Errata in “Modern approaches to the invariant-subspace problem”

Isabelle Chalendar and Jonathan R. Partington

May 28, 2016

If you find any more, please let us know!

Page 87, line 1. ‘less that’ should be ‘less than’.
Page 92, first displayed equation. The final $|h(z)|^2$ should be just $|h(z)|$.
Page 154, line 5, should read $\phi(T)f = \sum_{n\in\mathbb{Z}} \phi(n)T^nf$.
Page 163, end of proof of Theorem 5.4.4. A better way to show that $\Delta(f,1/q) = 0$ on S implies non-cyclicity is to notice that $\Delta(\phi,1/q) = 0$ on S for all ϕ in the cyclic subspace generated by f. We may suppose that $S \subset (0,1/q)$, and then note that for the function $g = \chi(0,1/q)$ the determinant $\Delta(g,1/q)$ is just a nontrivial polynomial on $(0,1/q)$, and hence nonzero a.e. So g is not in the cyclic subspace generated by f.
Page 177, Lemma 6.2.6. The hypothesis on S should be that it is not the sum of a multiple of the identity and a compact operator.
Similarly, the remark following the lemma should read “Clearly, the case that S is a multiple of the identity plus a compact operator is covered by Theorem 6.1.2.”
Page 187, Line -11: It says $\|Tz_n - t_0\|$, but it should be $\|Bz_n - t_0\|$.
Page 187, Line -1: The instances of t_0 in that line should be t_1.
Page 188, Line 2: It says $Ax_0 - t_0 = Ax_1 - t_0$, but t_0 should be t_1 in both instances.
Page 199, Line -6. It says $f\chi X_1^{(1)}$, but it should be $f\chi X_1^{(2)}$.
Pages 222–224. As pointed out by Prof. L. Kérchy, there is a problem in Lemmas 8.3.5 and 8.3.6, as B^jK_B is only invariant under C_ϕ^j for $j = 0$ (in general, it fails to be invariant by a rank-one perturbation). Theorem 8.3.7 is correct as stated, but it seems that the proof in [156] is the simplest available at present.