1) Show that the following functions are primitive recursive:

(i) \(\overline{sg}(n) = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases} \),

(ii) \(n! = \text{factorial} n \),

(iii) \(\min(m, n) = \begin{cases} m & \text{if } m \leq n \\ n & \text{otherwise} \end{cases} \),

(iv) \(\min\{m_1, \ldots, m_n\} = \text{least of the numbers } m_1, \ldots, m_n \) (n given),

(v) \(\max\{m_1, \ldots, m_n\} = \text{largest of the numbers } m_1, \ldots, m_n \),

(vi) \(qt(m, n) = \text{quotient on division of } n \text{ by } m \).

2) Show that if \(R, S \) are primitive recursive sets, so are \(\mathbb{N} - R, R \cap S \) and \(R \cup S \).

3) Show that every finite set is primitive recursive.

4) Show that if \(R(n) \) is a recursive relation, and \(f \) is a recursive function, then \(R(f(n)) \) is a recursive relation.

5) Show that if \(f \) is a recursive function with infinite range, then we can find a 1-1 recursive function \(g \) with range \(f = \text{range } g \).

6) Let \(h(\vec{n}, m, p) \) be primitive recursive. Let \(f(\vec{n}, m + 1) = h(\vec{n}, m, \tilde{f}(\vec{n}, m)) \), where

\[
\tilde{f}(\vec{n}, m) \overset{\text{defn}}{=} p_0^{f(\vec{n}, 0)} \times \cdots \times p_m^{f(\vec{n}, m)},
\]

and \(f(\vec{n}, 0) \) is primitive recursive. Show that \(\tilde{f} \), and hence \(f \), is primitive recursive.

7) Let \(h_0(\vec{n}), \ldots, h_k(\vec{n}) \) be primitive recursive, and let \(R_0(\vec{n}), \ldots, R_k(\vec{n}) \) be primitive recursive relations, exactly one of which holds for any given \(\vec{n} \). Show that if

\[
f(\vec{n}) \overset{\text{defn}}{=} \begin{cases} h_0(\vec{n}) & \text{if } R_0(\vec{n}) \\ \vdots & \vdots \\ h_k(\vec{n}) & \text{if } R_k(\vec{n}) \end{cases},
\]

then \(f \) is primitive recursive.
8) A Fibonacci sequence \(\{u_n\}_{n \geq 0} \) is given by

\[
 u_0 = k_0, \quad u_1 = k_1, \quad u_{n+2} = u_{n+1} + u_n.
\]

Show that \(u_n \) is a primitive recursive function.

HAND IN A SOLUTION TO QUESTION 1 AND TWO OTHER QUESTIONS.