1) Show that \equiv_T is an equivalence relation.

2) Show that \leq is a partial ordering on \mathcal{D}.

3) (a) Show that for all $A, B \subseteq \mathbb{N}$
 i) $A \leq_T A \oplus B$ and $B \leq_T A \oplus B$, and
 ii) If $A \leq_T C$ and $B \leq_T C$ then $A \oplus B \leq_T C$.

 (b) If we define the join $a \cup b$ of Turing degrees $a = \deg(A), b = \deg(B)$ by $a \cup b = \deg(A \oplus B)$, deduce that $a \cup b = \text{lub}\{a, b\}$.

4) Show that there is a least Turing degree $0 = \text{the set of all computable sets}$.

5) Show that:
 (a) If $X \subseteq \mathbb{N}$ is A-computable then X is A-c.e.
 (b) X is A-computable if and only if X and \overline{X} are A-c.e. (if and only if $X \in \Delta^A_1$, where we write $X \in \Delta^A_1$ for $X \in \Sigma^A_1$ and $X \in \Pi^A_1$).
 (c) X is A-c.e. if and only if $X \in \Sigma^A_1$.

6) Show that:
 (a) $X \leq_m A'$ if and only if X is A-c.e.
 (b) If $K^A = \{x \mid x \in W^A_x\}$, then K^A is A-c.e. but not A-computable.

7) Show that there exists an infinite sequence a_0, a_1, \ldots of degrees $\leq 0'$ such that for each $i \neq j$ we have $a_i \mid a_j$.

For MATH5164M only:

8) For any string σ let $\bar{\sigma}$ be given by

 $$\bar{\sigma} = \begin{cases}
 0 & \text{if } \sigma(x) = 1, \\
 1 & \text{if } \sigma(x) = 0.
 \end{cases}$$

 Show that if \hat{W}_i is a c.e. set of strings then so is $\{\bar{\sigma} \mid \sigma \in \hat{W}_i\}$.

 Hence, or otherwise, show that $A \subseteq \mathbb{N}$ is 1-generic if and only if \overline{A} is 1-generic.

9) We say that $A \subseteq \mathbb{N}$ is immune if and only if A is infinite and contains no infinite c.e. subsets.

 Show that for each i $Y_i = \{\sigma \mid \exists x[\sigma(x) = 0 \& x \in W_i]\}$ is a c.e. set of strings.

 Show that if A is 1-generic then A forces each such Y_i, and hence that A is either finite or immune.

 Deduce (using the result of question 8 above) that every 1-generic set is immune, and hence not c.e.