MATH-011101

This question paper consists of 3 printed pages, each of which is identified by the reference MATH-011101

© UNIVERSITY OF LEEDS
Examination for the Module MATH-0111

(October 2010)

Elementary Differential Calculus (Version 1)

Time allowed: 2 hours

Attempt all questions in Section A and any three questions from Section B.

Each question in Section A carries 2 marks; each question in section B carries 20 marks.

You must show your working in your answers to all questions.

A formula sheet is supplied with this paper.

SECTION A

Attempt all the questions in Section A

A1. Expand \((\frac{5}{2} + 4x)(2x - 4)\).

A2. Evaluate \(8^{-2/3}\).

A3. Write \(x^{2/3}y^{-2}x^{-2}y^4\) in the form \(ax^by^c\).

A4. Find \(\log_4 \frac{1}{8}\).

A5. Factorise \(x^2 + x - 6\).

A6. Solve the equation \(x^2 + x - 1 = 0\).

A7. Find the equation of the straight line through the point \((2, 1)\) which is perpendicular to the line \(x - 3y + 4 = 0\).

A8. What is the distance between the points \((2, -3)\) and \((3, 2)\)?

A9. The angle \(\theta\) lies between \(-\pi/2\) and \(\pi/2\) and \(\sin\theta = -1/3\). Find \(\cos\theta\) and \(\tan\theta\) leaving your answers as exact values involving square roots.

A10. Find the equation of the circle with centre \((-3, 1)\) and radius 2. (You need not simplify your answer.)
A11. Find \(\frac{dy}{dx} \) when \(y = x^{-3/4} \).

A12. Find \(\frac{dy}{dx} \) when \(y = \frac{3}{2}x^2 - 2x^3 - 9 \).

A13. Find \(\frac{dy}{dx} \) when \(y = \sqrt{x^6 + 1} \).

A14. Find \(\frac{dy}{dx} \) when \(y = \tan(x^3) \).

A15. Find \(\frac{dy}{dx} \) when \(y = \frac{x^3 - 1}{2x^2 - 3x} \).

A16. Find \(\frac{dy}{dx} \) when \(y = e^{2x} \cos(x^2) \).

A17. Find \(\frac{dy}{dx} \) when \(y = \ln(\sin x + 6) \).

A18. Find \(\frac{d^2y}{dx^2} \) when \(y = 4x^2 - 5x^4 \).

A19. Find the equation of the tangent to the curve \(y = x^4 - 3x^2 + 5 \) at the point \((-1,3)\).

A20. Without using a calculator, find the value of \(\cos(9\pi/4) \) giving an exact value involving a square root.

SECTION B

Attempt three questions from Section B

B1. (a) Sketch the graph of \(y = \cos \theta \) for \(\theta \) in the range \(-2\pi \leq \theta \leq 2\pi\), labelling the values of \(\theta \) where the graph crosses the horizontal axis and where \(y \) has minimum and maximum values.

(b) Find all values of \(\theta \) (in radians) between \(-2\pi\) and \(2\pi\), such that \(2 \cos^2 \theta - 5 \cos \theta = 3 \).

(c) Use the result from the previous part of the question and the Pythagorean identity to find all values of \(\theta \) between 0 and \(5\pi\) such that \(2 \sin^2 \theta + 5 \cos \theta + 1 = 0 \) (note the range of \(\theta \)).

B2. (a) The points \(A, B \) and \(C \) have coordinates \((1, -2), (2, 2)\) and \((1, 0)\), respectively. Find

(i) the equation of the line \(AB \);
(ii) the equation of the line through \(C \) perpendicular to \(AB \);
(iii) the point where the above two lines meet;
(iv) the distance from \(C \) to the line \(AB \).

continued ...
(b) A circle has centre at the point $O = (1, -1)$ and passes through the point $P(-2, -3)$. Find

(i) the radius of the circle;
(ii) the equation of the circle;
(iii) the gradient of the line OP;
(iv) the equation of the tangent to the circle at P.

B3. Differentiate each of the following functions with respect to x.

