y)$ or (b) $\hat{\Phi}^y A, B, D | \hat{\psi}(y)$ differing from its rectifying value?

 (a) Define $\Gamma^{\Phi^y A, B, D, A}(x) = B(x)$, $\gamma(x)$ new $\rightarrow x$ suits Γ

 (b) Define $\Gamma^{\hat{\Phi}^y A, B, D, A}(x) = B(x)$ and $\Lambda^{\hat{\Phi}^y A, B, D, A}(x) = B(x)$, $\gamma(x)$, $\lambda(x)$ new $\rightarrow x$ suits Λ

4. Wait for $\ell(B, \Theta^A) > x$

5. Does either (i) x suit Γ, or (ii) x suit Λ and $\gamma(x) > \vartheta(x)$?

5. (cont.) Yes:
 - Define $B(x) \neq \Theta^A(x)$ and $y \not\sim D$
 - Restrain $A, B, D \upharpoonright \max \{\varphi(\psi(y)), \hat{\varphi}(\hat{\psi}(y)), \psi(y)\}$ and $A \upharpoonright \vartheta(x)$

 And $y' \not\sim D$

6. No: $\gamma(x) \setminus A$

 Yes: Define $B(x') \neq \Theta^A(x')$, $y, y' \not\sim D$, restrain $A, B, D \upharpoonright \max \{\varphi(\psi(y)), \hat{\varphi}(\hat{\psi}(y)), \psi(y)\}$ and $A \upharpoonright \vartheta'(x')$

 And $\gamma(x) \setminus A$ to rectify Γ
Note: Will see later that more requirements \mathcal{P}' will potentially force infinitely many returns to 1 — Pairs (x', y') being paired individually with pairs (x, y), the order of appointment following the priority of (x', y').

Analysis of outcomes, including those for the auxiliary strategy (for case (b)).

$\boxed{w_1}$: Only finitely many Q-expansionary stages — as before giving trivial satisfaction of Q, which ceases to interfere with \mathcal{P} and \mathcal{P}'.

$\boxed{w_2} / \boxed{\hat{w}_2}$: If either \mathcal{P} or \mathcal{P}' halts at 4 or $\hat{4}$, respectively, then it is trivially satisfied — and removed from the subsequent environment of the other requirements.

$\boxed{s_1} / \boxed{\hat{s}_1}$: Implementation of $5/\hat{5}$, satisfying \mathcal{P} or \mathcal{P}', respectively.
Need to verify: In each case the Γ/Λ strategies remain intact.

- Updating the analysis for case (a), one can see that one only needs to consider satisfaction of P' via $\hat{5}$ —

- This is because the above analysis for s_1 still holds —

- Since if $\hat{2}$, with $y' \not\xrightarrow{} D$, accompanies the implementation of 2 and $y \not\xrightarrow{} D$ — then any implementation of 5(i) or (ii) with $y \xrightarrow{} D$ is accompanied by $y' \xrightarrow{} D$.

- So following 5(i) Γ is again rectified at x via a return of $\Phi^{A,B,D} \upharpoonright \psi(y)$ to its rectifying value.

- The conservations on $A, B, D \upharpoonright \varphi(\psi(y))$ needed following 2 are still intact following the augmented phase 5, by the choice of $x' > x > \varphi(\psi(y))$ in $2/\hat{2}$ —
• And the sufficiency of the return to the rectifying value for the rectification of Γ at x is guaranteed as before.

• And as previously, the Γ strategy remains intact in subcase (ii), due to the rectification of Γ at x via an $A\models \gamma(x)$ change.

• Say now \mathcal{P}' is satisfied via $\hat{5}$.

• Then since an instance of $\hat{5}$ can only accompany one of 5 leading to 6 for \mathcal{P} — outcome \hat{s}_1 must involve $\gamma(x) \smallsetminus A$ — and since $x' > x$ — giving $\gamma(x') \geq \gamma(x)$ — consequent Γ rectification at x'.

• On the other hand — similarly to the argument for Γ in case 5(i) of s_1 — one can verify that Λ is rectified at x' by a return to the rectifying value of $\hat{\Phi}^{A,B,D} | \psi(y')$ —
• Otherwise, since $y' < y$, one cannot have a return to the rectifying value of $\Phi^{A,B,D} \upharpoonright \psi(y)$ following $\hat{5}$.

• This could only happen via some injury to the conservations at \mathcal{P} other than through $y, y' \nrightarrow D$ — Which is impossible since have $x', \gamma(x) > \max \{\varphi(\psi(y)), \hat{\varphi}(\psi(y))\}$.

(For a closer examination of how this situation is maintained following multiple implementations of $6/\hat{6}$, see below.)

i_1: Infinitely many applications of phase 6.

• The analysis as it relates to \mathcal{P} below \mathcal{Q} is as before.

• Only remains to elaborate on the remarks concerning the progression of the Λ strategy for \mathcal{Q} — along the lines of those concerning Γ in subcase (i) of outcome s_1 above.
• One needs to be sure, following an implementation of 6/\hat{6}, that \Lambda rectification at \(x' \) is still guaranteed by the return to the rectifying value of \(\hat{\Phi}^{A,B,D} \upharpoonright \psi(y') \) following any subsequent satisfaction of \(\mathcal{P} \) via \(\hat{5} \).

• And this holds so long as no axiom for \(\Lambda \) is enumerated with use \(\hat{\Phi}^{A,B,D} \upharpoonright \lambda(x') \supseteq \) the rectifying value for \(\hat{\Phi}^{A,B,D} \upharpoonright \psi(y') \) and value 0 at argument \(x' \).

• Assume otherwise.

• So at some stage \(t \) following the determination of the rectifying value for \(\hat{\Phi}^{A,B,D} \upharpoonright \psi(y') \) via \(\hat{2} \) — at a stage \(s_0 \), say — and before the enumeration of \(x' \) into \(B \) via \(\hat{5} \) — at a stage \(s_1 \) say > \(s_0 \) — one defines such an axiom for \(\Lambda \) via \(\hat{3} \) of the form \(\Lambda(\hat{\Phi}^{A,B,D} \upharpoonright \lambda(x'), A \upharpoonright \lambda(x'), x') = 0 \).

• But at each such stage \(t, s_0 < t < s_1 \) one has \(y, y' \in D \) —
• And hence either —

• \(\Phi^{A,B,D}[t] \) is incompatible with the rectifying values of \(\Phi^{A,B,D} \upharpoonright \psi(y), \ \Phi^{A,B,D} \upharpoonright \psi(y') \), or —

• \(\hat{\Phi}^{A,B,D}[t] \) is incompatible with the rectifying values of \(\hat{\Phi}^{A,B,D} \upharpoonright \psi(y), \ \hat{\Phi}^{A,B,D} \upharpoonright \psi(y') \), or —

• \(A[t] \) is incompatible with both \(A \upharpoonright \psi(y)[s_0] \), \(A \upharpoonright \psi(y')[s_0] \).

