§1 GRAPHS

- $G = (V, E)$ is a (simple) graph if V is a finite set (of vertices) and E is a set of edges of the form $\{u, v\}$, with $u, v \in V$ and $u \neq v$.

- If $\{u, v\} \in E$, say u, v are joined by $\{u, v\}$ — and often write uv for $\{u, v\}$.

Write:

- n or ν for $\#(V)$.

- e or ε for $\#(E)$.

- $\rho(v)$ or $d(v)$ for the degree of v,
 defn the no. of edges of G with endpoint v.

Theorem 1.1 — The Handshaking Lemma:

\[
\sum_{v \in V} d(v) = 2\varepsilon
\]
• G_1, G_2 are isomorphic iff there is a bijective $\vartheta : V_1 \to V_2$ such that

$$uv \in E_1 \iff \vartheta(u)\vartheta(v) \in E_2, \quad \text{for all } u, v \in V_1.$$

• In which case — say ϑ is an isomorphism, and write $G_1 \cong G_2$.

• The adjacency matrix of a simple graph G with vertices $V = \{v_1, \ldots, v_\nu\}$ is $A_G = (a_{i,j})$ where

$$a_{i,j} = \begin{cases} 1 & \text{if } v_i v_j \in E, \\ 0 & \text{otherwise}. \end{cases}$$
§4 CONNECTED GRAPHS

• Let $v_0, \ldots, v_k \in V$ and $v_i v_{i+1} \in E$, each $i = 0, \ldots, k - 1$. Then say $\{v_0 v_1, v_1 v_2, \ldots, v_{k-1} v_k\}$ is an edge sequence from v_0 to v_k.

• And — if all the v’s are distinct (except for possibly $v_0 = v_k$) — say the edge sequence is a path.

• While if $v_0 = v_k$, say the edge sequence is closed — and, if also a path, is a circuit or cycle.

• Say u is connected to v iff there is an edge sequence from u to v —

• Which gives an equivalence relation on V, dividing G into components.

• Say G is connected iff it has just one component — i.e., iff each pair $u, v \in V$ is connected.
Lemma 4.1: Let v_1 be a vertex of G. Then G is connected iff for every other $v \in V$ there is an edge sequence from v_1 to v.

- This gives the *connectedness algorithm*:

 Step 1. Choose $X[1] = \{v_1\}$, $V_1 = V - X[1]$.

 Step I+1. Assume V_I already defined. Let

 $X[I] = \{u | u \in V_I \& uv \in E, some u \in V - V_I\}$.

 Is $V_I = \emptyset$? — Yes: Stop — G connected.

 No: **Is $X[I] = \emptyset$?** — Yes: G not connected.

 No: Define $V_{I+1} = V_I - X[I]$. Go to step $I+2$.

Lemma 4.2: Let G be a graph with ν vertices and ε edges, and with each vertex of degree ≥ 2 — Then $\nu \leq \varepsilon$.

Lemma 4.3: Let G be a connected graph with ν vertices and ε edges — Then $\nu - 1 \leq \varepsilon$.
• A tree is a connected graph with no circuits.

Theorem 5.1: Let G be a graph with ν vertices. The following are equivalent:

(a) G is a tree.

(b) G has no circuits and has $\nu - 1$ edges.

(c) G is connected and has $\nu - 1$ edges.

(d) G is connected, but the removal of any one edge disconnects the graph.

(e) Each pair of vertices is connected by just one path.

(f) G has no circuits, but the addition of any one edge creates a circuit.

• A subgraph of $G = (V, E)$ is a graph $G' = (V', E')$ for which $V' \subseteq V$ and $E' \subseteq E$.

• A spanning subgraph G' of G is one for which $V' = V$ — and G' is a spanning tree for G if it is also a tree.
• If a weight function $\mu : E \to \mathbb{R}^{\geq 0}$ associates a non-negative real number with each edge of G — say G is a weighted graph.

• If $G' = (V', E')$ is a subgraph of G, the weight (or measure) of G' is
 $$M(G') = \sum_{\varepsilon \in E'} \mu(\varepsilon).$$

• A minimal connector for G is a connected spanning subgraph of G least possible weight.

Kruskal’s Algorithm: Given weighted graph G with weight function $\mu : E \to \mathbb{R}^{\geq 0}$:

For $k = 1, \ldots, \nu - 1$ choose e_k to be an edge s.t.

• e_k is different from e_1, \ldots, e_{k-1},

• There is no circuit made up of edges from $\{e_1, \ldots, e_{k-1}, e_k\}$, and

• $\mu(e_k)$ is as small as possible.

Then — the edges $E' = \{e_1, \ldots, e_{\nu-1}\}$ give a minimal connector for G.
• The complete graph on \(n \) vertices — written \(K_n \) — is the graph on \(n \) vertices with all possible edges.

• A graph \(G \) is planar iff it can be embedded in the plane so that edges meet only at vertices.

• In which case the regions into which the plane is divided by this embedding are called the faces.

NOTATION: Write \(\varphi \) or \(f \) for the number of faces in the embedding of \(G \).

• A cut edge — or isthmus — is an edge whose removal disconnects the graph.

Theorem 7.1 Euler’s Formula for Planar Graphs: Let \(G \) be a connected planar graph with \(\nu \) vertices and \(\varepsilon \) edges. Then if \(G \) is embedded in \(\mathbb{R}^2 \) with \(\varphi \) faces have

\[
\nu + \varphi = \varepsilon + 2.
\]
Theorem 7.2: Let G be a connected planar graph with ν vertices and ε edges. If $\nu \geq 3$, then

$$\varepsilon \leq 3\nu - 6.$$

Theorem 7.3: Let G be a connected planar graph with ν vertices and ε edges, in which each circuit has at least k edges. If $\nu \geq \frac{k+2}{2}$, then

$$\varepsilon \leq \frac{k}{k-2}(\nu - 2).$$