(i) $y = (x^4 + 3)^{5/2} + (x^3 + 2)^{-3/2}$;
(ii) $y = (x^2 - 3) \sin(3x^4)$;
(iii) $y = \ln \cos(3x^2 + 2)$;
(iv) $y = e^{x+1/x}$;
(v) $y = \arctan \left(\frac{x^2 - 2}{x} \right)$.

B4. (a) Find the stationary points of the function given by $y = x^3 + x^2 - x + 3$ and determine whether they are local maxima or minima. Find the values of the function at these points.

(b) Find the global maximum and minimum values of the function $f(x) = 2x^2 - 4x + 5$ over the interval $0 \leq x \leq 3$.

(c) If y is given as a function of x by $xy^3 + x^2y = (x + 1)$, find $\frac{dy}{dx}$ in terms of x and y.
Elementary Differential and Integral Calculus

FORMULA SHEET

Exponents
$$x^a \cdot x^b = x^{a+b}, \quad a^x \cdot b^x = (ab)^x, \quad (a^x)^b = x^{ab}, \quad x^0 = 1.$$

Logarithms
$$\ln xy = \ln x + \ln y, \quad \ln x^n = n \ln x, \quad \ln 1 = 0, \quad e^{\ln x} = x, \quad \ln e^y = y,$$
$$a^x = e^{x \ln a}.$$

Trigonometry
$$\cos 0 = \sin \frac{\pi}{2} = 1, \quad \sin 0 = \cos \frac{\pi}{2} = 0,$$
$$\cos^2 \theta + \sin^2 \theta = 1, \quad \cos(-\theta) = \cos \theta, \quad \sin(-\theta) = -\sin \theta,$$
$$\cos(A + B) = \cos A \cos B - \sin A \sin B, \quad \cos 2\theta = \cos^2 \theta - \sin^2 \theta,$$
$$\sin(A + B) = \sin A \cos B + \cos A \sin B, \quad \sin 2\theta = 2 \sin \theta \cos \theta,$$
$$\tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad 1 + \tan^2 \theta = \sec^2 \theta.$$

Inverse Functions
$$y = \sin^{-1} x$$ means $$x = \sin y$$ and $$-\frac{\pi}{2} \leq y \leq \frac{\pi}{2},$$
$$y = \cos^{-1} x$$ means $$x = \cos y$$ and $$0 \leq y \leq \pi,$$
$$y = \tan^{-1} x$$ means $$x = \tan y$$ and $$-\frac{\pi}{2} < y < \frac{\pi}{2},$$
$$y = x^{1/n}$$ means $$x = y^n, \quad y = \ln x$$ means $$x = e^y.$$

Alternative Notation
$$\arcsin x = \sin^{-1} x, \quad \arccos x = \cos^{-1} x, \quad \arctan x = \tan^{-1} x, \quad \log x = \log_e x = \ln x.$$
Note: $$\sin^{-1} x \neq (\sin x)^{-1}, \quad \cos^{-1} x \neq (\cos x)^{-1}, \quad \tan^{-1} x \neq (\tan x)^{-1},$$
However: $$\sin^2 x = (\sin x)^2, \quad \cos^2 x = (\cos x)^2, \quad \tan^2 x = (\tan x)^2.$$

Lines
The line $$y = mx + c$$ has slope $$m.$$ The line through $$(x_1, y_1)$$ with slope $$m$$ has equation $$y - y_1 = m(x - x_1).$$ The line through $$(x_1, y_1)$$ and $$(x_2, y_2)$$ has slope $$m = \frac{y_2 - y_1}{x_2 - x_1}$$ and equation $$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}.$$ The line $$y = mx + c$$ is perpendicular to the line $$y = m'x + c'$$ if $$mm' = -1.$$

Circles
The distance between $$(x_1, y_1)$$ and $$(x_2, y_2)$$ is $$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$ The circle with centre $$(a, b)$$ and radius $$r$$ is given by $$(x - a)^2 + (y - b)^2 = r^2.$$

Triangles
In a triangle $$ABC:$$
$$(\text{Sine Rule}) \quad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}; \quad (\text{Cosine Rule}) \quad a^2 = b^2 + c^2 - 2bc \cos A.$$
Pascal’s Triangle

\[(x + y)^2 = x^2 + 2xy + y^2, \quad (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\] and so on.