• The last case cannot occur — since such an \(A \)-change can only happen via 6 (\(\mathcal{P} \) is not satisfied via 5(ii) at any stage) — and \(\gamma(x) \) is always selected via 3 to be new \(> \psi(y) \).

• And if the first alternative applies at some such stage — there must at some later stage before \(s_1 \) be a switch away from \(x \) suiting \(\Gamma \) — to preclude satisfaction of \(\mathcal{P} \) via 5(i).

• Again, this can only happen via \(\gamma(x) \ \downarrow \ A \) — impossible previous to 5.
Finally, no such axiom for Λ can be defined at a stage t at which $\hat{\Phi}^{A,B,D}[t]$ is incompatible with the rectifying value of $\hat{\Phi}^{A,B,D} | \psi(y')$.

i_1: Infinitely many applications of phase $\hat{6}$.

Outcome: \mathcal{P}' is satisfied via $\Theta'^A(x') \uparrow$, and — as for i_1 above — one has an intact Λ strategy for \mathcal{Q} to pass on to any other \mathcal{P}-requirements below \mathcal{P}.

- **The following sequence of modules** will cumulatively comprise the full module.
- In each case, the corresponding successful outcomes will be outlined immediately after each module — and shown not to injure those for previously described modules.
- The priority ordering of the relevant requirements — together with a preliminary indication of their roles in relation to the strategies — is given by —
Level 1: Module for \mathcal{P} below \mathcal{Q} below \mathcal{Q}' (\mathcal{P} implementing the Γ and Γ' strategies):

- All modules act at \mathcal{Q}'-expansionary stages — and — unless otherwise stated — at \mathcal{Q}-expansionary stages (as observed relative to the \mathcal{Q}'-expansionary stages).

- All modules below operate in the context of activity related to a successful Γ' strategy — but allow for implementations of a Λ' strategy off the eventual true path — with accompanying Γ' rectification via A-changes.

At level 1, a requirement \mathcal{P} implements the following phases —
$1^\Gamma / 1^{\Gamma'}$. Select a new y as D-agitator for \mathcal{P} (at \mathcal{Q} and \mathcal{Q}').

$2^\Gamma / 2^{\Gamma'}$. Select a new x to follow \mathcal{P} — so that $x > \text{each of } \varphi'(\psi'(y))$, $\hat{\varphi}'(\psi'(y))$, $\varphi(\psi(y))$ and $\hat{\varphi}(\psi(y))$. Then —

- Designate the current values of $\Phi^{A,B,D} \upharpoonright \psi(y)$, $\Phi'^{A,B,D} \upharpoonright \psi'(y)$, $\hat{\Phi}^{A,B,D} \upharpoonright \psi(y)$ and $\hat{\Phi}'^{A,B,D} \upharpoonright \psi'(y)$ their rectifying values, and

- Agitate via $y \setminus D$.

- Proceed to $3^{\Gamma'}$, and then 3^Γ.

$3^{\Gamma'}$. (\mathcal{Q}'-expansionary)

- **Ask:** Is it (a) $\Phi'^{A,B,D} \upharpoonright \psi'(y)$ (x suits Γ') — or (b) $\hat{\Phi}'^{A,B,D} \upharpoonright \psi'(y)$ (x suits Λ') — which has diverged from its rectifying value?

- In either case, define $\Gamma'\Phi'^{A,B,D}$, $A(x) = B(x)$ with $\gamma'(x)$ new (so $\gamma'(x) > \text{any } \psi'(y)$ so far, and $> \max \{ \varphi'(\psi'(y)), \hat{\varphi}'(\psi'(y)) \}$) —

- And proceed to 3^Γ.
3\(\Gamma\). (Similar to 3\(\Gamma'\).)

- **Ask:** Is (a) \(\Phi^{A,B,D} \upharpoonright \psi(y) \ (x \text{ suits } \Gamma)\) — or (b) \(\check{\Phi}^{A,B,D} \upharpoonright \psi(y) \ (x \text{ suits } \Lambda)\) — incompatible with its rectifying value?

- In either case, define \(\Gamma^{\Phi^{A,B,D},A}(x) = B(x)\) with \(\gamma(x)\) new > \(\gamma'(x)\) and > \(\psi(y)\) — and proceed to 4\(\Gamma\) / 4\(\Gamma'\).

4\(\Gamma\) / 4\(\Gamma'\). *Wait* for a \(\mathcal{P}\)-expansionary stage — that is, one at which \(\ell(B, \Theta^A) > \) each current parameter — and, in particular, > \(x\).

5\(\Gamma\) / 5\(\Gamma'\). *Check* whether either (i) \(x \text{ suits } \Gamma'\), or (ii) \(x \text{ suits } \Lambda'\) and \(\gamma'(x) > \vartheta(x)\) —

- *And* whether either (iii) \(x \text{ suits } \Gamma\), or (iv) if (i) holds and \(x \text{ suits } \Lambda\), then \(\gamma(x) > \vartheta(x)\).

- **If so** — In each case, let \(y \not\rightarrow D\), define \(B(x) \neq \Theta^A(x)\) — and restrain \(A \upharpoonright \vartheta(x)\) and \(A, B, D \upharpoonright \max \{\varphi'(\psi'(y)), \check{\varphi}'(\psi'(y)), \psi'(y)\}\).
• In cases (ii) or (iv), rectify Γ', Γ at x via an $A \upharpoonright \gamma'(x)$ change, or via an $A \upharpoonright \gamma(x)$ change, respectively.

• \mathcal{P} is now satisfied within the Γ' and Γ strategies for \mathcal{Q}' and \mathcal{Q} — and the $\Lambda' = \Lambda'_{\mathcal{P}}$ and $\Lambda = \Lambda_{\mathcal{P}}$ strategies for \mathcal{Q}' and \mathcal{Q} are initialised.

• If none of these alternatives applies — proceed to $6^{\Gamma'}$ if (i) and (ii) fail — and otherwise to 6^{Γ} if both (iii) and (iv) fail.

$6^{\Gamma'} / 6^{\Gamma}$. Change $A \upharpoonright \gamma'(x)$ or $A \upharpoonright \gamma(x)$ via $\gamma'(x) \downharpoonright A$ or $\gamma(x) \downharpoonright A$, respectively — and return to $3^{\Gamma'}$ for x.

• Initiate a new cycle via $1^{\Gamma} / 1^{\Gamma'}$ — in anticipation of a failure to satisfy \mathcal{P} within the Γ' and Γ strategies using x —

• And progress the Λ' or Λ strategy correspondingly — anticipating eventual failure to satisfy \mathcal{P} within the Γ' and Γ strategies using any follower of \mathcal{P}.
Analysis of outcomes:

- It is easy to see that the possible outcomes relative to Q' are as previously —
- And that the only ones extending those relative to Q involve a valid Γ' strategy prevented from facilitating finitary satisfaction of P by Q.

$[w_1'] / [w_1]$: Only finitely many Q'-expansionary stages, or Q-expansionary stages, respectively. Q' or Q, respectively, satisfied as before, with consequent reduction to a preceding module.

