The Turing Definability of the Relation of “Computably Enumerable In”

S. Barry Cooper

Computability Theory Seminar
University of Leeds
Winter, 1999 – 2000
1. The ‘big picture’

Turing definability/invariance

Mathematical information content

Empirically observable phenomena

Scientific theory

Scientific questions e.g. in quantum theory

Mathematical foundations

Humanities v. Sciences - epistemological relativism

Computation theory

Church’s thesis
• Corresponding to the ith Turing machine, Φ_i denotes the ith partial computable (p.c.) functional $2^\omega \rightarrow 2^\omega$.

• A is Turing reducible to a B ($A \leq_T B$) iff $A = \Phi_i^B$, some $i \in \omega$ — and A, B are Turing equivalent ($A \equiv_T B$) iff $A \leq_T B$ and $B \leq_T A$.

• The degree of unsolvability or Turing degree of A is defined by

$$\text{deg} (A) = \{X \in 2^\omega \mid A \equiv_T X\}.$$

• \leq is the induced partial ordering on D (= the set of all degrees), 0 = the least degree (consisting of all computable sets of numbers), and \mathcal{D} is the structure $\langle \mathcal{D}, \leq \rangle$.

• $W_i^A = \text{dom} \ \Phi_i^A$ denotes the ith computably enumerable in A (A-c.e.) set ($W_i = W_i^\emptyset$ being the ith c.e. set).

• The jump — or $n+1$th jump — of a set A is defined by $A' = A^{(1)} = \{x \mid x \in W_x^A\}$ — or, $A^{(n+1)} = (A^{(n)})'$, respectively.
• The *jump operator* on degrees is defined by
\[a' = \deg(A'), \quad A \in a, \] where \(a < a' \), and \(a' \) is the l.u.b. of the degrees of sets c.e. in \(A \in a \).

• And write \(a^{(n+1)} = \deg(A^{(n+1)}) = (a^{(n)})' \).

• Define the standard \(\omega \)-*jump* of \(a \) by
\[a^{(\omega)} = \deg(\bigoplus_{n \in \omega} A^{(n)}), \quad A \in a. \]

• Write \(D' \) for the structure \(\langle D, \leq, ' \rangle \).

• A relation on \(D \) is *Turing definable* iff it is describable in the first order theory of \(D \).

• Will assume standard computable sequences \(\{\Phi_{i,s}\}_{s \geq 0}, \{W_{i,s}^A\}_{s \geq 0} \) of finite approximations to the p.c. functionals and c.e. sets, respectively.

• Denote by \(A[s] \), or \(A^s \), the corresponding approximation to an expression \(A \) at a stage \(s \).

• The *restriction* \(\psi \upharpoonright x \) of a function \(\psi \) is taken to be its restriction to arguments \(\leq x \). And if \(\Phi \) is some functional and \(\Phi^A(x) \downarrow \), the *use* \(\varphi^A(x) \) of \(\Phi^A(x) \) will be taken to be \(\mu z[\Phi^A[z(x) \downarrow]] \).
Naturally arising information content in the Turing universe
3. Pseudo-jump operators

Definition 3.1: Say J^n is an n-CEA operator iff there exist $j_0, j_1, \ldots, j_{n-1} \in \omega$ such that $J^k(A) \leq_T W_{j_k}^{J^k(A)}$, each $k < n$, $A \subseteq \omega$, and J^n is inductively defined by

$$J^0(A) = A, \quad J^{k+1}(A) = W_{j_k}^{J^k(A)}, \quad (k < n).$$

- If $D = W_i - W_j$, some $i, j \geq 0$, say D is a d-c.e. set (a difference of two c.e. sets).

Lemma 3.2: If $D = W_i - W_j$ is a d-c.e. set then $A \oplus (W_i^A - W_j^A)$ is a 2-CEA operator.

Proof (Lachlan; Jockusch and Shore [1984]).

- Make a special choice of the indices j_0, j_1 in definition 3.1 in relation to i, j —
• Choose j_0, j_1 so that for each set X of numbers

\[
\begin{align*}
W_{j_0}^X & = X \oplus \{ \langle x, s \rangle \mid x \in (W_{i,s+1}^X - W_{i,s}^X) \} \\
& \quad \cup \{ \langle x, s + 1 \rangle \mid x \in (W_{i,s+1}^X - W_{i,s}^X) \cap W_j^X \}, \\
W_{j_1}^{X \oplus Y} & = X \oplus \{ x \mid \exists s [\langle x, s \rangle \in Y \& \langle x, s \pm 1 \rangle \notin Y] \},
\end{align*}
\]

and define the operator J^2 by $J^2(A) = W_{j_1}^{J^1(A)}$, where $J^1(A) = W_{j_0}^A$.

