The Primitive Recursive Functions:

1) The *initial functions* are primitive recursive:

 (a) The *zero function* defined by
 \[0(n) = 0, \quad \forall n \in \mathbb{N}, \]

 (b) The *successor function* defined by
 \[n' = n + 1, \quad \forall n \in \mathbb{N}, \]

 (c) The *projection functions* \(U_i^k \) defined by
 \[U_i^k(\overrightarrow{m}) = m_i, \quad \text{each } i = 1, \ldots, k, \]

 (where \(\overrightarrow{m} = m_1, \ldots, m_k \)).

2) If \(g, h, h_0, \ldots, h_l \) are primitive recursive, then so is \(f \) obtained from \(g, h, h_0, \ldots, h_l \) by one of the rules:

 (d) *Substitution*, given by:
 \[f(\overrightarrow{m}) = g(h_0(\overrightarrow{m}), \ldots, h_l(\overrightarrow{m})), \]

 (e) *Primitive recursion*, given by:
 \[f(\overrightarrow{m}, 0) = g(\overrightarrow{m}), \]
 \[f(\overrightarrow{m}, n + 1) = h(\overrightarrow{m}, n, f(\overrightarrow{m}, n)). \]