$[w_2]$: P halts at $4^\Gamma / 4^{\Gamma'}$. Then P is trivially satisfied, as before.

s_1 : Implementation of $5^\Gamma / 5^{\Gamma'}$, satisfying P.

- With regard to the verification that the Γ'/Λ' and Γ/Λ strategies remain intact — one first observes that P-satisfaction via $5^\Gamma / 5^{\Gamma'}$ involves initiation of the Λ_P and Λ'_P strategies.
• If possibilities (i) and (iii) applied in $5\Gamma / 5\Gamma'$, then one needs to check that Γ' and Γ are rectified at x.

• Arguing as before — It is straightforward to see that at no stage does an application of phase $6\Gamma / 6\Gamma'$ result, for a given x — remembering that $\gamma(x) > \gamma'(x)$ — in a switch from subcase (a) to subcase (b), or vice versa, in successive applications of phase $3\Gamma'$.

• And so — arguing as before in this case — Γ' is rectified at x in $5\Gamma / 5\Gamma'$ via a return to the rectifying value of $\Phi^{A,B,D}_{\psi'}(y)$.

• Also — It is easy to see that one can only get such a change in phase 3Γ via an occurrence of phase $6\Gamma'$ in relation to x — in which case Γ is subsequently rectified via $\gamma'(x) \searrow A$ (since $\gamma(x) > \gamma'(x)$).

• This means —
• If the eventual outcome is satisfaction of \mathcal{P} via an application of $5^\Gamma / 5^{\Gamma'}$ with subcase (iii) applying, then — arguing as before — one can verify that Γ is rectified at x in $5^\Gamma / 5^{\Gamma'}$ via a return to the rectifying value of $\Phi'^{A,B,D} \uparrow \psi'(y')$ (since $y' < y$).

•• If cases (i) and (iv) applied in $5^\Gamma / 5^{\Gamma'}$ — Γ' is rectified at x via a return to the rectifying value of $\Phi'^{A,B,D} \uparrow \psi'(y')$, as before — and Γ is also rectified via $\gamma(x) \setminus A$.

•• In case (ii) of $5^\Gamma / 5^{\Gamma'}$ — Γ' is rectified at x via $\gamma'(x) \setminus A$ —

• And in case (iv), Γ is similarly rectified.

•• Finally — In case (iii) one can argue as previously that Γ is rectified at x via a return to the rectifying value of $\Phi^{A,B,D} \uparrow \psi(y')$ — since the prior intervention of phase $6^{\Gamma'}$ involves the rectification of Γ via $\gamma'(x) \setminus A$.
\([i_1'] / [i_1]\): Infinitely many applications of phase \(6^{\Gamma'}\) or \(6^\Gamma\).

- In either case \(\mathcal{P}\) is satisfied via \(\Theta^A(x)^\uparrow\), as before —

- Although — since this is not within the \(\Gamma\) and \(\Gamma'\) strategies — the incorporation of further \(\mathcal{P}\)-requirements will entail verification of the provision of valid \(\Lambda'\) or \(\Lambda\) strategies for dealing with \(\mathcal{P}\) in a more general setting.

- (In the case of \([i_1]\) but not outcome \([i_1']\), one notices that the \(\Gamma'\) strategy does remain intact.)

- **In the case of infinitely many returns to phase \(1^\Gamma / 1^{\Gamma'}\), need —**
Level 2: Module for \hat{P} below P, below Q below Q' (with \hat{P} applying the Λ or Λ' strategy):

- Assume that infinitely many followers for P are selected via $1^\Gamma / 1^{\Gamma'}$.

- The auxiliary strategies will be built, as required, by P — and will be applied, as appropriate, by suitable copies of \hat{P}.

- The phases below synchronise their activities with those of the corresponding phases of the preceding module.

$1^\Lambda / 1^{\Lambda'}$. Select a new \hat{y} as D-agitator for \hat{P} (at Q and Q'), with $\hat{y} < y$.

$2^\Lambda / 2^{\Lambda'}$. Select a new $\hat{x} > x$ to follow \hat{P} — so $\hat{x} > \varphi'(\psi'(y)), \varphi'(\psi'(y)), \varphi(\psi(y))$ and $\varphi(\psi(y))$.

- Let the current value of $\hat{\Phi}_A^{A,B,D} \uparrow \psi(\hat{y})$ be its rectifying value — And agitate via $\hat{y} \downarrow D$.

\[3^{\Lambda'} \] (Simultaneous with \(3^{\Gamma'} \) (b) applying).

- Take \(\lambda'(\hat{x}) \) new, greater than \(\max \{ \varphi'(\psi'(\hat{y})), \hat{\varphi}'(\psi'(\hat{y})), \psi'(\hat{y}) \} \).

\[3^{\Lambda} \] (Simultaneous with \(3^{\Gamma} \) (b) applying).

- Define \(\Lambda^{\hat{\Phi}^{A,B,D},A}(\hat{x}) = B(\hat{x}) \) — with \(\lambda(\hat{x}) \) new > \(\max \{ \varphi(\psi(\hat{y})), \hat{\varphi}(\psi(\hat{y})), \psi(\hat{y}) \} \).

\(4^{\Lambda} / 4^{\Lambda'}. \) Wait for a \(\hat{\mathcal{P}} \)-expansionary stage.

\(5^{\Lambda'}. \) Ask if either (i') (i) or (ii) of \(5^{\Gamma} / 5^{\Gamma'} \) hold, or otherwise whether (i'') \(\gamma'(\hat{x}) > \hat{\nu}(\hat{x}) \), or not.

- Yes — Proceed to \(5^{\Lambda} \), while in subcase (i') — initialise \(\Lambda' \).

- No — Proceed to \(6^{\Lambda'}. \)

\(5^{\Lambda}. \) Ask if either (i) (iii) or (iv) of \(5^{\Gamma} / 5^{\Gamma'} \) hold, or otherwise whether — (i"") (i"") the rectifying value of \(\hat{\Phi}^{A,B,D}\upharpoonright \psi(\hat{y}) \) suffices to rectify \(\Lambda \) at \(\hat{x} \), or (i'""") \(\lambda(\hat{x}) > \hat{\nu}(\hat{x}) \).

- If so —
• In each case — Let \(y, \hat{y} \not\in D \), define \(B(\hat{x}) \neq \hat{\Theta}^A(\hat{x}) \) — and restrain \(A\upharpoonright \hat{\vartheta}(\hat{x}) \) and \(A, B, D\upharpoonright \max \{ \varphi'(\psi'(\hat{y})), \hat{\varphi}'(\psi'(\hat{y})), \psi'(\hat{y}) \} \).

• In the case that (\(i \)) and \(5^\Lambda' \) subcase (\(i' \)) hold — Initialise the \(\Lambda \) and \(\Lambda' \) strategies.

• As before — \(P \) is satisfied within the \(\Gamma / \Gamma' \) strategies.

• \textit{Rectify} \(\Gamma \) at \(\hat{x} \) via an \(A\upharpoonright \gamma(\hat{x}) \) change — And in case (\(iv \)) rectify \(\Lambda \) at \(\hat{x} \) via an \(A\upharpoonright \lambda(\hat{x}) \) change.