The coefficients in \((x + y)^n\) form the \(n\)th row of Pascal’s triangle:

\[
\begin{array}{ccccccc}
1 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
\end{array}
\]

and so on.

Quadratics

If \(ax^2 + bx + c = 0\), with \(a \neq 0\), then \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\).

Calculus

If \(y = u + v\) then \(\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}\). If \(y = uv\) then \(\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx}\).

If \(y = \frac{u}{v}\) then \(\frac{dy}{dx} = \left(\frac{du}{dx}v - u\frac{dv}{dx}\right)/v^2\).

\[
\int (u + v)\,dx = \int u\,dx + \int v\,dx. \quad \int u\frac{dv}{dx}\,dx = uv - \int v\frac{du}{dx}\,dx.
\]

If \(y\) is a function of \(u\) where \(u\) is a function of \(x\), then

\[
\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \quad \text{and} \quad \int y\frac{du}{dx}\,dx = \int y\,du.
\]

Standard Derivatives and Integrals

If \(y = x^a\) then \(\frac{dy}{dx} = ax^{a-1}\), and \(\int x^a\,dx = \frac{x^{a+1}}{a+1} + \text{constant} \quad (a \neq -1)\).

If \(y = \sin x\) then \(\frac{dy}{dx} = \cos x\), and \(\int \sin x\,dx = -\cos x + \text{constant}\).

If \(y = \cos x\) then \(\frac{dy}{dx} = -\sin x\), and \(\int \cos x\,dx = \sin x + \text{constant}\).

If \(y = \tan x\) then \(\frac{dy}{dx} = \sec^2 x\), and \(\int \tan x\,dx = \ln|\sec x| + \text{constant}\).

If \(y = e^x\) then \(\frac{dy}{dx} = e^x\), and \(\int e^x\,dx = e^x + \text{constant}\).

If \(y = \ln x\) then \(\frac{dy}{dx} = \frac{1}{x}\), and \(\int \frac{1}{x}\,dx = \ln |x| + \text{constant}\).

If \(y = \sin^{-1} x\) then \(\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}\), and \(\int \frac{1}{\sqrt{1-x^2}}\,dx = \sin^{-1} x + \text{constant}\).

If \(y = \cos^{-1} x\) then \(\frac{dy}{dx} = \frac{-1}{\sqrt{1-x^2}}\).

If \(y = \tan^{-1} x\) then \(\frac{dy}{dx} = \frac{1}{1+x^2}\), and \(\int \frac{1}{1+x^2}\,dx = \tan^{-1} x + \text{constant}\).
MATH0111/0131 JANUARY 2010, SOLUTIONS

SECTION A [2 MARKS EACH]

