MATH3201M

MATH3201M01

This question paper consists of 8 printed pages, each of which is identified by the reference MATH3201M.

©UNIVERSITY OF LEEDS
Examination for the Module MATH3201M
(May–June 2010)
ADVANCED LOGIC

Time allowed: 3 hours

ANSWERS.

All questions carry equal marks.

1. (a) We suppose that \(t_1, t_2 \) and \(t_3 \) are any terms of \(\mathcal{L}_{PA} \). Then (i) is a theorem of \(PA \) since

\[
\begin{align*}
1) & \vdash_{PA} x_1 = x_2 \rightarrow (x_1 = x_3 \rightarrow x_2 = x_3) \quad \text{(PA1)} \\
2) & \vdash_{PA} \forall x_1 (x_1 = x_2 \rightarrow (x_1 = x_3 \rightarrow x_2 = x_3)) \quad \text{(Gen,1)} \\
3) & \vdash_{PA} \forall x_1 (x_1 = x_2 \rightarrow (x_1 = x_3 \rightarrow x_2 = x_3)) \rightarrow (t_1 = x_2 \rightarrow (t_1 = x_3 \rightarrow x_2 = x_3)) \quad \text{(PA5)} \\
4) & t_1 = x_2 \rightarrow (t_1 = x_3 \rightarrow x_2 = x_3) \quad \text{(MP,2,3)}
\end{align*}
\]

Now repeat the above steps with the wf of 4. and \(t_2/x_2 \), and then repeat this process once again with the resulting wf and \(t_3/x_3 \) to obtain:

\[
\begin{align*}
10) & \vdash_{PA} t_1 = t_2 \rightarrow (t_1 = t_3 \rightarrow t_2 = t_3) \quad \text{(2 marks)}
\end{align*}
\]

Likewise, (ii) is a theorem of \(PA \) since:

\[
\begin{align*}
1) & \vdash_{PA} \overline{0} \neq x'_1 \quad \text{(PA3)} \\
2) & \vdash_{PA} \forall x_1 (\overline{0} \neq x'_1) \quad \text{(Gen,1)} \\
3) & \vdash_{PA} \forall x_1 (\overline{0} \neq x'_1) \rightarrow \overline{0} \neq t'_1 \quad \text{(PC5)} \\
4) & \vdash_{PA} \overline{0} \neq t'_1 \quad \text{(MP,2,3)}.
\end{align*}
\]

We conclude that both (i) and (ii) are theorems of \(PA \). (2 marks)

(b) \(x_1 = x_1 \) is a theorem of \(PA \) because

\[
\begin{align*}
1) & \vdash_{PA} x_1 + \overline{0} = x_1 \quad \text{(PA5)} \\
2) & \vdash_{PA} x_1 + \overline{0} = x_1 \rightarrow (x_1 + \overline{0} = x_1 \rightarrow x_1 = x_1) \quad \text{(instance of (a) (i) with } t_1 = x_1 + \overline{0}, t_2 = t_3 = x_1). \\
3) & \vdash_{PA} x_1 + \overline{0} = x_1 \rightarrow x_1 = x_1 \quad \text{(MP,1,2)} \\
4) & \vdash_{PA} x_1 = x_1 \quad \text{(MP,1,3). (4 marks)}
\end{align*}
\]
(c) **Base of Induction:** for all \(m \in \mathbb{N} \), 1) \(\vdash_{PA} m + 0 = m \) by (PA5)', and so
2) \(\vdash_{PA} m + 0 = m + 0 \) since \(m + 0 = m \). But
3) \(\vdash_{PA} m + 0 = m + 0 \rightarrow m + 0 = m + 0 \) as this is an instance of (I), so
4) \(\vdash_{PA} m + 0 = m + 0 \), using MP on 1,2. (2 marks)

Inductive Hypothesis. Assume that \(n \) is a number for which
\[1^\ast) \vdash_{PA} m + n = m + n, \quad \text{for all } m \in \mathbb{N}. \]
Then
\[2^\ast) \vdash_{PA} m + n = (m + n)^\prime \] by (PA2)', and also,
\[3^\ast) \vdash_{PA} m + n = (m + n)^\prime \] by (PA6)', but
\[4^\ast) \vdash_{PA} m + n = (m + n)^\prime \rightarrow \left(m + n = (m + n)^\prime \rightarrow m + n = m + n^\prime \right), \]
this is an instance of (II) and so
\[5^\ast) \vdash_{PA} m + n = m + n^\prime, \] by \(2^\ast,3^\ast \) and 4* and MP twice.
In other words \(\vdash_{PA} m + (n + 1) = m + (n + 1) \) and the result follows by induction. (2 marks)