• \(\hat{P} \) is now \textit{satisfied} within the \(\Lambda / \Gamma \) strategy (according as \(5^\Lambda(\hat{i}) \) applied or not) — and within the \(\Lambda' / \Gamma' \) strategy (according as \(5^\Lambda'(\hat{i}') \) applied or not).

• If none of these alternatives applies —

• \textit{Proceed} to \(6^\Lambda \), when \textit{activated} by the \(\Gamma / \Lambda \) strategy for \(R \).
\[6^\Lambda \quad (\Gamma/\Lambda \text{ breakdown}). \quad \text{Change } A \uparrow \lambda(\hat{x}) \text{ via } \lambda(\hat{x}) \searrow A.\]

- And if \(R \) is not already satisfied —
- \textit{Return} to \(3^{\Lambda'} \) for \(\hat{x} \) — and progress the \(\Upsilon/\Delta \) strategy for \(R \) (see below).

\section*{Analysis of outcomes:

\subsection*{Impact on the level 1 outcomes:}

- On \(w_1, w'_1 \) and \(w_2 \) — None.
- On \(s_1 \) —
 - Since \(\hat{x} > x \), have \(\gamma(\hat{x}) > \gamma(x), \quad \gamma'(\hat{x}) > \gamma'(x). \)
 - Also \(\lambda'(\hat{x}), \quad \lambda(\hat{x}) \) are chosen to be new simultaneously with \(3^\Gamma / 3^{\Gamma'} \).
- This means, as before — No application of \(6^{\Lambda'} \) or \(6^\Lambda \) can result in a switch from subcase (a) to subcase (b), or vice versa, in successive applications of phase \(6^{\Gamma'} \) of the level 1 module.
• Also — the augmented agitation via $2^\Lambda / 2^{\Lambda'}$ is — simultaneously with $5^\Lambda / 5^{\Lambda'}$ — restored via 5^Λ, in the case that \mathcal{P} becomes satisfied via $5^\Lambda / 5^{\Lambda'}$.

• This means that in each case appropriate to s_1, the auxiliary strategies do not materially alter the relevant rectifications of Γ and Γ'.

•• The infinitary outcomes i_1 and i'_1 are subsumed in those for requirements below \mathcal{P} working within the context of valid auxiliary strategies.

Outcomes specific to the level 2 strategies:

\hat{w}_2: $\hat{\mathcal{P}}$ halts at $4^\Lambda / 4^{\Lambda'}$.

• Get $\hat{\mathcal{P}}$ trivially satisfied — similarly to \mathcal{P} in the case of outcome w_2 at level 1.

\hat{s}_1: Implementation of 5^Λ satisfying $\hat{\mathcal{P}}$.
Need to verify: In each case the Γ/Λ and Γ'/Λ' strategies remain intact.

• Say $\hat{\mathcal{P}}$ is satisfied via 5^Λ.

• If such satisfaction is within the Λ or Λ' strategy, such an application of 5^Λ can only accompany one of 5^Γ leading to 6^Γ or $6^\Gamma'$, respectively, for \mathcal{P}.

• In which case s_1 will involve $\gamma(x) \searrow A$ or $\gamma'(x) \searrow A$, respectively — and since $x' > x$, giving $\gamma(x') \geq \gamma(x)$, a corresponding Γ or Γ' rectification at \hat{x}.

• On the other hand — if the satisfaction of $\hat{\mathcal{P}}$ is within the Γ' strategy —

• The previous argument for Γ in case $5^\Gamma(i)$ of s_1 is easily adaptable — and one can verify that Γ' is rectified at \hat{x} by a return to the rectifying value of $\Phi'^{A,B,D} | \psi'(\hat{y})$ —

• Otherwise — since $\hat{y} < y$ — one cannot have a return to the rectifying value of $\Phi'^{A,B,D} | \psi'(y)$ following 5^Λ.
• Since this can only happen via injury to this rectifying value other than through \(y, \hat{y} \not\in D \) — impossible since have \(\hat{x} \) and \(\gamma(x) > \max \{ \varphi'(\psi'(y)), \varphi'(\psi'(\hat{y})) \} \).

• While as previously — an examination of the effects of multiple implementations of \(6^\Gamma / 6^{\Gamma'} \) shows that these cannot alter the fact that a return to the rectifying value of \(\Phi'_{A,B,D} \upharpoonright \psi'(\hat{y}) \) does lead to rectification of \(\Gamma' \) at \(\hat{x} \).

• A similar argument holds in the case of satisfaction of \(\hat{\mathcal{P}} \) is within the \(\Gamma \) strategy.

• On the other hand — one can similarly verify that if the satisfaction of \(\hat{\mathcal{P}} \) is within the \(\Lambda' \) strategy, \(\Lambda' \) is either rectified at \(\hat{x} \) by \(\lambda'(\hat{x}) \searrow A \) — or by a return to the rectifying value of \(\hat{\Phi'}_{A,B,D} \upharpoonright \psi'(\hat{y}) \).

• While if the satisfaction of \(\hat{\mathcal{P}} \) is within the \(\Lambda \) strategy — the conditions of \(5^\Lambda \) ensure that \(\Lambda \) is either rectified at \(\hat{x} \) by \(\lambda(\hat{x}) \searrow A \) — or by a return to the rectifying value of \(\hat{\Phi}_{A,B,D} \upharpoonright \psi(\hat{y}) \).
\hat{i}_1: Infinitely many applications of phase 6^A.

Outcome: \hat{P} is satisfied via $\hat{\Theta}^A(\hat{x}) \uparrow$.

- While to replace the failed Γ/Λ strategies — one needs to provide a valid Υ or Δ strategy for Q to pass on to P-requirements below \hat{P} —
Level 3: Module for $\tilde{\mathcal{P}}$ below \mathcal{P} below \mathcal{P}, acting below Q below Q' (\mathcal{P} implementing the Υ/Δ strategy for Q):

- Assume that on infinitely many occasions \mathcal{P} selects a new follower via $\hat{1}$.

The Υ/Δ strategy for \mathcal{R}:

Note:

- $\tilde{\mathcal{P}}$ may become satisfied below within the Δ strategy provided at \mathcal{R} — or may indirectly instigate the outright satisfaction of \mathcal{R} resulting in the termination of this strategy.

- In either case the Υ strategy survives — and features in an infinite list of \mathcal{R}-subrequirements dispersed throughout the prioritised listing of requirements — while continuing to work with the Γ/Λ strategy it depends on.
Background activity:

(a) $\Xi\widehat{\Phi}^{A,B,D,A}$-expansionary stages are ones at which one observes — during an implementation of the main module — an increase in the available beginnings of $\Xi\widehat{\Phi}^{A,B,D,A}$ — due to $\ell(\Xi\widehat{\Phi}^{A,B,D,A})$ reaching a new maximum > than any existing parameter actively associated with the strategy for \mathcal{R}.

