MATH 3032 GRAPH THEORY – TERMINOLOGY AND NOTATION

LIST 3

23) EDGE SEQUENCE — An edge sequence in G is a finite sequence of edges of the form $v_0v_1, v_1v_2, v_2v_3, \ldots, v_{m-1}v_m$. v_0 and v_m are the initial and final vertices of the edge sequence from v_0 to v_m (or connected between v_0 and v_m).

24) LENGTH — The length m of the edge sequence is the number of edges in the edge sequence.

25) CHAIN — If all the edges of the edge sequence are distinct, it is called a chain.

26) PATH — If all the vertices of the edge sequence are distinct, it is called a path.

27) CLOSED, CIRCUIT — The edge sequence, chain or path is closed if $v_0 = v_m$.
A closed path (with at least one edge) is called a circuit.

28) CONNECTED, DISCONNECTED — G is connected if given any pair of vertices v, w of G, there is a path from v to w. Otherwise G is disconnected.

29) COMPONENT, $c(G)$ — G_1 is a component of G if it is a maximal connected subgraph (i.e., a connected subgraph contained in no larger connected subgraph). We write $c(G)$ for the number of distinct components of G.

30) k-CIRCUIT, EVEN CIRCUIT, ODD CIRCUIT — C is a k-circuit if it is a circuit of length k. C is an even (odd) circuit if it is a k-circuit with k even (odd).

31) DISTANCE — If G is connected, the distance $d(u, v)$ between 2 vertices u and v of G is the length of a shortest path connected between u and v.

32) EULER CHAIN, TOUR, EULER TOUR — An Euler chain of G is a chain which traverses each edge of G exactly once.
A tour of G is a closed edge sequence which traverses each edge of G at least once.
An Euler tour is a tour which traverses each edge of G exactly once.

33) EULERIAN GRAPH — G (connected) is an Eulerian graph if it contains an Euler tour.

34) SEMI-EULERIAN GRAPH — G (connected) is semi-Eulerian if it contains an Euler chain.

35) HAMILTON PATH, HAMILTON CIRCUIT — A Hamilton path in G is a path which contains every vertex of G. A Hamilton circuit for G is a circuit of G containing every vertex of G.

36) HAMILTONIAN GRAPH, SEMI-HAMILTONIAN — G is Hamiltonian or semi-Hamiltonian if G contains a Hamilton circuit, or Hamilton path, respectively.

37) CLOSURE of G — The closure \overline{G} of G is obtained by successively joining pairs of non-adjacent vertices of G whose degree sum is at least $\nu(G)$ until there are no such pairs left.