Iterative q difference Galois theory

Charlotte Hardouin (IWR)

Leeds, June 2007
Iterative q-difference rings

Let C, be an algebraically closed field and let $q \neq 1$ be an element of C. Let $F = C(t)$ be the field of rational functions over C and let σ_q be the automorphism of F given by $\sigma_q(f)(t) = f(qt)$.

q-arithmetical properties

Definition 1 Let $k \in \mathbb{Z}$. Put $[k]_q := \frac{q^k - 1}{q - 1}$

1. Let us denote by $[k]_q!$ the element of C defined by $[k]_q[k-1]_q...[1]_q$. We will say that $[k]_q!$ is the q-factorial of k.

2. Let us denote by $\binom{r}{k}_q$ the element of C defined by $\frac{[r]_q!}{[k]_q![(r-k)]_q!}$. We will say that $\binom{r}{k}_q$ is the q-binomial coefficient of r to k.
Iterative q-difference ring

Definition 2 Let R be a q-difference ring extension of F and let $\delta^*_R := (\delta^{(k)}_R)_{k \in \mathbb{N}}$ be a collection of maps from R to R. The family δ^*_R is called an **iterative q-difference** of R, if all the following properties are satisfied

1. $\delta^{(0)}_R = \text{id}$.
2. $\delta^{(1)}_R = \frac{\sigma_q - \text{id}}{(q-1)t}$
3. $\delta^{(k)}_R (x + y) = \delta^{(k)}_R (x) + \delta^k_R (y)$
4. $\delta^{(k)} (ab) = \sum_{i+j=k} \sigma_q^i (\delta^{(j)}_R (a)) \delta^{(i)}_R (b)$.
5. $\delta^{(i)}_R \circ \delta^{(j)}_R = \binom{i+j}{i} q \delta^{(i+j)}_R$

for all $a, b \in R$ and all $i, j, k \in \mathbb{N}$. The set of such iterative q-differences is denoted by $ID_q(R)$.

For $\delta^*_R \in ID_q(R)$, the tuple (R, δ^*_R) is called an **iterative q-difference ring** (ID_q-ring). We say that an element c of R is a constant if $\forall k \in \mathbb{N}^*, \delta^{(k)}_R (c) = 0$. We will denote by $C(R)$ the ring of constants of R.

Iterative q-difference modules

For now on q denotes a n-th primitive root of unity.

Definition 3 Let (R, δ^*_R) be an iterative q-difference ring. Let M be a free R-module of finite type over R. We will say that (M, δ^*_M) is an iterative q-difference module if there exists a family of map $\delta^*_M = (\delta^{(k)}_M)_{k \in \mathbb{N}}$, such that for all $i, j, k \in \mathbb{N}$:

1. $\delta^{(0)}_M = \text{id}_M$.
2. $\delta^{(k)}_M$ is an additive map from M to M.
3. $\delta^{(k)}_M(am) = \sum_{i+j=k} \sigma_q^i(\delta^{(j)}_R(a))\delta^{(i)}_M(m)$ for $a \in R$ and $m \in M$.
4. $\delta^{(i)}_M \circ \delta^{(j)}_M = \binom{i+j}{i}_q \delta^{(i+j)}_M$.

The set of all iterative q-difference modules over R is denoted by $IDM_q(R)$.

Theorem 4 Let (L, δ^*_L) be ID_q field. Then $IDM_q(L)$ is a neutral Tannakian category over L. The unit object is (L, δ^*_L).

4
Iterative q-difference equation (ID_qE)

Notations 5 Let (L, δ^*_L) be an iterative q-difference field. If,
1. the characteristic of the constants field C of L is zero then let us denote by $(kC)_{k \in \mathbb{N}}$ the family $(k)_{k \in \mathbb{N}},$
2. the characteristic of the constants field C of L is positive equal to p then let us denote by $(kC)_{k \in \mathbb{N}}$ the family $\{1, (np^k)_{k \in \mathbb{N}}\}.$

Proposition 6 Let $M \in IDM_q(L)$ of dimension m and let $B_0 = \{b_1, ..., b_m\}$ be a basis of $M.$ Then, there exist $\{A_k \in M_m(L)\}_{k \in \mathbb{N}}$ such that the following statements are equivalent:
1. For all $y \in L^m$ s.t $B_0.y = \sum_{i=1}^{m} y_i b_i \in V_M = \bigcap_{k \in \mathbb{N}^*} \ker(\delta^{(k)}_M).$
2. $\delta^{(kC)}_L(y) = A_k y, \ \forall k \in \mathbb{N}.$

Definition 7 The family of equations
\[\{\delta^{(kC)}_L(y) = A_k y\}_{k \in \mathbb{N}} \]
related to the IDM_q-module (M, δ^*_M) in proposition 6 is called an **iterative q-difference equation** (ID_qE).
Iterative q-difference Picard-Vessiot extensions

Definition 8 Let \((L, \delta^*_L)\) be an iterative \(q\)-difference field, and let \((M, \delta^*_M)\) be an object of \(IDM_q(L)\) and let \(\{\delta^{(k_C)}_L(y) = A_k y\}_{k \in \mathbb{N}}\) be an \textbf{iterative \(q\)-difference equation} related to the \(IDM_q\)-module \((M, \delta^*_M)\), denoted by \(IDE_q(M)\).

Let \((R, \delta^*_R)\) be an iterative \(q\)-difference extension of \((L, \delta^*_L)\). A matrix \(Y \in \text{Gl}_n(R)\) is called a \textbf{fundamental solution matrix} for \(ID_qE(M)\) if \(\delta^{(k_C)}_R(Y) = A_k Y, \ \forall k \in \mathbb{N}\).