(b) The \mathcal{R}-expansionary stages are those which are $\Xi\widehat{\Phi}^{A,B,D,A}$-expansionary and at which an increase is observed in the number of distinct available beginnings of $\Upsilon(\Xi\widehat{\Phi}^{A,B,D,A},A)$ which do not currently force W^A —

- Or — see later — an increase of those beginnings $\Upsilon(\Xi\widehat{\Phi}^{A,B,D,A},A)|w$ — with w an existing threshold for \mathcal{R} for which there exists a $\sigma \supset \Upsilon(\Xi\widehat{\Phi}^{A,B,D,A},A)|w$ with σ currently $\in W^A$, with the A-use of W^A at $\sigma < \gamma(x), \lambda(\hat{x})$, but with $\sigma \not\in \Upsilon(\Xi\widehat{\Phi}^{A,B,D,A},A)$.
(c) The activity of the \(\Upsilon \) module takes place at \(\Xi \hat{\Phi}^{A,B,D}_{A,A} \)-expansionary stages.

- In particular, new axioms for \(\Upsilon \) are enumerated at such stages.

- Subject to the qualifications appearing in phase \(3^\Upsilon \) below — \(\Upsilon(\Xi \hat{\Phi}^{A,B,D}_{A,A}, A) \) is defined on arguments \(< \ell(\Xi \hat{\Phi}^{A,B,D}_{A,A}) \), with standard monotonic increasing use function \(\upsilon \).

(d) \(\Upsilon \) has use functions \(\upsilon^\Xi \) and \(\upsilon^A \) such that for each argument \(u \) of \(\Upsilon(\Xi \hat{\Phi}^{A,B,D}_{A,A}, A) \) one has

\[
(\upsilon^\Xi(u), \upsilon^A(u)) = \mu (a, b)[\Upsilon(\Xi \hat{\Phi}^{A,B,D}_{A,A} \upharpoonright a, A \upharpoonright b, u)]
\]

and \(\upsilon^A(u) = \max \{ \xi(\upsilon^\Xi(u)), \varphi(\xi(\upsilon^\Xi(u))) \} \).

(e) The \(\Delta \) module for \(\tilde{\mathcal{P}} \) below \(\mathcal{R} \) acts at \(\mathcal{R} \)-expansionary stages.

- In particular — all new axioms for \(\Delta \) are enumerated at such stages — subject to the conditions in \(3^\Delta \) below.
(f) Δ is assumed to have two distinct use functions δ^Φ and δ^A such that for each argument u of $\Delta \Omega(\hat{\Phi}^{A,B,D}, A)$ one has

$$ (\delta^\Phi(u), \delta^A(u)) $$

$$ = \mu(a, b)[\Delta(\Omega(\hat{\Phi}^{A,B,D} \uparrow a, A \uparrow a), A \uparrow b, u) \downarrow] $$

and

$$ \delta^A(u) = \hat{\varphi}(\delta^\Phi(u)). $$

(g) Assume that at stages at which $\lambda(\hat{x}) \downarrow$ any new $\gamma(x)$ is chosen $> \lambda(\hat{x})$.

- Write $\hat{\varphi}^\land \lambda(\hat{x}) = \text{the greatest } \hat{\varphi}(v) < \lambda(\hat{x})$, and $\hat{\Phi}^{A,B,D} \uparrow (\hat{\varphi}^\land \lambda(\hat{x}), \psi(y)]$ for $\hat{\Phi}^{A,B,D}$ restricted to arguments between $\hat{\varphi}^\land \lambda(\hat{x}) + 1$ and $\psi(y)$ —

- One assumes standard background activity to satisfy $\Omega(\hat{\Phi}^{A,B,D}, A) \neq \hat{\Theta}^A$, which will rely on the $\hat{\Phi}^{A,B,D}, A)$-changes arising from the failure of the Γ/Λ-strategy, along with relative honesty of the Ω uses.
The phases of the module:

1γ / 1Δ. Select a new \tilde{y} as D-agitator for $\tilde{\mathcal{P}}$ (at Q and Q'), with $\tilde{y} < \hat{y}$.

2γ / 2Δ. Select a new $\tilde{x} > \hat{x}$ to follow $\tilde{\mathcal{P}}$, and agitate via $\tilde{y} \setminus D$.

3γ. Select a new w as a threshold for \mathcal{R} at $\hat{\Phi}_{A,B,D}^A \uparrow (\hat{\phi} \lor \lambda(\hat{x}), \psi(y))$.

Register the following rules on the background activity:

- No subsequent new argument v for $\Upsilon(\Xi \hat{\Phi}_{A,B,D}^A, A, A)$ is allowed to be defined at a stage at which $\Xi \hat{\Phi}_{A,B,D}^A \uparrow w$ does not exist.
- All new uses for Υ defined at later stages are $> w$.
3^Δ (Simultaneous with 3^γ).

Choose $\hat\Phi_{A,B,D} \upharpoonright (\varphi \lor \lambda(x), \psi(y))$, new for the Δ strategy, to follow \mathcal{R} — while noting that no $\hat\Phi_{A,B,D} \upharpoonright (\varphi \lor \lambda(x), \psi(y))$ threatens to injure a computation $\Xi\hat\Phi_{A,B,D},A(v) = \Delta \Omega(\hat\Phi_{A,B,D},A),A(v)$, any $v \geq w$.

Register the following restriction on the background activity:

- Subsequent arguments for $\Delta \Omega(\hat\Phi_{A,B,D},A),A$ satisfy $\Delta \Omega(\hat\Phi_{A,B,D},A),A(v) = \Xi\hat\Phi_{A,B,D},A(v)$,
 $\delta\hat\Phi(v) = \delta^A(v) > \max\{\psi(y), \xi(v), \varphi(\xi(v))\}$ (that is, Δ is defined to be *honest* at v), — and with $\lambda(\hat{x})$ and $\gamma(x) > \hat{\varphi}(\xi(v))$ and $\hat{\varphi}(\delta\hat\Phi(v))$ (that is, Δ *avoids* Γ/Λ at v), — where no such new argument v is allowed unless it is accompanied by some $\sigma \supset \Upsilon(\Xi\hat\Phi_{A,B,D},A) \upharpoonright w$ with $\sigma \in W^A$.
4\(\gamma\) / 4\(\Delta\). Wait for a \(\tilde{\mathcal{P}}\)-expansionary stage.

5\(\gamma\) / 5\(\Delta\). Ask: Is \(\tilde{\vartheta}(\tilde{x}) < \gamma(x), \lambda(\tilde{x})\)?

(a) Yes —

- Define \(B(\tilde{x}) \neq \tilde{\Theta}^A(\tilde{x})\).
- And restrain \(A \upharpoonright \tilde{\vartheta}(\tilde{x})\) and

 \[A, B, D \upharpoonright \text{max}\ \{\varphi'(\psi'(\tilde{y})), \hat{\varphi}'(\psi'(\tilde{y})), \psi'(\tilde{y})\}\].

(b) No —

- Activate 6\(\gamma\) — and return to 4\(\gamma\) / 4\(\Delta\) for \(\tilde{x}\).