(d) Suppose that \(\mathcal{N} \models PA \) and that for each \(m \in \mathbb{N} \), \(\vdash_{PA} \varphi(m) \).
Now, since \(\mathcal{N} \models PA \), \(\mathcal{N} \models \varphi(m) \) for all \(m \in \omega \). Thus it cannot be the case that \(\mathcal{N} \models \exists x_1 \neg \varphi(x_1) \) (since otherwise for some \(m \), both \(\mathcal{N} \models \varphi(m) \) and \(\mathcal{N} \models \neg \varphi(m) \), a contradiction). Hence \(\mathcal{N} \models \neg \exists x_1 \neg \varphi(x_1) \) (as either \(\mathcal{N} \models \chi \) or \(\mathcal{N} \models \neg \chi \) for every sentence \(\chi \)). Therefore it is not the case that \(\vdash_{PA} \exists x_1 \neg \varphi(x_1) \), since otherwise, as \(\mathcal{N} \models PA \), we would have \(\mathcal{N} \models \exists x_1 \neg \varphi(x_1) \). Again a contradiction. Thus, if \(\vdash_{PA} \exists x_i \neg \varphi(x_i) \) then “not” \(\vdash_{PA} \varphi(m) \), for some \(m \). (4 marks)

(e) Suppose that \(T \) is not consistent and that \(\psi \) is a wf of \(L_T \). Hence there exists a wf \(\varphi \) such that
1) \(\vdash_T \varphi \land \neg \varphi \).
However, \(\varphi \land \neg \varphi \rightarrow \psi \) is a tautology and so
2) \(\vdash_T \varphi \land \neg \varphi \rightarrow \psi \).
Hence by Modus Ponens applied to 1 and 2, \(\vdash_T \psi \). (2 marks)

Now let \(\varphi(x_i) \) be a wf of \(L_{PA} \). Then as \(T \) is \(\omega \)-consistent either

“not” \(\vdash_T \varphi(m) \) \quad for some \(m \in \mathbb{N} \),

or

“not” \(\vdash_T \exists x_i \neg \varphi(x_i) \).

Hence \(T \) is consistent since not every wf is provable in \(T \). (2 marks)

2. (a) (i) Let \(R(m) \) be a \(k + 1 \)-place relation. We say that \(R \) is **representable** in \(PA \) iff there is a wf \(\varphi \) of \(L_{PA} \) for which

\[
R(m) \quad \Rightarrow \quad \vdash_{PA} \varphi(m)
\]
\[
\neg R(m) \quad \Rightarrow \quad \vdash_{PA} \neg \varphi(m)
\]
(1 mark)

(ii) We say that \(f: \mathbb{N} \to \mathbb{N} \) is representable in \(\mathcal{PA} \) if the graph of \(f \) is representable in \(\mathcal{PA} \). (1 mark)

(iii) We say that \(S \subseteq \mathbb{N} \) is representable in \(\mathcal{PA} \) if the relation “\(m \in S \)” is representable in \(\mathcal{PA} \). (1 mark)

(iv) \(S \subseteq \mathbb{N} \) is semi-representable in \(\mathcal{PA} \) iff there exists a wf \(\varphi(x_i) \) of \(\mathcal{L}_{\mathcal{PA}} \) such that

\[
m \in S \iff \vdash_{\mathcal{PA}} \varphi(m).
\]

(1 mark)

(b) Let \(\varphi(x_0, x_1) \) be the formula \(x_1 = \bar{1} \). Consider any \(m_0, m_1 \in \mathbb{N} \).

1) Then \(1(m_0) = m_1 \) implies that \(m_1 = 1 \). So, using (I) we have that \(\vdash_{\mathcal{PA}} \bar{m}_1 = \bar{1} \), i.e. that \(\vdash_{\mathcal{PA}} \varphi(m_0, m_1) \).

