School of Mathematics

MATH 0111 Elementary Differential Calculus

Solutions 7

1. For this function, \(\frac{dy}{dx} = 4x - 8 \), which is zero when \(x = 2 \). So \(y = 8 - 16 + 1 = -7 \).

Then \(\frac{d^2y}{dx^2} = 4 \), which is positive, and so we have a local minimum.

At \(x = 1 \), \(y = -5 \) and the gradient is \(-4\). So the tangent line is \(y + 5 = -4(x - 1) \), giving \(y = -4x - 1 \).

2. By the product rule (or you could multiply out first), \(\frac{dy}{dx} = 1 \cdot (7 - x) + (x + 3) \cdot (-1) = 4 - 2x \), which is zero when \(x = 2 \) and \(y = 5 \cdot 5 = 25 \). Then \(\frac{d^2y}{dx^2} = -2 \), which is negative, and so this is a local maximum.

At \(x = 1 \), \(y = 24 \) and the gradient is \(2 \). So \(y - 24 = 2(x - 1) \), giving \(y = 2x + 22 \) as the tangent line.

3. Here, \(\frac{dy}{dx} = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3) = 3(x - 3)(x + 1) \), so the derivative vanishes at two points.

At \(x = 3 \), \(y = -26 \) and \(\frac{d^2y}{dx^2} = 6x - 6 = 12 \), which is positive. So this is a local minimum.

At \(x = -1 \), \(y = 6 \) and \(\frac{d^2y}{dx^2} = 6x - 6 = -12 \), which is negative. So this is a local maximum.

Finally, at \(x = 1 \), \(y = -10 \) and \(\frac{dy}{dx} = -12 \). So the tangent line is \(y + 10 = -12(x - 1) \), or \(y = -12x + 2 \).

4. Here, \(\frac{dy}{dx} = 7x^6 \) which vanishes only at \(x = 0 \), \(y = 0 \). The second derivative is \(42x^5 \) which also vanishes, so we need to look more carefully. If \(x \) is small and positive then \(\frac{dy}{dx} > 0 \), and if \(x \) is small and negative then \(\frac{dy}{dx} > 0 \) again. This is therefore a point of inflexion.

At \(x = 1 \), \(y = 1 \) and \(\frac{dy}{dx} = 7 \). So the tangent is \(y - 1 = 7(x - 1) \), or \(y = 7x - 6 \).

5. Here, \(\frac{dy}{dx} = 4x^3 - 4 \), which vanishes only at \(x = 1 \), \(y = -3 \). The second derivative is \(12x^2 \), which equals 12 and gives us a local minimum since it is positive.

The tangent has gradient 0 at \(x = 1 \), so its equation is \(y = -3 \) (a horizontal line).
Figure 1: Question 1

Figure 1b: Question 2

Figure 2: Question 3

Figure 2b: Question 4

Figure 3: Question 5