6\(\gamma\). Ask: Is \(\Upsilon(\Xi\hat{\Phi}^{A,B,D,A}, A) \upharpoonright v \downarrow\) — and is it incompatible with its value at the antecedent implementation of 5\(\gamma\) / 5\(\Delta\), for some \(v < w\)?

I. No —
• Then ask: Does there exist a string $\sigma \supset \Upsilon(\Xi \hat{\Phi}^{A,B,D}_{A}, A) \upharpoonright w$ with $\sigma \in W^{A}$ — and with $\Xi \hat{\Phi}^{A,B,D}_{A} \upharpoonright w$ new for Υ?

Case 1: Yes — Define $\sigma \subset \Upsilon(\Xi \hat{\Phi}^{A,B,D}_{A}, A)$.

• And appropriately restrain A, B and D to maintain this, and $\sigma \in W^{A}$, at later stages.

• Any Δ or $\overline{\Upsilon}$ strategy dependent on the failure of Υ is initialised.

Outcome: One maintains the Υ strategy, and R is satisfied outright.

Case 2: No — Progress the Δ strategy for R via 6^Δ — and return to $4^\Upsilon / 4^\Delta$ for \tilde{x}.

II. No: Progress the auxiliary $\overline{\Upsilon}$ strategy for R — and return to $4^\Upsilon / 4^\Delta$ for \tilde{x}.

6^Δ. Let y, \hat{y}, $\check{y} \not\in D$, rectify Δ — and restrain A, B, $D \upharpoonright \max \{\varphi(\psi(\check{y})), \hat{\varphi}(\psi(\check{y})), \psi(\check{y})\}$ at \tilde{P}.
Analysis of outcomes.

Impact on the level 1 and 2 outcomes:

- On w_1, w'_1, w_2 and \hat{w}_2 — None.

- On s_1, \hat{s}_1 — A similar argument to that for s_1 in the context of the level 2 module applies.

- On the infinitary outcomes i_1, i'_1 and \hat{i}_1 — These are now subsumed in the outcomes for the Υ strategy for Q.

Notice: No phase of the level 3 module involves any impediment to the eventual success of the Γ/Λ strategy — or of the Γ'/Λ' strategy — in the case of eventually incomplete fulfilment of the conditions for a successful Υ strategy.
Outcomes specific to the level 3 strategies:

\[\tilde{w}_2 \]: $\tilde{\mathcal{P}}$ halts at $4^\gamma / 4^\Delta$.

- If there are only finitely many $\tilde{\mathcal{P}}$-expansionary stages, $\tilde{\mathcal{P}}$ is trivially satisfied.

- Otherwise — each progression of the Λ strategy via 6^Γ involves $\gamma(x) \downarrow A$ — and each progression of the Υ strategy via 6^Λ involves $\lambda(\tilde{x}) \downarrow A$.

- And hence — if at every $\tilde{\mathcal{P}}$-expansionary stage one has $\gamma(x)$ or $\lambda(\tilde{x}) \leq \tilde{\vartheta}(\tilde{x})$ — one must eventually find $\tilde{\Theta}(\tilde{x}) \uparrow$.

\[\tilde{w}_3 \]: Only finitely many $\Xi^{\tilde{\Phi}^{A,B,D}, A}$-expansionary stages.

- Then — in the context of an appropriate valid Υ strategy being passed down to lower priority requirements involving all such functionals Ξ — \mathcal{R} (and hence \mathcal{Q}) is satisfied.
\[\tilde{w}_4 \]: Only finitely many \(\mathcal{R} \)-expansionary stages.

- Then — arguing as in the case of \(\tilde{w}_2 \) — will have some sufficiently long beginning \(\Upsilon(\Xi \hat{\Phi}^{A,B,D,A}_A, A) \upharpoonright w \) of \(\Upsilon(\Xi \hat{\Phi}^{A,B,D,A}_A, A) \) for which each \(\sigma \supset \Upsilon(\Xi \hat{\Phi}^{A,B,D,A}_A, A) \upharpoonright w \) with \(\sigma \in W^A \) — during a progression of the \(\Upsilon \) strategy — involves an \(A \)-use of \(W^A \) at \(\sigma \) which is \(\geq \gamma(x) \) or \(\lambda(\hat{x}) \) —

- Giving \(\mathcal{R} \) is satisfied via

\[
\Upsilon(\Xi \hat{\Phi}^{A,B,D,A}_A, A) \upharpoonright w \models W^A
\]

in the limit.

\[\tilde{s}_1 \]: Phase 5\(^{\Upsilon} / 5^{\Delta} \) applies.

- \(\tilde{\mathcal{P}} \) is satisfied —

- This satisfaction being eventually within the \(\Upsilon \) or \(\Delta \) strategy according as outcome \(\tilde{s}_2 \) or \(\tilde{s}_3 \) applies.
\[\tilde{s}_2 \]: Phase 6\(^\gamma \), part I, subcase 1 applies.

• In this case, \(Q \) is satisfied via the satisfaction of \(R \) due to \(\Upsilon(\Xi \hat{\Phi}^{A,B,D},A,A) \models W^A \).

• One needs to verify:

 (a) Following 6\(^\gamma \) — an intact strategy for building \(\Upsilon(\Xi \hat{\Phi}^{A,B,D},A,A) \) below \(\Xi \hat{\Phi}^{A,B,D},A \oplus A \) exists.

 (b) \(\sigma \subset \Upsilon(\Xi \hat{\Phi}^{A,B,D},A,A) \) at all sufficiently large stages. And:

 (c) \(\sigma \in W^A \) at all such stages.

• For (a) — The existence of infinitely many \(\Xi \hat{\Phi}^{A,B,D},A \)-expansionary stages ensure that there are beginnings of \(\Upsilon(\Xi \hat{\Phi}^{A,B,D},A,A) \) of unbounded length defined —

• And — by the conditions of 6\(^\gamma \), part I — any definition of \(\sigma \subset \Upsilon(\Xi \hat{\Phi}^{A,B,D},A,A) \) via I, case 1, is consistent with existing axioms for \(\Upsilon \).
• For (b) — One observes that following such a definition of $\sigma \subset \Upsilon(\Xi_\hat{\Phi}^{A, B, D, A, A})$ — the accompanying restraints can only be injured by some existing parameter subsequently entering A, B or D.

• But a current cycle of the Γ strategy completed via 5^Γ involves no subsequent A-, B- or D-change capable of such injury —

• And any later cycle involves parameters new at the relevant application of 6^Γ.

•• And (c) follows similarly.

\[
\bar{s}_3: \text{Phase } 6^\Delta \text{ applies.}
\]

•• In this case, the prospect of an eventual satisfaction of \mathcal{R} via a successful Δ-strategy is retained —

• While the potentiality for the Υ strategy being progressed via a subsequent outcome \bar{s}_2 for some other \mathcal{P}-requirement below $\hat{\mathcal{P}}$ below \mathcal{Q} is maintained.
One needs to show that:

(a) Following 6^Δ — an intact strategy for building $\Upsilon(\Xi \hat{\Phi}^{A,B,D},A,A)$ below $\Xi \hat{\Phi}^{A,B,D},A \oplus A$ exists (although outcome \tilde{s}_2 will not now be provided by $\tilde{\mathcal{P}}$).