2) On the other hand, \(1(m_0) \neq m_1 \) implies that \(m_1 \neq 1 \). So by (II) \(\vdash_{\mathcal{PA}} \neg(\bar{m}_1 = \bar{1}) \), i.e. that \(\vdash_{\mathcal{PA}} \neg\varphi(m_0, m_1) \).

Thus \(\varphi(x_0, x_1) \) represents the constant function \(1: m \mapsto 1 \). (4 marks)

(c) (i) We have that \(\max(m_1, m_2) = m_1 \times \text{sg}(m_1 \cdot m_2) + m_2 \times \text{sg}(m_1 \cdot m_2) \).

Hence, \(\max(m_1, m_2) \) is primitive recursive as it is the composition of primitive recursive functions (the substitution rule). (2 marks)

(ii) We use induction to show that \(\max\{m_1, \ldots, m_n\} \) is primitive recursive for \(n \geq 2 \).

Base Case \(n = 2 \): \(\max\{m_1, m_2\} = \max(m_1, m_2) \).

Case \(n > 2 \): \(\max\{m_1, \ldots, m_n\} = \max(\max\{m_1, \ldots, m_{n-1}\}, m_n) \).

By the induction hypothesis \(\max\{m_1, \ldots, m_{n-1}\} \) is primitive recursive. Thus \(\max\{m_1, \ldots, m_n\} = \max(\max\{m_1, \ldots, m_{n-1}\}, m_n) \) is primitive recursive by the substitution rule. (2 marks)

(d) Let \(f \) be a computable function with infinite range \(S \). We describe an algorithm for computing a computable one-one function \(g \) such that \(\text{Range}(f) = \text{Range}(g) \).

To compute \(g(0) \). Simply set \(g(0) = f(0) \)

To compute \(g(n + 1) \). Assume that \(g(n) \) is already defined such that \(g(n) = f(i) \) with \(g(0), \ldots, g(n) \) all different and such that \(\{g(r) \mid r \leq n\} = \{f(j) \mid j \leq i\} \).

Compute \(f(i + 1), f(i + 2), \ldots \) etc. until we get the first instance of an \(f(k) \) different from each \(g(0), \ldots, g(n) \). Notice that such an \(f(k) \) must exist because \(S \) is infinite. Define \(g(n + 1) = f(k) \).

(i) The algorithm is effective because \(f \) is computable and \(g \) is total because the search undertaken at \(g(n + 1) \) always terminates (because as mentioned \(S \) is infinite). Hence \(g \) is computable.

(ii) By the definition of \(g \), each \(g(n) \in S \) and so \(\text{Range}(g) \subseteq S \).

(iii) Also each \(f(j) \) is equal to \(g(n) \) for some \(n \) and so \(S \subseteq \text{Range}(g) \).

(iv) By inspection of the computation of \(g(n + 1) \) it is also clear that \(g \) is one-one. (4 marks)
(e) Choose \(m \in \mathbb{N} \) and suppose that \(Th_{PA}(m) \). Thus \(\exists R(p, m) \). Hence \(R(n, m) \) holds for some \(n \in \mathbb{N} \). Therefore

(i) \(\vdash_{PA} \psi(m, m) \) since \(\psi \) represents \(R \).

However \(\psi(m, m) \rightarrow \exists x \psi(x_0, m) \) is logically valid. Thus

(ii) \(\vdash_{PA} \psi(m, m) \rightarrow \exists x \psi(x_0, m) \)

and it follows, by applying Modus Ponens to (i) and (ii) that
\[\vdash_{PA} \exists x \psi(x_0, m), \] i.e. that \(\vdash_{PA} \varphi(m) \).

From this result, and the one given in the question we know that, for all \(m \in \mathbb{N} \),
\[\vdash_{PA} \varphi(m) \rightleftharpoons Th_{PA}(m). \]

Hence \(Th_{PA}(m) \) is semi-representable. \((4 \text{ marks})\)

3. (a) (i) We have that, for all \(m \in \mathbb{N} \),
\[m \in K \rightleftharpoons m \in W_m \rightleftharpoons \exists p T_1(m, p, m). \]

So \(K \) is \(\Sigma^0_1 \) since \(T_1(m, p, m) \) is computable in \(m, p \). Thus \(K \) is c.e. by the first part of Question 4(e). \((2 \text{ marks})\)

(ii) Now, for a contradiction suppose that \(K \) is computable. Then \(K \) is c.e. by Basic Fact 2. So, for some \(i \), \(K = W_i \). Thus, for all \(m \in \mathbb{N}, m \in K \) iff \(m \in W_i \). Putting \(m = i \), we have that,
\[i \in K \rightleftharpoons i \in W_i \rightleftharpoons i \in K \]

since \(W_i = K \) by definition of \(K \).