1. \((\frac{3}{2} + 4x)(2x - 4) = 8x^2 + 5x - 16x - 10 = 8x^2 - 11x - 10.\)
2. \(8^{-2/3} = 2^{-2} = 1/4.\)
3. \(x^{2/3}y^{-2}x^{-2}y^4 = x^{2/3-2}y^{-2+4} = x^{-4/3}y^2.\)
4. \(\log_4 \frac{1}{2} = -3/2 \text{ since } 4^{-3/2} = \frac{1}{2}.\)
5. \(x^2 + x - 6 = (x + 3)(x - 2).\)
6. \(x^2 + x - 1 = 0 \text{ if and only if } x = \frac{-1 \pm \sqrt{1^2 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2}.\)
7. The line \(x - 3y + 4 = 0\) has gradient 1/3 so the required line has gradient -3 and so is \(y - 1 = -3(x - 2), \text{ i.e., } y + 3x - 7 = 0.\)
8. The distance between the points \((2, -3)\) and \((3, 2)\) is \(\sqrt{(3 - 2)^2 + (2 + 3)^2} = \sqrt{26}.\)
9. With \(\sin \theta = -1/3,\) we have \(\cos \theta = \pm\sqrt{1 - 1/9} = \pm\sqrt{8}/3.\) But since \(-\pi/2 \leq \theta \leq \pi/2,\) \(\cos \theta\) is positive and equals \(\sqrt{8}/3.\) Hence \(\tan \theta = \frac{-1/3}{\sqrt{8}/3} = -\frac{1}{\sqrt{8}}.\)
10. The circle with centre \((-3, 1)\) and radius 2 has equation \((x + 3)^2 + (y - 1)^2 = 4.\)
11. When \(y = x^{-3/4}\) we have \(\frac{dy}{dx} = -\frac{3}{4}x^{-7/4}.\)
12. When \(y = \frac{3}{2}x^2 - 2x^3 - 9\) we have \(\frac{dy}{dx} = 3x - 6x^2.\)
13. When \(y = \sqrt{x^6 + 1} = (x^6 + 1)^{1/2}\) we have \(\frac{dy}{dx} = \frac{1}{2}(x^6 + 1)^{-1/2}(6x^5) = \frac{3x^5}{\sqrt{x^6 + 1}}.\)
14. When \(y = \tan(x^3)\) we have \(\frac{dy}{dx} = 3x^2 \sec^2(x^3).\)
15. When \(y = \frac{x^3 - 1}{2x^2 - 3x}\) we have \(\frac{dy}{dx} = \frac{3x^2(2x^2 - 3x) - (x^3 - 1)(4x - 3)}{(2x^2 - 3x)^2} = \frac{2x^4 - 6x^3 + 4x - 3}{(2x^2 - 3x)^2}.\)
16. When \(y = e^{2x} \cos(x^2)\) we have \(\frac{dy}{dx} = 2e^{2x} \cos(x^2) + e^{2x}(-\sin(x^2))(2x) = e^{2x}(2 \cos(x^2) - 2x \sin(x^2)).\)
17. When \(y = \ln(x + 6)\) we have \(\frac{dy}{dx} = \frac{\cos x}{\sin x + 6}.\)
18. When \(y = 4x^2 - 5x^4\) we have \(\frac{dy}{dx} = 8x - 20x^3\) so that \(\frac{d^2y}{dx^2} = 8 - 60x^2.\)
19. When \(y = x^4 - 3x^2 + 5 \) we have \(\frac{dy}{dx} = 4x^3 - 6x \), when \(x = -1 \) this gives \(4(-1)^3 - 6(-1) = 2 \).
Thus the tangent at \((-1, 3)\) has equation \(y - 3 = 2(x + 1) \), i.e., \(y = 2x + 5 \).
20. \(\cos(7\pi/4) = \cos(-\pi/4) = 1/\sqrt{2} \).

SECTION B [20 MARKS EACH]

1. (a) Graph should be clearly labelled with the values of \(\theta \) where the graph crosses the horizontal axis and where \(y \) has minimum and maximum values for full marks. [6]
(b) Factorizing gives \((2\cos\theta + 1)(\cos\theta - 3) = 0\) so that \(\cos\theta = -1/2 \) or \(\cos\theta = 3 \). The second of these has no solutions; the first has solutions \(\theta = \pm 2\pi/3 \) in the range \(-\pi \leq \theta \leq \pi \), giving solutions \(-2\pi/3, -2\pi/3 + 2\pi = 4\pi/3, 2\pi/3 \) and \(2\pi/3 - 2\pi = -4\pi/3\) in the range \(-2\pi \leq \theta \leq \mp2\pi \). [7]
(c) From the Pythagorean identity we have \(\sin^2\theta = 1 - \cos^2\theta \), so that the given equation becomes \(2 - 2\cos^2\theta + 5\cos\theta + 1 = 0 \), i.e., \(2\cos^2\theta - 5\cos\theta = 3 \) which we just solved, so that the solutions to the given equation in the range \(0 \leq \theta \leq 5\pi \) are \(2\pi/3, 4\pi/3, 2\pi/3 + 2\pi = 8\pi/3, 4\pi/3 + 2\pi = 10\pi/3, 2\pi/3 + 4\pi = 14\pi/3 \). [7]