(b) Following each application of 6^Δ, there is an intact strategy for building $\Delta \Omega(\hat{\Phi}^{A,B,D},A,A) = \Xi \hat{\Phi}^{A,B,D},A$, while

(c) For each $\nu — \Delta \Omega(\hat{\Phi}^{A,B,D},A,A)(\nu) \downarrow$ at all sufficiently large stages.

•• Clause (a) is immediate — since 6^Δ only entails background enumeration of axioms for Υ.

•• For (b) — assume $\Delta \Omega(\hat{\Phi}^{A,B,D},A,A)(\nu) \downarrow$ at some stage t at which $\Xi \hat{\Phi}^{A,B,D},A(\nu) \uparrow$, or at which $\Xi \hat{\Phi}^{A,B,D},A(\nu) \downarrow \neq \Delta \Omega(\hat{\Phi}^{A,B,D},A,A)(\nu)$ —
• Hence $\Delta^{\Omega(\hat{\Phi}^{A,B,D},A),A}(v)$ gets defined equal to $\Xi^{\hat{\Phi}^{A,B,D},A}(v)$ at an R-expansionary stage s, say —

• And — at some later stage $t' \leq t$ — there occurs a relevant A, B, or D-change below $\max \{\xi(v), \varphi(\xi(v))\}$ or below $\hat{\varphi}(\delta^{\hat{\Phi}}(v))$ —

• Where — if the relevant change is an A-change — it is above $\delta^A(v)$.

• Since outcomes $s_1, \bar{s}_1, \tilde{s}_1$ and \bar{s}_2 do not apply —

• One can assume that such a change occurs via an application of phase $6^{\Gamma'} / 6^\Gamma$, 6^A or $5^\Gamma / 5^\Delta$ and then 6^Δ — or via a progression of the $\bar{\Upsilon}$ strategy via 6^Υ, part II.

• Phases $6^{\Gamma'} / 6^\Gamma$ present no problems so long as Δ remains honest at v —

• Since in that case any $\Xi^{\hat{\Phi}^{A,B,D},A}(v)$ change consequent on an $A\upharpoonright \varphi(\xi(v))$ or $A\upharpoonright \xi(v)$ change leads to eventual Δ rectification at v, without further $\hat{\Phi}^{A,B,D} \oplus A$ change — by the choice of $\delta^A(v)$ in 3^Δ.
• And any such change giving rise to a change in $\hat{\Phi}^{A,B,D} \uparrow \delta \hat{\Phi}(v)$ always leads to Δ rectification via an accompanying $A \uparrow \delta^A(v)$-change — so long as this can eventually be achieved with Δ avoiding Γ/Λ at v, which will happen unless outcome \bar{i}_2 below applies.

• Similarly, $\lambda(x) \setminus A$ in 6^Λ is followed by rectification of Δ in 6^Δ at all arguments of $\Delta \hat{\Phi}^{A,B,D,A}$ at which Δ is honest — again by the choice of $\delta^A(v)$.

• While — on the other hand — $\hat{\Phi}^{A,B,D} \uparrow \delta \hat{\Phi}(v)$ changes due to A must again lead to appropriate Δ rectification at any relevant v.

• One also notices — by the above — that honesty of Δ at an argument v cannot be lost via an implementation of $6^{\Gamma'}/6^\Gamma$ or 6^Λ alone.

• Say at a stage $< t'$ it happens that Δ becomes dishonest at an argument v of $\Delta \hat{\Phi}^{A,B,D,A}$ via an application of $5^\tau/5^\Delta$ or 6^Δ —
• Firstly — assume that \(\tilde{x} \searrow B \) via \(5^\gamma / 5^\Delta \) at a stage \(t'' \), with \(s < t'' < t' \) and \(\tilde{x} \leq \varphi(\xi(v)) \) — resulting in \(\Delta \) becoming dishonest at \(v \) at a stage \(\leq t' \).

•• There are two cases:

 (i) \(s < \) the last previous stage at which \(3^\Delta \) was implemented.

• But since \(\tilde{x} \) was chosen new via \(2^\gamma / 2^\Delta \) — one has \(\tilde{x} > \varphi(\xi(v)) \) for all \(v \) for which \(\Delta \hat{\Phi}^{A,B,D,A}(v) \downarrow \) prior to the stage (\(s' \) say) at which \(3^\Delta \) is implemented.

(ii) Otherwise.

•• In this case — one can easily check that the implementation of \(5^\gamma / 5^\Delta \) is followed by that of \(6^\Delta \) — leading to \(y, \hat{y} \) and \(\tilde{y} \nearrow D \), and a consequent return to the rectifying value of \(\hat{\Phi}^{A,B,D} \uparrow \psi(y) \) identified originally via \(3^\Gamma \) —
• One only needs to verify that at no previous stage did one have $\Delta(\hat{\Phi}^{A,B,D}, A, v) \downarrow$ — with $A\upharpoonright \delta^A(v) \subseteq A[s']$ and $\hat{\Phi}^{A,B,D} \upharpoonright \delta^{\hat{\Phi}}(v)$ compatible with the rectifying value of $\hat{\Phi}^{A,B,D} \upharpoonright \psi(\tilde{y})$ — to ensure that in subsequently rectifying Δ one maintains honesty at v.

• But the restriction on background activity registered in any application of 3^Δ ensures that $\delta^{\hat{\Phi}}(v) > \psi(y)$.

• And so if $\hat{\Phi}^{A,B,D} \upharpoonright \delta^{\hat{\Phi}}(v)$ is compatible with the rectifying value of $\hat{\Phi}^{A,B,D} \upharpoonright \psi(\tilde{y})$ at some such stage $> s'$ —

• One must have at that stage $\Phi^{A,B,D} \upharpoonright \psi(\tilde{y})$ being incompatible with the rectifying value of $\Phi^{A,B,D} \upharpoonright \psi(y)$ —

• Precluding a progression of the Δ strategy, and — in particular — any definition of new axioms for Δ at that stage.
• It now follows immediately that no such stage t' exists at which one defines $B(\tilde{x}) \neq \tilde{\Theta}^A(\tilde{x})$ via phase $5^{\tilde{\gamma}} / 5^\Delta$ — or at which one implements y, \hat{y} and $\hat{y} \not\in D$ via phase 6^Δ.

• And no progression of the $\overline{\Upsilon}$ strategy will materially alter the above argument — as will be seen from the analysis of the level 4 outcomes, below.

•• For (c) — the existence of infinitely many \mathcal{R}-expansionary stages ensure that unbounded beginnings of $\Delta^{\tilde{\Phi}^A,B,D,A}$ are defined.

• And hence the totality of Δ on argument $(\Omega(\tilde{\Phi}^{A,B,D,A}, A), A)$ easily follows from the above examination of Δ-rectification in (b).

\[\tilde{i}_2 \] : For some number ν, Δ fails to avoid Γ/Λ at ν at infinitely many stages.