A contradiction. So \(K \) is not computable. \((2 \text{ marks})\)

(b) Suppose that \(X \) is a c.e. set. Then there exists \(j \) such that \(X = W_j \). Define the function \(f : \mathbb{N} \rightarrow \mathbb{N} \) by \(f(m) = \langle m, j \rangle \) for all \(m \in \mathbb{N} \). Then \(f \) is computable since the pairing function is computable and \(j \) is fixed (formally in terms of recursive function this is substitution of the constant function \(j : m \mapsto j \) in the recursive function \(\langle, \rangle \)).

Moreover, by definition, for all \(m \in \mathbb{N}, m \in X \) iff \(\langle m, j \rangle \in K^* \). Thus
\[m \in X \rightleftharpoons f(m) \in K^* \]

for all \(m \in \mathbb{N} \). \((2 \text{ marks})\)

We know that \(\leq_m \) is transitive (Question 4(a)). Also by the above \(X \leq_m K^* \) and we are give that \(K^* \leq_m K \). Thus \(X \leq_m K \). \((1 \text{ mark})\)

Now suppose that \(X \) is also c.e. Then, by Basic Fact 2, \(X \) is computable. Suppose also that \(K \leq_m X \). Then there exists a computable function \(g \) such that, for all \(m \in \mathbb{N}, n \in K \) iff \(g(m) \in X \). Let \(C_X \) be the characteristic function of \(X \). Then the characteristic function of \(K \) is the function \(C_X(g(n)) \) which is computable, being the composition of two computable functions. A contradiction. So it is not the case that \(K \leq_m X \) in this case. \((1 \text{ mark})\)
(c) Suppose that S is representable in \mathcal{PA} via the wf $\varphi(x_0)$. Then, by definition,
\begin{align*}
 m \in S & \implies \vdash_{\mathcal{PA}} \varphi(m) \\
 m \notin S & \implies \vdash_{\mathcal{PA}} \neg \varphi(m)
\end{align*}
for all $m \in \mathbb{N}$.

Now, it is not the case that both $\vdash_{\mathcal{PA}} \varphi(m)$ and $m \notin S$ for some $m \in \mathbb{N}$ since by (2) this would imply that both $\vdash_{\mathcal{PA}} \varphi(m)$ and $\vdash_{\mathcal{PA}} \neg \varphi(m)$ contradicting consistency of \mathcal{PA}. Hence, for all $m \in \mathbb{N}$, $m \in S$ iff $\vdash_{\mathcal{PA}} \varphi(m)$.

Likewise it is not the case that both $\vdash_{\mathcal{PA}} \neg \varphi(m)$ and $m \in S$ for some $m \in \mathbb{N}$ otherwise by (1) both $\vdash_{\mathcal{PA}} \neg \varphi(m)$ and $\vdash_{\mathcal{PA}} \varphi(m)$ again contradicting consistency of \mathcal{PA}. Hence, for all $m \in \mathbb{N}$, $m \in S$ iff $\vdash_{\mathcal{PA}} \neg \varphi(m)$.

We can conclude therefore that both S and \overline{S} are semi-representable and so c.e. Hence by Basic Fact 2 we deduce that S is computable. (4 marks)

(d) We are given that, for all $m \in \mathbb{N}$,
\[
m \in \mathcal{K} \quad \text{iff} \quad \vdash_{\mathcal{PA}} \varphi(m).
\]

By part (a) we know that \mathcal{K} is c.e. but not computable. Thus, by part (c) \mathcal{K} is not representable in \mathcal{PA}. Hence there exists $m \in \mathbb{N}$ such that
\[
m \in \overline{\mathcal{K}} \quad \text{but it is not the case that} \quad \vdash_{\mathcal{PA}} \neg \varphi(m)
\]
since otherwise $\varphi(x_0)$ would represent \mathcal{K} in \mathcal{PA}. However for such $m \in \overline{\mathcal{K}}$ we also know that it is not the case that $\vdash_{\mathcal{PA}} \varphi(m)$ by (4). Thus neither $\varphi(m)$ nor $\neg \varphi(m)$ is provable in \mathcal{PA}. (3 marks)

We conclude that \mathcal{PA} is incomplete. (1 mark)

(e) We know that $\mathfrak{M} \models \mathcal{PA}$ and also that $\mathfrak{M} \models \Sigma$ by definition. Therefore $\mathfrak{M} \models \mathcal{PA} \cup \Sigma$.

