50) **DUAL GRAPH** G^* — The dual of G, written G^*, is got from the plane graph G by the following rules:

(a) Corresponding to a face f of G, we take a vertex f^* of G^*,

(b) Corresponding to an edge e of G, we take an edge e^* of G^*,

(c) f^*, g^* are joined by e^* in G^* \iff f, g are separated by e in G.

51) **SUBDIVISION** — A subdivision of a graph G is a graph that can be obtained from G by subdividing edges of G by adding extra vertices.

52) **DIRECTED GRAPH** or **DIGRAPH**, **VERTICES**, **ARCS**, **HEAD**, **TAIL**, **SUB-DIGRAPH** — A directed graph or digraph $D(V, A)$ is a set V of vertices together with a set A of ordered pairs (u, v) ($u, v \in V$) called arcs.

v is the **head** and u the **tail** of (u, v) and u, v are **endpoints**. We say (u, v) **joins** u to v.

The digraph D' is a **subdigraph** of D if $V(D') \subseteq V(D)$ and $A(D') \subseteq A(D)$.

53) **UNDERLYING GRAPH**, **ORIENTATION** — From a given digraph D we can obtain an undirected graph G by letting G have vertex set $V = V(D)$ and edge-set $E = \{ uv \mid (u, v) \text{ is an arc of } D \}$. G is the **underlying graph** of D.

Conversely, D is an **orientation** of G if G is the underlying graph of D.

54) **DIRECTED ARC SEQUENCE**, **DICHAIN**, **DIPATH**, **DICIRCUIT** — A directed arc sequence is a finite sequence of the form $(u_1, u_2), (u_2, u_3), \ldots, (u_{n-1}, u_n)$. This sequence is a **dichain** if all the arcs are distinct. The sequence is a **dipath** if all the vertices are distinct. The sequence is a **dicircuit** if it is a dipath with $u_1 = u_n$.

55) **INDEGREE**, **OUTDEGREE** — The **indegree** $d_D^-(u)$ of u is the number of arcs of D with head u. The **outdegree** $d_D^+(u)$ of u is the number of arcs of D with tail u.

56) k-**regular**, **regular** — D is a k-**regular** digraph if $d^-(u) = d^+(u) = k$ for each vertex u of D. D is **regular** if k-regular for some k.

57) **REACHABLE**, **STRONGLY CONNECTED**, **STRONG COMPONENT** or **DICOMPONENT** — v is **reachable** from u if there is a dipath with initial vertex u and terminal vertex v.

D is **strongly connected** if, for each pair u, v of vertices of D, u is reachable from v and v is reachable from u.

A **strong component** or **diconnected** of D is a strongly connected subgraph with the maximum possible number of arcs.