• Need to verify:

(a) that $J^2(A) = A \oplus (W_i^A - W_j^A)$ and
(b) that J^2 is a 2-CEA operator.

• For (a): Notice that

\[
(J^2(A))_0 = (W_{j_1}^{J^1(A)})_0 = (J^1(A))_0 = (W_{j_0}^A)_0 = A
\]

and —
\[x \in (J^2(A))_1 \iff x \in (W_{j_1}^{J^1(A)})_1 \]
\[\iff \exists s [\langle x, s \rangle \in (W_{j_0}^A)_1 \& \langle x, s + 1 \rangle \notin (W_{j_0}^A)_1] \]
\[\iff x \in (W_i^A - W_j^A), \]
giving \(J^2(A) = A \oplus (W_i^A - W_j^A) \).

- And for (b): It follows straight from the definition that \(X \leq_T W_{j_0}^X \), so \(J^1 \) is a 1-CEA operator.

- To show that \(J^1(A) \leq_T W_{j_1}^{J^1(A)} \) need to check that \(W_{j_0}^A \leq_T J^2(A) = A \oplus (W_i^A - W_j^A) \).

- But \(x \in (W_{j_0}^A)_0 \iff x \in A \) and
\[\langle x, s \rangle \in (W_{j_0}^A)_1 \]
\[\iff x \in (W_{i,s+1}^A - W_{i,s}^A) \]
\[\vee x \in (W_{i,s}^A - W_{i,s-1}^A) \cap W_j^A \]
\[\iff x \in (W_{i,s+1}^A - W_{i,s}^A) \]
\[\vee [x \in (W_{i,s}^A - W_{i,s-1}^A) \& x \notin W_i^A - W_j^A], \]
so \(W_{j_0}^A \leq_T A \oplus (W_i^A - W_j^A) \), and \(J^2 \) is a 2-CEA operator, as required. \(\square \)
4. Jump inversion

String notation:

- σ, τ etc. denote finite binary strings (i.e. 0-1 valued functions with finite ordinal domains).
- |σ| = the length of σ.
- σ ^ τ denotes the concatenation of σ, τ (= σ followed by τ).
- Write σ ⊆ τ iff τ is an extension of σ, σ ⊂ A iff σ is a beginning of (the characteristic function of) A.
- σ, τ are compatible (σ ≈ τ) iff σ ⊆ τ or τ ⊆ σ – otherwise write σ | τ.
- Write ∅ = the empty string, and S = the set of all strings.
- T : S → S is a tree iff ∀τ ⊂ σ ∈ S:

 (i) T(σ) ↓ ⇒ T(τ) ↓ ⊊ T(σ), and, for i ≤ 1,
 (ii) T(τ ^ i) ↓ ⇒ T(τ ^ (1 − i)) ↓ | T(τ ^ i).
JUMP INVERSION THEOREM FOR 2-CEA OPERATORS: If J^2 is a 2-CEA operator, then for each $C \succeq_T \emptyset''$ there is a set A such that $C \equiv_T J^2(A)$.

Note: Since pseudo-jumps are not necessarily degree theoretic, cannot just iterate the jump inversion theorem for 1-CEA operators.

PROOF.

• Let $J^2(X) = W_i^{W_j^X} = W_i(W_j^X)$ define the 2-CEA operator J^2 from indices i, j.

• Need to construct a set A such that

$$W_i(W_j^A) \equiv_T A \oplus \emptyset'' \equiv_T C.$$

• Define an increasing sequence $\{\sigma_n\}_{n \geq 0}$ of strings chosen off a tree T — and take (the characteristic function of) $A = \bigcup_{n \geq 0} \sigma_n$.
• **Aim:**
 (i) Construct T so that, for each string $τ$ with $|τ| > n$, $T(τ)$ decides whether $n ∈ W_σ$ for any $σ ⊃ T(τ)$, and then
 (ii) Choose the $σ$’s $⊂ A$ on T to code C into A with help from $∅''$ and to decide whether $n ∈ J^2(A)$.