In other words $\mathcal{PA}^* = \mathcal{PA} \cup \Sigma$ has a model and so is consistent.

Suppose that φ is a sentence of $L_{\mathcal{PA}}$. Then either $\mathfrak{M} \models \varphi$ or $\mathfrak{M} \models \neg \varphi$. But this means that either $\varphi \in \mathcal{PA}^*$ or $\neg \varphi \in \mathcal{PA}^*$ respectively. Therefore either $\vdash_{\mathcal{PA}^*} \varphi$ or $\vdash_{\mathcal{PA}^*} \neg \varphi$ (the proof consisting only of the Axiom of \mathcal{PA}^* φ or $\neg \varphi$). So \mathcal{PA}^* is complete.

By Rosser’s extension of Gödel’s incompleteness theorem any computably axiomatisable consistent theory in $L_{\mathcal{PA}}$ is incomplete. By the above we know that \mathcal{PA}^* is both consistent and complete. Hence \mathcal{PA}^* is not computably axiomatisable. (4 marks)

4. (a) Let $S, S', S'' \subseteq \mathbb{N}$ be any sets. Then,
(i) $S \leq_m S$ via the identity function, so \equiv_m is reflexive. (1 mark)
(ii) $S \equiv_m S' \implies S' \equiv_m S$ by the definition of \equiv_m and so \equiv_m is symmetric. (1 mark)
(iii) Suppose that $S \leq_m S'$ via f and $S'' \leq_m S''$ via g. Then $m \in S$ iff $f(m) \in S'$ iff $g(f(m)) \in S''$.
Thus \(S \leq_m S'' \) via \(g \circ f \). Therefore
\[
S \equiv_m S' \quad \& \quad S' \equiv_m S'' \quad \Rightarrow \quad S \leq_m S'' \quad \& \quad S'' \leq_m S
\]
\[
\Rightarrow \quad S \equiv_m S''.
\]

So \(\equiv_m \) is transitive.

We conclude that \(\equiv_m \) is an equivalence relation. \((2 \text{ marks}) \)

(b) Let \(S, S' \notin \{\emptyset, \mathbb{N}\} \) be computable sets. Choose \(p \in S' \) and \(\overline{p} \in \overline{S'} \). Define
\[
f(m) = \begin{cases} p & \text{if } m \in S \\ \overline{p} & \text{if } m \notin S. \end{cases}
\]

Then \(f \) is computable since \(S \) is and \(S' \leq_m S \) via \(f \). Likewise \(S \leq_m S' \). Thus \(S \equiv_m S' \). So the set of computable sets is subsumed by the same many one degree \(0_m \). Choose any set \(X \in 0_m \). Then \(X \leq_m S \) by definition. Suppose that \(f \) is the computable function that witnesses this and that \(C_S \) is the characteristic function of \(S \). Then \(C_S \circ f \) is the characteristic function of \(X \). However \(C_S \circ f \) is the composition of computable functions and so computable. Thus \(X \) is computable. We conclude that \(0_m \) is exactly the set of all computable sets. \((4 \text{ marks}) \)

(c) (i) Let \(X \) be a non empty \(\Sigma^0_1 \) set. Then there exists a binary computable relation \(R \) such that for all \(m \in \mathbb{N} \),
\[m \in X \quad \iff \quad \exists p R(p, m). \]

Choose \(m_0 \in X \) and define \(f : \mathbb{N} \to \mathbb{N} \) so that it effects a downward search as follows.
\(f(0) = m_0 \), \(f(n+1) = \) the least \(m \leq n \) such that \(m \notin \{f(0), \ldots, f(n)\} \) and there exists \(p \leq n \) so that \(R(p, m) \). If there is no such \(p \) set \(f(n+1) = m_0 \). Then it is clear that \(f \) is computable. Moreover the range of \(f \) lies inside \(X \) since \(f \) only maps \(n \) to a number \(m \) say if \(R(p, m) \) holds for some \(p \). Moreover \(f \) is clearly also onto \(X \), (If not, then there will be a least \(n \in X \) such that \(n \) is not in the range of \(f \). An easy argument shows that \(f \) will eventually output \(n \). A contradiction.)

