1. (a) Show that \(f(x, y) = x + y \) and \(g(x, y) = x \cdot y \) are primitive recursive functions.

If \(g_1, g_2, \ldots, g_n \in \text{PRIM}, \) and if \(R_1, R_2, \ldots, R_n \) are primitive recursive relations such that for each \(x \in \mathbb{N} \) exactly one of \(R_i(x) \) holds, \(1 \leq i \leq n, \) show that \(f \) is primitive recursive where

\[
 f(x) = \begin{cases}
 g_1(x) & \text{if } R_1(x) \text{ holds,} \\
 g_2(x) & \text{if } R_2(x) \text{ holds,} \\
 \vdots \\
 g_n(x) & \text{if } R_n(x) \text{ holds.}
 \end{cases}
\]

(b) Write a Turing program for

\[
 h(x, y) = x \div y,
\]

and briefly describe why your program works.

(c) Let \(\{\varphi_x\}_{x \in \mathbb{N}} \) be a standard list of all the partial computable functions.

If the total function \(f \) is defined by

\[
 f(x) = \begin{cases}
 \varphi_x(x) + 1 & \text{if } \varphi_x \text{ is total,} \\
 0 & \text{otherwise,}
 \end{cases}
\]

explain why \(f \) cannot be computable.

Deduce that if

\[
 \text{Tot} = \{ x \in \mathbb{N} \mid \varphi_x \text{ is total}\},
\]

then \(\text{Tot} \) is not computable.
2. (a) We define: A is \textit{computably enumerable (c.e.)} if and only if $A = \emptyset$, or A is the range of some computable function.

Show that: (i) If $A \subseteq \mathbb{N}$ is computable, then A is computably enumerable, and (ii) Every c.e. set is the halting set W_i of some Turing machine.

[You may assume that every partial computable function is Turing computable.]

(b) Show that the following sets are c.e:

(i) $K_1 = \{x \mid W_x \neq \emptyset\}$, where you can assume that, for each $x \in \mathbb{N}$, W_x is the x^{th} computably enumerable set in some standard listing, and

(ii) $K = \{x \mid x \in W_x\}$.

Show that there exists a computably enumerable set which is not computable.

[You should carefully state any basic results of computability theory which you use.]

(c) Show that there exists a Turing machine T with an unsolvable halting problem.

Deduce that the halting problem for the \textit{Universal Turing Machine} is unsolvable.

3. (a) We say $A \subseteq \mathbb{N}$ is \textit{creative} if and only if

1) A is c.e., and

2) There is a computable function f such that for each e

$$W_e \subseteq \overline{A} \Rightarrow f(e) \in \overline{A} - W_e,$$

where $\{W_e\}_{e \in \mathbb{N}}$ is a standard list of all c.e. sets.

Show that if C is a creative set then

(i) $\overline{C} \neq \emptyset$,

(ii) For each $n \in \mathbb{N}$, if there exist n members of \overline{C} then there exist $n+1$ such members,

(iii) \overline{C} contains an infinite c.e. subset.

[You may assume that for any finite set X we can effectively find an i such that $X = W_i$.]

(b) (i) Prove the \textit{Fixed Point Theorem} for a computable function f.

(ii) Explain why there is a computable function f such that $W_{f(n)} = \{n\}$ for every $n \in \mathbb{N}$.

Say also why it is that every c.e. set A has infinitely many distinct indices e with $A = W_e$.

(iii) We say that a set A is an \textit{index set} if for all $x, y \in \mathbb{N}$ we have

$$[x \in A \& W_x = W_y] \implies y \in A.$$

Let $K = \{x \mid x \in W_x\}$. By using the fixed point theorem, or otherwise, show that K is not an index set.

continued ...
4. (a) Define the notions $A \leq_T B$ (that is, A is Turing reducible to B), and $A \equiv_T B$ (that is, A is Turing equivalent to B), where $A, B \subseteq \mathbb{N}$.

 (i) Show that \equiv_T is an equivalence relation over the sets of natural numbers.

 (ii) Show that \leq (the ordering induced by \leq_T on the equivalence classes under \equiv_T) is a partial ordering on \mathcal{D} (the set of all Turing degrees).

(b) The Turing jump B' of $B \subseteq \mathbb{N}$ is defined to be

$$B' = \{\langle m, n \rangle \mid m \in W^B_n\},$$

where $\{W^B_n\}_{n \in \mathbb{N}}$ is a standard list of all B-c.e. sets.

 (i) Show that B' is c.e. in B, and that if X is c.e. in B then $X \leq_m B'$.

 (ii) Show that if $B \leq_T A$ and X is computably enumerable in B, then X is computably enumerable in A.

 Deduce that if $A \equiv_T B$ then $A' \equiv_T B'$.

5. Either:

 (a) Show that there exists a pair of incomparable Turing degrees below $0'$.

 Or:

 (b) Outline briefly a proof of the following extension of the Friedberg-Muchnik Theorem:

 There exists an infinite sequence $\{a_i \mid i \geq 0\}$ of computably enumerable Turing degrees, such that for each $i \neq j$ we have $a_i \not\leq a_j$.

6. Write an essay, covering not more than three pages, describing the background to, and consequences of, Alan Turing’s discovery of the existence of a Universal Turing Machine.

 Your answer should contain enough mathematical content to show a good grasp of the notions and results involved, and enough discussion of these to show an understanding of the broader context.

END