Definition of T:

- Define $T(∅) = ∅$.
- Assume $T(τ) ↓$ with $|τ| = n ≥ 0$ (that is, with $T(τ)$ at level n on T).
- Ask if $∃ σ' ⊇ T(τ)$ with $n ∈ W_σ'$.
- Then define $T(τ^0), (τ^1) = σ^0, σ^1$, respectively, where $σ$ is the first such $σ'$ (in some standard listing of strings) if such a $σ'$ exists — and otherwise $σ$ is the first $σ' ⊃ T(τ)$.
- Notice that $T ≤_T ∅'$.
The construction of $\{\sigma_n\}_{n \geq 0}$

Stage 0. Define $\sigma_0 = T(\emptyset)$.

Stage $2n+1$. If there exists a string $\sigma \supset \sigma_{2n}$ at some level $x + 1$, say, on T with $n \in W_i(W_j^\sigma \mid x)[|\sigma|]$, let σ_{2n+1} be the first such σ. Otherwise let $\sigma_{2n+1} = \sigma_{2n}$.

Stage $2n + 2$. Define $\sigma_{2n+2} = \text{the first } T(\tau^\wedge C(n)) \supset \sigma_{2n+1}$.

Now observe the following sequence of facts —

(1) $\{\sigma_n\}_{n \geq 0} \leq_T C$.

- This holds because stages $2n + 1, n \geq 0$, can be carried out computably in $T' \leq_T \emptyset'' \leq_T C$, and stages $2n, n \geq 0$, can be carried out computably in $T, C \leq_T C$.

- Hence:

(2) $A \oplus \emptyset'' \leq_T C$; and —
Since, for each \(n \geq 0 \),
\[
n \in W_i(W_j^A) \iff \sigma_{2n+1} \supset \sigma_{2n}.
\]

Also:

\[
C \leq_T \{\sigma_n\}_{n \geq 0}
\]

Since, if one writes \(\sigma_n = T(\tau_n) \), each \(n \in \omega \), one has
\[
C(n) = \tau_{2n+2}(|\tau_{2n+2}| - 1)
= \sigma_{2n+2}(|\sigma_{2n+2}| - 1),
\]
each \(n \geq 0 \),

\[
\{\sigma_n\}_{n \geq 0} \leq_T A \oplus \emptyset''
\]

Since stage \(2n + 1 \) can be carried out computably in \(\emptyset'' \), and stage \(2n + 2 \) can be carried out computably in \(T \leq_T \emptyset' \) and \(A \), and

\[
\{\sigma_n\}_{n \geq 0} \leq_T W_i(W_j^A).
\]

To verify this, one first notices that since \(J^2 \) is a 2-CEA operator one has \(A \leq_T W_j^A \) and \(W_j^A \leq_T W_i(W_j^A) \). Then —
• To carry out stage $2n + 1$ one can compute

$$\{\langle \sigma, x \rangle \mid \sigma_{2n} \subset \sigma \subset A \& W_j^A \upharpoonright x = W_j^{\sigma} \mid \sigma \mid \upharpoonright x\}$$

with the use of A and W_j^A, and hence also

$$\{T(\tau) \subset A \mid \tau \supset \tau_{2n}\}.$$

• Can then compute σ_{2n+1} with help from $W_i(W_j^A)$.

• Similarly, one can carry out stage $2n$ of the construction using A and W_j^A.

• So from (5) and (6) one gets:

$$(7) \ C \leq_T W_i(W_j^A) \text{ and } A \oplus \emptyset''.$$

• Combining (2), (3) and (7) the theorem follows. \(\square\)

Note: Only need the analogue of Friedberg’s theorem for a 2-CEA operator derived as in Lemma 3.2 from a d-c.e. set. This is a main ingredient of —
5. A jump and join theorem

The basic jump-join theorem for 2-CEA operators derived from a d-c.e. set: If J^2 is a 2-CEA operator derived from a d-c.e. set, then if $C \geq_T \emptyset'' \oplus X$ and $X \not\leq_T \emptyset'$, one can find an A such that

$$X \oplus A \equiv_T C \equiv_T J^2(A).$$

- Choose i, j s.t. $J^2(X) = W^X_j W^X_i = W_i(W^X_j)$.
- From the proof of Lemma 3.2, can assume that W_i, W_j are given by equations of the form

$$W^X_j = X \oplus \{\langle x, s \rangle \mid x \in (W^X_{i'_s}, s+1 - W^X_{i'_s}, s)\} \cup \{\langle x, s + 1 \rangle \mid x \in (W^X_{i'_s}, s+1 - W^X_{i'_s}, s) \cap W^X_{j'_s}\},$$

$$W^X_i \oplus Y = X \oplus \{x \mid \exists s [\langle x, s \rangle \in Y \& \langle x, s \pm 1 \rangle \notin Y]\},$$

where $J^2(A) = A \oplus (W^A_{i'_s} - W^A_{j'_s}).$
• Without changing the degree of X, can assume that X is \emptyset'-immune (i.e., has no infinite \emptyset'-c.e. subsets).