Another easy way of doing this is using the standard pairing function \(\langle \cdot, \cdot \rangle \) and defining \(f \) such that
\[
f(\langle p, m \rangle) = \begin{cases} m & \text{if } R(p, m) \text{ holds}, \\ m_0 & \text{otherwise}. \end{cases}
\]

(ii) Now suppose that \(X \) is a non empty c.e. set. Then there exists a computable function \(f \) such that \(\text{Range}(f) = X \). In other words for all \(m \in \mathbb{N} \), \(m \in X \iff \exists p (f(p) = m) \). Observe that the relation \(R(p, m) =_{\text{def}} \) “\(f(p) = m \)” is computable. Hence \(X \) is \(\Sigma^0_1 \). \((2 \text{ marks}) \)

(d) We know that, for any \(n \in \mathbb{N} \),
\[
\text{Proof}_T \quad \iff \quad gn^{-1}(n) \text{ is a proof in } T,
\]
\[
\iff \quad gn^{-1}(n) \text{ is a sequence of wfs}
\]
\[
\varphi_1, \ldots, \varphi_k \text{ for some } k \geq 1,
\]
such that, for each $1 \leq i \leq k$, $\text{Form}(\varphi_i)$ holds and either $\text{Ax}_T(\varphi_i(gn))$ or $\text{Gen}(\varphi_j, \varphi_i)$ or $\text{MP}(\varphi_l, \varphi_p, \varphi_i)$ for some $1 \leq j, p, l < i$. However each of Form, Ax_T, MP and Gen is computable. Therefore we can define an algorithm that, on input n,

(i) Decodes n, and tests whether n codes a sequence of strings of symbols, and using Form whether these strings are wfs of \mathcal{L}_{PA}.

(ii) If n does indeed encode a sequence of wfs $\varphi_1, \ldots, \varphi_k$ say, then the algorithm tests whether $\text{Ax}_T(\varphi_1)$, and then subsequently for each of φ_i with $1 < i < k$, makes the appropriate tests as mentioned above using Ax_T, MP and Gen.

(iii) If at any stage in this process one of the checks fails the algorithm halts and rejects (output 0). If however all the checks are positive, the algorithm accepts on reaching φ_k (output 1).

We conclude that Proof_T is computable. (4 marks)

(e) For any $m \in \mathbb{N}$,

$$m \in T_T \iff \text{Th}_T(m) \text{ holds (by definition),}$$
$$\iff gn^{-1}(m) \text{ is a theorem of } T,$$
$$\iff \text{there is a proof of } gn^{-1}(m) \text{ in } T,$$
$$\iff \text{there exists } p \text{ such that } \text{Proof}_T(p) \text{ and } m = l(p),$$

in other words,

$$\iff \exists p \left[m = l(p) \land \text{Proof}_T(p) \right].$$

Thus we can define $R(p, m) = "m = l(p) \land \text{Proof}_T(p)"$ and we note that R is computable by part (c). Hence, T_T is Σ^0_1 and thus c.e. by part (c). (4 marks)
5. Some of the things that might be included in an answer to the question on Gödel’s Theorem are as follows.

(i) A statement of the theorem.
(ii) Generalisations (e.g. adding more axioms, dropping the requirement of \(\omega \)-consistency).
(iii) What is representability and what does it do?
(iv) What are Gödel numbers and why are they useful (mention of self-reference, Russell’s Paradox)
(v) Representability of \(\text{Proof}_{\mathcal{PA}}(m) \) in \(\mathcal{PA} \).
(vi) The final proof of the theorem (including the role of c.e. sets).
(vii) The undecidability of \(\mathcal{PA} \) and related theories.
(viii) Other applications, e.g. the undecidability of predicate calculus.
(ix) Informal consequences of the theorem (e.g. computers cannot do anything).
(x) Examples of undecidability in Mathematics.
(xi) Anything else you think interesting or relevant. \(\{20 \text{ marks}\} \)

Note that marks are out of 80.