MA TH5163

This question paper consists of 3 printed pages, each of which is identified by the reference MA TH5163

No calculators allowed

© UNIVERSITY OF LEEDS

Examination for the Module MA TH5163

(January 2009)

ADVANCED COMPUTABILITY AND UNSOLVABILITY

Time allowed: 3 hours

Do not answer more than FOUR questions.

All questions carry equal marks.

1. (a) Show that \(f(x, y) = x + y \) and \(g(x, y) = x \times y \) are primitive recursive functions.

If \(g_1, g_2, \ldots, g_n \in \text{PRIM} \), and if \(R_1, R_2, \ldots, R_n \) are primitive recursive relations such that for each \(x \in \mathbb{N} \) exactly one of \(R_i(x) \) holds, \(1 \leq i \leq n \), show that \(f \) is primitive recursive where

\[
 f(x) = \begin{cases}
 g_1(x) & \text{if } R_1(x) \text{ holds,} \\
 g_2(x) & \text{if } R_2(x) \text{ holds,} \\
 \vdots & \\
 g_n(x) & \text{if } R_n(x) \text{ holds.}
 \end{cases}
\]

(b) Write a Turing program for

\[
 h(x, y) = x \div y ,
\]

and briefly describe why your program works.

(c) Let \(\{ \varphi_x \}_{x \in \mathbb{N}} \) be a standard list of all the partial computable functions.

If the total function \(f \) is defined by

\[
 f(x) = \begin{cases}
 \varphi_x(x) + 1 & \text{if } \varphi_x \text{ is total,} \\
 0 & \text{otherwise,}
 \end{cases}
\]

explain why \(f \) cannot be computable.

Deduce that if

\[
 \text{Tot} = \{ x \in \mathbb{N} \mid \varphi_x \text{ is total} \},
\]

then Tot is not computable.

CONTINUED...
2. (a) We define: \(A \) is \textit{computably enumerable (c.e.)} if and only if \(A = \emptyset \), or \(A \) is the range of some computable function.

Show that: (i) If \(A \subseteq \mathbb{N} \) is computable, then \(A \) is computably enumerable, and (ii) Every c.e. set is the halting set \(W_i \) of some Turing machine.

[You may assume that every partial computable function is Turing computable.]

(b) Show that the following sets are c.e.:

\(K_1 = \{ x \mid W_x \neq \emptyset \} \), where you can assume that, for each \(x \in \mathbb{N} \), \(W_x \) is the \(x \)th computably enumerable set in some standard listing, and

\(K = \{ x \mid x \in W_x \} \).

Show that there exists a computably enumerable set which is not computable.

[You should carefully state any basic results of computability theory which you use.]

(c) Show that there exists a Turing machine \(T \) with an unsolvable halting problem. Deduce that the halting problem for the \textit{Universal Turing Machine} is unsolvable.

3. (a) We say \(A \subseteq \mathbb{N} \) is \textit{creative} if and only if

1) \(A \) is c.e., and

2) There is a computable function \(f \) such that for each \(e \)

\[W_e \subseteq \overline{A} \implies f(e) \in \overline{A} - W_e, \]

where \(\{W_e\}_{e \in \mathbb{N}} \) is a standard list of all c.e. sets.

Show that if \(C \) is a creative set then

(i) \(\overline{C} \neq \emptyset \),

(ii) For each \(n \in \mathbb{N} \), if there exist \(n \) members of \(\overline{C} \) then there exist \(n + 1 \) such members,

(iii) \(\overline{C} \) contains an infinite c.e. subset.

[You may assume that for any finite set \(X \) we can computably find an \(i \) such that \(X = W_i \).]

(b) (i) Prove the \textit{Fixed Point Theorem} for a computable function \(f \).

(ii) Explain why there is a computable function \(f \) such that \(W_{f(n)} = \{n\} \) for every \(n \in \mathbb{N} \).

Say also why it is that every c.e. set \(A \) has infinitely many distinct indices \(e \) with \(A = W_e \).

(iii) We say that a set \(A \) is an \textit{index set} if for all \(x, y \in \mathbb{N} \) we have

\[[x \in A \& W_x = W_y] \implies y \in A. \]

Let \(K = \{ x \mid x \in W_x \} \). By using the fixed point theorem, or otherwise, show that \(K \) is not an index set.
4. (a) Define the notions $A \leq_T B$ (that is, A is Turing reducible to B), and $A \equiv_T B$ (that is, A is Turing equivalent to B), where $A, B \subseteq \mathbb{N}$.

(i) Show that \equiv_T is an equivalence relation over the sets of natural numbers.

(ii) Show that \leq (the ordering induced by \leq_T on the equivalence classes under \equiv_T) is a partial ordering on \mathcal{D} (the set of all Turing degrees).

(b) The Turing jump B' of $B \subseteq \mathbb{N}$ is defined to be

$$B' = \{ \langle m, n \rangle \mid m \in W^B_n \},$$

where $\{W^B_n\}_{n \in \mathbb{N}}$ is a standard list of all B-c.e. sets.

(i) Show that B' is c.e. in B, and that if X is c.e. in B then $X \leq_m B'$.

(ii) Show that if $B \leq_T A$ and X is computably enumerable in B, then X is computably enumerable in A.

Deduce that if $A \equiv_T B$ then $A' \equiv_T B'$.

5. (a) Define: A is 1-generic.

Prove that there exists a 1-generic set A, with $\text{deg}(A) \leq 0'$.

(b) We say that $A \subseteq \mathbb{N}$ is immune if and only if A is infinite and contains no infinite computably enumerable subsets.

Let $S = \text{the set of all finite 0–1 valued strings}.$

Show that, for each $i \geq 0$, $Y_i = \{ \sigma \in S \mid \exists x[\sigma(x) = 0 \& x \in W_i]\}$ is a computably enumerable set of strings.

Show that if A is 1-generic then A forces each such Y_i (that is, $A \vDash Y_i$), and hence that A is either finite or immune.

Deduce that every 1-generic set is immune, and hence not computably enumerable.

6. “There is nothing useful one can say about incomputability” — discuss.

Write an essay answering the above question, covering not more than three pages.

Your answer should contain enough mathematical content to show a good grasp of the notions and results involved in analysing incomputable sets, relations and functions, and enough discussion of these to show an understanding of the broader context.

END