• Wish to construct a set A satisfying the picture:

\[
A \oplus X \equiv_T C \equiv_T J^2(A) \equiv_T W_i(W_j^A)
\]

• As before, define $A = \bigcup_{n \geq 0} \sigma_n$, where the σ's $\subset A$ are chosen to —

• Code C into A with help from X, —
• To force certain \(\langle x, s \rangle \in W_j^{\sigma'} \), \(\sigma' \supset \sigma_n \), —

• And to ensure that, for each \(n \in \omega \),

\[
n \in J^2(A) \iff n \in W_i(W_j^{\sigma} \upharpoonright M)[|\sigma|],
\]

\(\sigma \) corresponding to \(n \), and \(M \) depending on the construction.

Note: One cannot choose \(\{\sigma_n\}_{n \geq 0} \) off a tree \(T \) as in the jump inversion theorem above — since then one would not be able to obtain \(T \) both from \(A \oplus X \) and from \(J^2(A) \).

• Instead, one chooses \(\sigma_n \) off a tree \(T_{n,\pi} \) specifically adapted for stage \(n + 1 \) of the construction — and used in such a way that the construction is retrievable from \(A \oplus X \) and from \(J^2(A) \).

• \(T_{n,\pi} \) is constructed so that, for each \(T_{n,\pi}(\tau) \) at level \(s \) on \(T_{n,\pi} \), \(T_{n,\pi}(\tau) \) decides whether \(\langle n, s \rangle \in W_j^{\sigma} \) for any \(\sigma \supset T_{n,\pi}(\tau) \).
Definition of $T_{n,\pi}$:

- Let $T_{n,\pi}(\emptyset) = \sigma_{2n} \hat{\pi}$.
- Assume $T_{n,\pi}(\tau) \downarrow$ with $|\tau| = s \geq 0$ — i.e., with $T_{n,\pi}(\tau)$ at level s on $T_{n,\pi}$.
- Ask if there exists a $\sigma' \supseteq T_{n,\pi}(\tau)$ with $\langle n, s + 1 \rangle \in W_{j,|\sigma'|}$.
- Then define $T_{n,\pi}(\tau^0), (\tau^1) = \sigma^0, \sigma^1$, respectively, where σ is the first such σ' if such a σ' exists — and otherwise σ is the first $\sigma' \supseteq T_{n,\pi}(\tau)$.
- Notice that $T_{n,\pi} \leq T \emptyset'$.

The construction of $\{\sigma_n\}_{n \geq 0}$:

Stage $n = 0$.
- Define $\sigma_0 = \emptyset$.
Stage $2n + 1$.

- Let 0^m denote a string of m zeros.
- Define $T_{n,\pi}[\tau] = \text{the full subtree of } T_{n,\pi}$ above $T_{n,\pi}(\tau)$.
- Say $T_{n,\pi}[\tau]$ forces $n \in J^2(A)$ at level $s + 1$ iff $\langle n, s \rangle \in W^T_{j}^{T_{n,\pi}(\tau)}$ and $\langle n, s \pm 1 \rangle \notin W^T_{j}^{T_{n,\pi}(\tau)}$.
- $T_{n,\pi}[\tau]$ forces $n \notin J^2(A)$ iff for no $s \in \omega$, and no $\tau' \supseteq \tau$, does $T_{n,\pi}[\tau']$ force $n \in J^2(A)$ at level $s + 1$.
- At stage $2n + 1$, choose the least $m = \langle n, s \rangle$, some $s \in \omega$, such that either
 (a) $m \notin X$ and there is some $T_{n,0^m \pmb{^\hat{1}}}[\tau]$ which forces $n \in J^2(A)$ at some level $s + 1$, or
 (b) $m \in X$ and $T_{n,0^m \pmb{^\hat{1}}}[\emptyset]$ forces $n \notin J^2(A)$.
- Define $\sigma_{2n+1} = T_{n,0^m \pmb{^\hat{1}}}[\tau_{2n+1}]$ — where τ_{2n+1} = the least string τ for which (a) holds, if appropriate — and otherwise = \emptyset.
Note: In case (a), $\sigma_{2n+1} \supset T_{n,0}^{m-1}(\tau_{2n+1})$ will give $n \in J^2(A)$ by virtue of $\langle n, s \rangle \in W^\sigma_{j}\sigma_{2n+1}$ and $\langle n, s \pm 1 \rangle \notin W^\sigma_{j}\sigma_{2n+1}$ — giving $\langle n, s \pm 1 \rangle \notin W^\sigma_j$, any $\sigma \supset \sigma_{2n+1}$.

