1) Given a map, we can get a graph by replacing countries by vertices, and joining vertices by edges whenever the corresponding countries have a border in common. Find a graph corresponding to the map below (not forgetting the country round the outside).

Find a colouring of the vertices of the graph such that no two adjacent vertices have the same colour, and such that only 4 colours are used.

2) Show that if G is a simple graph with ε edges and ν vertices, then $\varepsilon \leq \binom{\nu}{2}$. When do we get equality?

3) Show that, up to isomorphism, there are exactly 4 simple graphs on 3 vertices. How many simple graphs (up to isomorphism) are there on 4 vertices?

4) Show that the following graphs are isomorphic:
5) Show that the following graphs are not isomorphic:

6) The line graph \(L(G) \) of a simple graph \(G(V, E) \) is the graph whose vertices are in 1-1 correspondence with the edges of \(G \), 2 vertices of \(L(G) \) being adjacent if and only if the corresponding edges of \(G \) are adjacent.

Show that the line graphs of the 2 graphs below are isomorphic:

Show that the line graph of \(G \) has \(\varepsilon \) vertices and \(\sum_{v \in V} \binom{d(v)}{2} \) edges (where \(d(v) \) is the degree of \(v \) in \(G \)).

7) Show that: (a) \(K_{m,n} \) has \(mn \) edges;
 (b) if \(G \) is simple and bipartite, then \(\varepsilon \leq \frac{\varepsilon^2}{4} \).
Can you find a bipartite, simple graph with 10 edges and 6 vertices?

8) Show that if a \(k \)-regular bipartite graph (with \(k > 0 \)) has bipartition \((V_1, V_2) \), then \(|V_1| = |V_2| \).

9) Let \(M \) be the incidence matrix and \(A \) the adjacency matrix of a graph \(G \).
 (a) Show that every column sum of \(M \) is 2.
 (b) What are the column sums of \(A \)?
10) Let \(G \) be bipartite. Show that the vertices of \(G \) can be listed in such a way that the adjacency matrix of \(G \) has the form:
\[
\begin{pmatrix}
0 & \mathbf{A}_{12} \\
\ldots & \ldots \\
\mathbf{A}_{21} & 0
\end{pmatrix}
\]
where \(\mathbf{A}_{21} \) is the transpose of \(\mathbf{A}_{12} \).

11) Show that if \(G \) is simple, the entries on the diagonals of both \(\mathbf{M}' \) and \(\mathbf{A}^2 \) are the degrees of the vertices of \(G \) (where \(\mathbf{M}' = \) the transpose of \(\mathbf{M} \)).

12) Show that, in any group of two or more people, there are always two with exactly the same number of friends inside the group.

13) Show that in a group of six people, either there are three people who know each other, or there are three people none of whom knows either of the other two.

14) If \(G \) has vertices \(v_1, v_2, \ldots, v_n \), the sequence \((d(v_1), d(v_2), \ldots, d(v_n)) \) is called a degree sequence of \(G \). Show that a sequence \((d_1, d_2, \ldots, d_n) \) of non-negative integers is a degree sequence of some graph if and only if \(\sum_{i=1}^{n} d_i \) is even.

15) A sequence \(\mathbf{d} = (d_1, d_2, \ldots, d_n) \) is graphic if there is a simple graph with degree sequence \(\mathbf{d} \). Show that the sequences \((7, 6, 5, 4, 3, 3, 2)\) and \((6, 6, 5, 4, 3, 3, 1)\) are not graphic.

16) Give examples (where they exist) of

(a) a bipartite graph which is regular,

(b) a restriction \(G[V'] \) of a complete graph \(G \) which is bipartite,

(c) a Platonic graph which is bipartite,

(d) a cubic graph on nine vertices,

(e) a simple graph which is isomorphic to its line graph,

(f) a Platonic graph which is the line graph of another Platonic graph.
17) Show that the graph below is planar:

Show that it can be drawn in the plane in such a way that every edge is a straight line.

Hand in solutions to **FOUR questions**