2. (a) (i) The line \(AB \) has equation \(\frac{y - (-2)}{x - 1} = \frac{-2 - 2}{1 - 2} \), i.e., \(y = 4x - 6 \). [2]
(i) The gradient of \(AB \) is 4, so the gradient of the perpendicular line is \(-1/4\), hence it has equation
\[
y - 0 = -\frac{1}{4}(x - 1), \quad \text{i.e.,} \quad y = -\frac{1}{4}x + \frac{1}{4} \quad \text{i.e.} \quad x + 4y - 1 = 0. \] [2]
(iii) The lines meet when \(y = 4x - 6 \) and \(y = \frac{1}{4}x + \frac{1}{4} \), so \(4x - 6 = \frac{1}{4}x + \frac{1}{4} \) giving \(x = \frac{25}{17} \)
so \(y = -\frac{2}{17} \), thus the lines meet at \(\left(\frac{25}{17}, -\frac{2}{17} \right) \). [3]
(iv) The distance from \(C \) to the line \(AB \) is
\[
\sqrt{\left(1 - \frac{25}{17}\right)^2 + \left(0 + \frac{2}{17}\right)^2} = \frac{\sqrt{8^2 + 2^2}}{17} = \frac{\sqrt{68}}{17}. \] [3]
(b) (i) The radius of the circle is \(\sqrt{(-2 - 1)^2 + (-3 + 1)^2} = \sqrt{13} \). [2]
(ii) The equation of the circle is \((x - 1)^2 + (y + 1)^2 = 13 \). [2]
(iii) The gradient of the line \(OP \) is \(-\frac{3 + 1}{-2 - 1} = \frac{2}{3} \). [3]
(iv) The tangent to the circle has gradient $\frac{-3}{2}$ so its equation is $y + 3 = \frac{-3}{2}(x + 2)$, i.e., $y = \frac{-3}{2}x - 6$. [3]

3. (i) $y' = \frac{5}{2}(x^4 + 3)^{3/2}(4x^3) + \frac{3}{2}(x^3 + 3)^{-5/2}(3x^2) = 10x^3(x^4 + 3)^{3/2} - \frac{9}{2}x^2(x^3 + 2)^{-5/2}$. [4]
(ii) $y' = (2x)\sin(3x^4) + (x^2 - 3)\cos(3x^4)(12x^3) = 2x\sin(3x^4) + 12x^3(x^2 - 3)\cos(3x^4)$. [4]
(iii) $y' = \frac{1}{\cos(3x^2 + 2)}(-\sin(3x^2 + 2))(6x) = -6x\tan(3x^2 + 2)$. [4]
(iv) $y' = e^{x+1/x}(1 - \frac{1}{x^2})$. [4]
(v) $y' = \frac{1}{1 + [(x^2 - 2)/x]^2}\frac{2x - (x^2 - 2)1}{x^2} = \frac{2x^2 - x^2 + 2}{x^2 + (x^2 - 2)^2} = \frac{x^2 + 2}{x^4 - 3x^2 + 4}$. [4]

4. (a) With $y = x^3 + x^2 - x + 3$ we have $\frac{dy}{dx} = 3x^2 + 2x - 1 = (3x - 1)(x + 1)$.

Stationary points occur when $x = \frac{1}{3}$ or -1.

Now $\frac{d^2y}{dx^2} = 6x + 2$. When $x = \frac{1}{3}$, this is positive, so we have a minimum.

When $x = -1$, it is negative, so we have a maximum.

At $x = \frac{1}{3}$, $y = \frac{76}{27}$. At $x = -1$, $y = 4$. [5]

(b) $f'(x) = 4x - 4$, so stationary point when $x = 1$. This gives the value $f(1) = 2 - 4 + 5 = 3$.

At the end points, $f(0) = 5$ and $f(3) = 18 - 12 + 5 = 11$.

Hence the global maximum value of $f(x)$ on the interval $0 \leq x \leq 3$ is 11 and the global minimum value is 3. [7]

(c) Differentiating the given equation wrt x, we obtain

$$y^3 + x\frac{dy}{dx} + 2xy + x^2\frac{dy}{dx} = 1$$

so that

$$\frac{dy}{dx} = \frac{1 - y^3 - 2xy}{3xy^2 + x^2}.$$ [8]