•• In this case the infinitary progression of the Δ strategy accompanies infinitely many changes of $\lambda(\hat{x})$ and $\gamma(x)$ — leading to either $\Phi^{A,B,D}$ or Ξ^E or $\tilde{\Phi}^{A,B,D}$ failing to be total.
Level 4: Module for $\tilde{\mathcal{P}}$ below S' below $\tilde{\mathcal{P}}$ below \mathcal{P}, all acting below Q below Q' (with $\tilde{\mathcal{P}}$ successfully implementing the $\overline{\Upsilon}$ strategy for Q):

- Assume now that $\tilde{\mathcal{P}}$ implements phase 6^Υ, part II, infinitely often.
- The complete $\overline{\Upsilon}$ strategy will be provided by variant copies of Q — with \overline{W}^A in S ranging over all A-c.e. sets — and \overline{Q} unchanged from Q outside of S.
- Let S' be a typical \mathcal{S}-subrequirement of the form
 \[\overline{\Upsilon}(\Xi^{\Phi^A,B,D,A},A) \vdash \overline{W}'^A \]
 activated above $\tilde{\mathcal{P}}$ via the level 3 module.
The $\overline{\Upsilon}$ strategy for \mathcal{R} applied at S':

Notes:

(a) As for the Υ strategy, this auxiliary strategy takes place at $\Xi \hat{\Phi}^{A,B,D,A}$-expansionary stages.

(b) The S'-expansionary stages are those \mathcal{R}-expansionary stages at which one also has an increase in the observed length of beginnings of $\overline{\Upsilon}(\Xi \hat{\Phi}^{A,B,D,A},A)$ not currently forcing \overline{W}'^A.

(c) Any new axioms for $\overline{\Upsilon}$ are enumerated on completion of a cycle of the module which concludes with an occurrence of part II of phase $6^\mathcal{R}$.

•• In working below S' within the context of the $\overline{\Upsilon}$ strategy for $\mathcal{R} — \tilde{\mathcal{P}}$ requires the activity of the Υ strategy relative to $\tilde{\mathcal{P}}$ to synchronise with that of the $\overline{\Upsilon}$ strategy.
The phases of the module:

3⁻¹. Given a follower $\Phi^{A,B,D}_{} (\phi \lor \gamma(x), \psi(y))$ for R — with corresponding threshold w — Select a new $w' > w$ as a threshold for R at $\Phi^{A,B,D}_{} (\phi \lor \gamma(x), \psi(y))$.

Register the following rules on the background activity:

- No subsequent new argument v for $\Gamma(\Xi\Phi^{A,B,D}_{} , A)$ is allowed to be defined at a stage at which $\Xi\Phi^{A,B,D}_{} , A \uparrow w'$ does not exist.
- All new uses for Γ defined at later stages are $> w'$.

Note: No new argument of $\Gamma(\Xi\Phi^{A,B,D}_{} , A)$ is allowed to have been defined since the previous visit to 6⁻¹, part II — so that $\Phi^{A,B,D}_{} (\phi \lor \gamma(x), \psi(y))$ threatens to injure no $\Xi\Phi^{A,B,D}_{} , A (v)$ used by an existing axiom for Γ.
4. Wait for an \(S' \)-expansionary stages, with an accompanying \(\sigma' \supset \Upsilon(\Xi_{\Phi^{A,B,D},A}, A) \upharpoonright w' \) with \(\sigma' \in \overline{W'}^A \), with the use of \(\overline{W'}^A \) at \(\sigma' < \gamma(x), \lambda(\hat{x}) \).

5. Activate \(5^\Upsilon / 5^\Delta \).

6. (Simultaneous with 6\(^\Upsilon \), part II.) — Define \(\sigma' \subset \Upsilon(\Xi_{\Phi^{A,B,D},A}, A) \). Appropriately restrain \(A, B \) and \(D \) to maintain this and \(\sigma' \in \overline{W'}^A \) at later stages.

Outcome: One maintains the \(\Upsilon/\Delta \) strategy, while \(S' \) is satisfied.
Analysis of outcomes.

Impact on the higher level outcomes:

- On \(w_1, w'_1, w_2, \hat{w}_2, \tilde{w}_2, \tilde{w}_3 \) and \(\tilde{w}_4 \) — None.

- On \(s_1, \hat{s}_1, \tilde{s}_1, \tilde{s}_2 \) and \(\tilde{s}_3 \) — None.

- On the infinitary outcomes \(i_1, i'_1, \hat{i}_1 \) and \(\tilde{i}_2 \) — None.
Outcomes specific to the level 4 strategy:

\tilde{w}_4 : Only finitely many S'-expansionary stages.

- Then — as in the case of \tilde{w}_4 —

- There will be a sufficiently long beginning $\overline{\Upsilon}(\Xi^{\hat{\Phi}_{A,B,D}^A,A}, A) \upharpoonright w'$ of $\overline{\Upsilon}(\Xi^{\hat{\Phi}_{A,B,D}^A,A}, A)$ for which each $\sigma' \supset \overline{\Upsilon}(\Xi^{\hat{\Phi}_{A,B,D}^A,A}, A) \upharpoonright w'$, with $\sigma' \in \overline{W}'^A$, involves an A-use of \overline{W}'^A at σ' which is $\geq \gamma(x)$ or $\lambda(\hat{x})$ —

- Giving S' satisfied via

 $\overline{\Upsilon}(\Xi^{\hat{\Phi}_{A,B,D}^A,A}, A) \upharpoonright w' \models \overline{W}'^A$.

\tilde{s}_2 : Phase 6 $\overline{\Upsilon}$, applies.

- Then S' is satisfied due to

 $\overline{\Upsilon}(\Xi^{\hat{\Phi}_{A,B,D}^A,A}, A) \vdash \overline{W}'^A$

 — by a similar argument to that above for \tilde{s}_2.

One needs to verify —
(a) Following $6\overline{\Upsilon}$, there remains an intact strategy for building $\overline{\Upsilon}(\Xi\hat{\Phi}^{A,B,D},A,A)$ below $\Xi\hat{\Phi}^{A,B,D},A \oplus A$.

(b) $\sigma' \subset \overline{\Upsilon}(\Xi\hat{\Phi}^{A,B,D},A,A)$ at all sufficiently large stages. And —

(c) $\sigma' \in \overline{W}^{A}$ at all such stages.

•• For (a) — just notice that infinitely many $\Xi\hat{\Phi}^{A,B,D},A$-expansionary stages and occurrences of $6\overline{\Upsilon}$, part II, ensure that there are beginnings of $\overline{\Upsilon}(\Xi\hat{\Phi}^{A,B,D},A,A)$ of unbounded length defined.

• The conditions of $6\overline{\Upsilon}$, part II — and the rules on the background activity registered in $3\overline{\Upsilon}$ — ensure that the definition of $\sigma' \subset \overline{\Upsilon}(\Xi\hat{\Phi}^{A,B,D},A,A)$ via $6\overline{\Upsilon}$ is consistent with existing axioms for $\overline{\Upsilon}$.

•• The arguments for (b) and (c) are almost the same as before.