14) **ADJACENCY MATRIX** — The adjacency matrix of \(G \) is the \(\nu \times \nu \) matrix \(A(G) = (a_{ij}) \), in which \(a_{ij} \) is the number of edges joining \(v_i \) to \(v_j \) (a loop on \(v_i \) counting twice).

15) **INCIDENCE MATRIX** — The incidence matrix of \(G \) is the \(\nu \times \varepsilon \) matrix \(M(G) = (m_{ij}) \), where \(m_{ij} \) is the number of times (0, 1 or 2) that \(v_i \) and \(e_j \) are incident.

16) **SUBGRAPH, PROPER SUBGRAPH, SPANNING SUBGRAPH** — A graph \(G_s(V_s, E_s) \) is a subgraph of \(G(V, E) \) if \(V_s \subseteq V \) and \(E_s \subseteq E \). If \(V_s \neq V \) or \(E_s \neq E \), \(G_s \) is a proper subgraph.
 If \(V_s = V \), \(G_s \) is called a spanning subgraph of \(G \).

17) **DISJOINT, EDGE-DISJOINT** — Two graphs are disjoint if they have no vertices in common.
 They are edge-disjoint if they have no edges in common.

18) **UNION, INTERSECTION** — The union \(G \cup G' \) of two graphs is the graph with vertex set \(V \cup V' \) and edge set \(E \cup E' \). If \(G, G' \) are edge disjoint, we often write \(G + G' \) for the union. We also write \(G_s + e \) for \(G_s \cup \{e\} \).
 If \(G, G' \) are not disjoint, \(G \cap G' \) is the graph with vertex set \(V \cap V' \) and edge set \(E \cap E' \).

19) **RESTRICTIONS** — (a) \(G[V'] \), the restriction of \(G \) to \(V' \), is the subgraph of \(G \) whose vertex set is \(V' \) and whose edge set is the set of those edges of \(G \) that have both ends in \(V' \).
 We write \(G - V' \) for \(G[V - V'] \), and \(G - v \) for \(G - \{v\} \).
 (b) \(G[E'] \), the restriction of \(G \) to \(E' \), is the subgraph of \(G \) whose edge-set is \(E' \) and whose vertex set is the set of ends of edges in \(E' \).
 We write \(G - E' \) for the subgraph of \(G \) with vertex set \(V \) and edge set \(E - E' \), \(G + E' \) for the graph got by adding edges \(E' \) to \(G \), and write \(G - e \) for \(G - \{e\} \), \(G + e \) for \(G + \{e\} \).

20) **COMPLEMENT** — The complement \(G^c \) of \(G \) is the graph with vertex set \(V \), two vertices being adjacent only if they are not adjacent in \(G \).
 The complement \(G - G_s \) of a subgraph \(G_s \) of \(G \) is \(G - E_s \).

21) **DEGREE** — The degree of a vertex \(v \) of a graph, written \(d(v) \) is the number of edges incident with the vertex \(v \) (a loop counting twice).

22) **k-REGULAR, REGULAR** — A simple graph \(G \) is \(k \)-regular if \(d(v) = k \) for each vertex \(v \) in \(G \).
 \(G \) is regular if \(G \) is \(k \)-regular for some \(k \).