But — From case (b) may get $\langle n, s \rangle \in W^\sigma_{j}\sigma_{p+1}$, some $p \geq 2n$ — but $\langle n, s \pm 1 \rangle \notin W^\sigma_{j}\sigma_{p+1}$, any p — so $n \in J^2(A)$ again.

•• And — Cannot in case (b) treat the cases:

 (i) $\langle n, s \rangle \in W^\sigma_j$, some $\sigma \supset \sigma_{2n}$,
 (ii) $\langle n, s \rangle \notin W^\sigma_j$, any $\sigma \supset \sigma_{2n}$,

differently — to get

$$n \in J^2(A) \iff n \in J^2(\sigma_{2n+1}),$$

since could not then retrieve σ_{2n+1} from $J^2(A)$.

Consequently —

Following case (b), the forcing of $n \notin J^2(A)$ is current at all stages $2p + 2 > 2n + 1$ for which there is no existing $\langle n, s \rangle \in W^\sigma_{j,p}$, with $s \leq p$.
Stage $2n + 2$.

- Check if there is a current forcing of any $p \notin J^2(A)$, for which $\langle p, s \rangle \in W_{j,n}^{\sigma_{2n+1}}$, some $s \leq n$ — and which now ceases to be active —

- Choose the least $\pi \supset \sigma_{2n+1}$ for which some $\langle p, s \pm 1 \rangle \in W_{j,|\pi|}^{\pi}$, each such p —

- And define $\sigma_{2n+2} = \pi^C(n)$.

- Notice — It now follows that in case (b) of stage $2n + 1$ — in which such a $\tau \supset \emptyset$ does not exist — one has $n \notin J^2(A)$ by virtue of $n \notin J^2(\sigma)$, all $\sigma \supseteq \sigma_{2p+2}$, some $p \geq n$.

One needs to check that the construction can be carried out — which means verifying that m exists in the definition of σ_{2n+1}.
• To see this — first notice that S is Σ_2 — and so c.e. in \emptyset' — where S is defined by

$$S = \{m \mid (\exists \tau)(\exists s)[T_{n,0^m}^1[\tau] \text{ forces } n \in J^2(A) \text{ at level } s + 1] \}.$$

• If S is finite then there is some $m \in X - S$ — so $m \in X$ and

$$(\forall \tau)(\forall s)[T_{n,0^m}^1[\tau] \text{ does not force } n \in J^2(A) \text{ at level } s + 1]$$

• Giving $m \in X$ and $T_{n,0^m}^1[\emptyset]$ forces $n \notin J^2(A)$ — which is (b).

• And if S is infinite there is some $m \in S - X$, since X is \emptyset'-immune.

• So for this m — one has $m \notin X$ and $(\exists \tau)(\exists s)[T_{n,0^m}^1[\tau] \text{ forces } n \in J^2(A) \text{ at level } s + 1]$ — giving (a).
Now verify the following sequence of facts —

(1) \(\{\sigma_p\}_{p \geq 0} \leq_T C \).

- This is because stage 2\(n + 1 \) can be carried out computably in \(X \oplus \emptyset'' \leq_T C \) —

- And stage 2\(n + 2 \) is executed computably, apart from the coding of \(C(n) \) into \(\sigma_{2n+2} \).

- Hence:

(2) \(A \oplus X \leq_T C \); and

(3) \(W_i(W_j^A) \leq_T C \) —

- Since for each \(n \geq 0 \), \(m \) in stage 2\(n + 1 \) is retrievable from \(\sigma_{2n} \) and \(A \) and

\[
n \in W_i(W_j^A) \iff |\sigma_{2n+1}| > |\sigma_{2n}^0 m^1|.
\]

- To see this, first notice that —
\[|\sigma_{2n+1}| > |\sigma_{2n}^{\hat{m}}1| \]
\[\iff m \notin X \& (\exists \tau, s)[T_{n,0^m1}\tau \text{ forces } n \in J^2(A) \text{ at level } s+1] \]
\[\iff m \notin X \& (\exists s)[\langle n, s \rangle \in W_j(T_{n,0^m1}(\tau_{2n+1})) \]
\[\& (\forall \tau' \supset \tau_{2n+1})(\langle n, s \pm 1 \rangle \notin W_j(T_{n,0^m1}(\tau')))]] \]
\[\iff m \notin X \& (\forall Y \supset T_{n,0^m1}(\tau_{2n+1}))(n \in W_i(W_j^Y)) \]
\[\Rightarrow n \in W_i(W_j^A). \]

- Conversely, if \(n \in W_i(W_j^A) \) there exists a \(y \) such that \(\langle n, y \rangle \in W_j^A \) and \(\langle n, y \pm 1 \rangle \notin W_j^A \).

- This means that case (b) cannot apply at stage \(2n+1 \) — since then the forcing of \(n \notin J^2(A) \) would cease to be active at some stage \(2p+2 > 2n+1 \) — giving \(\langle n, y \pm 1 \rangle \in W_j^A \).

- But this means that at stage \(2n+1 \) one chooses \(\tau_{2n+1} \supset \emptyset \) so that \(T_{n,0^m1}[\tau_{2n+1}] \) forces \(n \in J^2(A) \) at level \(y + 1 \) — so \(|\sigma_{2n+1}| > |\sigma_{2n}^{\hat{m}}1| \), as required.

- Also —
(4) \(C \leq_T \{ \sigma_p \}_{p \geq 0} \)

- Since one has \(C(n) = \sigma_{2n+2}(\lvert \sigma_{2n+2} \rvert - 1) \), each \(n \geq 0 \).

(5) \(\{ \sigma_p \}_{p \geq 0} \leq_T A \oplus X \).

- To reproduce stage \(2n + 1 \) of the construction, one can use \(\sigma_{2n} \) and \(A \) to find \(m \)

- And then check whether \(m \in X \) or not to see which of cases (a) or (b) apply at stage \(2n + 1 \).

- If \(m \in X \), so (b) applies, one has \(\tau_{2n+1} = \emptyset \).

- So \(T_{n,0^m \cdot 1}(\tau_{2n+1}) = \sigma_{2n} \cdot 0^m \cdot 1 \).

- If \(m \notin X \) — so (a) applies — one can find \(T_{n,0^m \cdot 1}(\tau_{2n+1}) \supset \sigma_{2n} \cdot 0^m \cdot 1 \) with help from \(A \).

- And then \(\sigma_{2n+1} = T_{n,0^m \cdot 1}(\tau_{2n+1}) \).

- And to reproduce stage \(2n + 2 \) of the construction, one can computably obtain \(\pi \)

- And get \(\sigma_{2n+1} = \pi \cdot A(\lvert \pi \rvert) \).
\[(6) \{ \sigma_p \}_{p \geq 0} \leq_T W_i(W_j^A) .\]

- To verify this, first notice that since \(J^2 \) is a 2-CEA operator one has \(A \leq_T W_j^A \) and \(W_j^A \leq_T W_i(W_j^A) .\)

- To carry out stage 2n + 1 one can find m from \(\sigma_{2n} \) and A — verify whether \(n \in W_i(W_j^A) \) so as to see if one is in case (a) or (b) — and find \(T_{n,0}^m \cdot 1(\tau_{2n+1}) \), and hence \(\sigma_{2n+1} \), with help from A and \(W_j^A .\)

- While one can carry out stage 2n + 2 computably as far as obtaining \(\pi \) — and then \(\sigma_{2n+2} = \pi \uparrow A(|\pi|) \).

- So from (5) and (6) one gets:

\[(7) \ C \leq_T W_i(W_j^A) \ \text{and} \ A \oplus X .\]

- Combining (2), (3) and (7) the theorem follows. \(\Box \)

Note: The basic jump-join theorem is sufficient for a natural Turing definition of the jump. But a local version is needed to provide that of the relation of ‘computably enumerable in’, which applies to 2-CEA operators derived from *special* d.c.e. sets —