The ring \(R\) is called an \textbf{iterative \(q\)-difference Picard-vessiot ring} for \(ID_qE(M)\) (\(IPV_q\)-ring) if it fulfills the following conditions:

1. \(R\) is a simple \(ID_q\) ring (that means that \(R\) contains no proper iterative \(q\)-difference ideal),

2. \(ID_qE(M)\) has a fundamental solution matrix \(Y\) with coefficients in \(R\),

3. \(R\) is generated by the coefficients of \(Y\) and \(\det(Y)^{-1}\).

4. \(C(R) = C(L)\)
Existence of Picard-Vessiot Rings and Iterative Galois groups

Theorem 9 Let \((L, \delta^*_L)\) be an ID\(_q\) field with \(C := C(L)\) algebraically closed and \((M, \delta^*_M) \in IDM_q(L)\) with \(ID_qE : \delta^{(kC)}_L(y) = A_ky\). Then, there exists an iterative \(q\)-difference Picard-Vessiot ring for the iterative \(q\)-difference equation which is unique up to iterative \(q\)-difference isomorphism.

Let \(F\) be an algebra over \(C\) and let \((S, \delta^*_S)\) be a \(q\)-iterative difference ring we define an iterative \(q\)-difference on \(S \otimes_C F\) by setting \(\delta^{(k)}_{S \otimes_C F}(s \otimes f) := \delta^{(k)}_S(s) \otimes f\) for all \(k \in \mathbb{N}\). Till the end, every object of the previous kind will be endow with this iterative \(q\)-difference structure.
Galois group scheme

Definition 10 (Definition proposition) Let us define the functor

\[\text{Aut}(R/L) : (\text{Algebras}/C) \rightarrow (\text{Groups}) \]

\[F \rightarrow \text{Aut}_{ID_q}(R \otimes_C F/L \otimes_C F) \]

The functor \(\text{Aut}(R/L) \) is representable by a certain affine group-scheme of finite type over \(C \). We call this affine group scheme \(\text{Aut}(R/L) \) the **Galois group scheme** \(\text{Gal}(R/L) \) of \(R \) over \(L \).

Proposition 11 let \(R/L \) be an iterative \(q \)-difference Picard-Vessiot ring over \(L \) and \(\mathcal{G} := \text{Gal}(R/L) \) the Galois group scheme of \(R \). Then \(\text{Spec}(R) \) is a \(\mathcal{G}_L \)-torsor.
Proposition 12 Structure of the iterative q-difference ring

Let R/L be an iterative q-difference Picard-Vessiot ring over L. Then, there exists idempotents $e_1, ..., e_s \in R$ such that

1. $R = R_1 \oplus ... \oplus R_s$ where $R_i = e_i R$ and is a domain,

2. The direct sum of the quotient rings of the R_i's is an iterative q-difference ring called the total iterative q-difference Picard-Vessiot extension of R.
Example of iterative q-difference Galois group

Let us denote by $K = \overline{\mathbb{F}_p}$ the algebraic closure of \mathbb{F}_p, where p is a prime number. Let $F = K(t)$ be a rational function field with coefficients in K. Let $(a_l)_{l \geq 0}$ be a set of elements in \mathbb{F}_p. We choose $q \in K$ a n-th primitive root of unity with n prime to p.

Let $M = F b_1 \oplus F b_2$ be the ID_q-module with corresponding $ID_q E$:

$$\delta^{(np^k)}(Y) = A_k Y = \begin{pmatrix} 0 & a_k \\ 0 & 0 \end{pmatrix} Y$$

where $k \in \mathbb{N}$.

Theorem 13 Let M be as above with its associated $ID_q E$. Let $\alpha = \sum_{l \geq 0} a_l p^l \in \mathbb{Q}_p$. Then for an iterative Picard-Vessiot extension R/F for M, we have

$$\text{Gal}(R/F) \simeq C_r$$

the finite group of order r of $\mathbb{G}_a(K)$ if $\alpha \in \mathbb{Q}$ and $\text{Gal}(R/F) \simeq \mathbb{G}_a(K)$ if $\alpha \notin \mathbb{Q}$.
Galois correspondence

Theorem 14 (Galois correspondence) Let R/L be an iterative q-difference Picard-Vessiot ring over L, let E denotes its total iterative q-difference Picard-vessiot extension and let $\mathcal{G} := Gal(R/L)$ be the Galois group scheme of R.

1) Then there is an antiisomorphism of lattices between:

$$\mathcal{H} := \{ \mathcal{H} | \mathcal{H} \subset \mathcal{G} \text{closed subgroup schemes of } \mathcal{G} \}$$

and

$$\mathcal{T} := \{ T | L \subset T \subset E \text{ intermediate ID}_q \text{ ring }$$

s.t any non zero divisor of T is a unit of $T \}$$

given by $\Psi : \mathcal{H} \mapsto \mathcal{T}$, $\mathcal{H} \mapsto E^\mathcal{H}$ and $\Phi : \mathcal{T} \mapsto \mathcal{H}$, $T \mapsto Gal(RT/T)$.
2) If $\mathcal{H} \subset \mathcal{G}$ is normal then $R^\mathcal{H}$ is an iterative q-difference Picard-Vessiot ring over L, $E^\mathcal{H}$ its total iterative q-difference Picard-Vessiot extension; the Galois group scheme of $R^\mathcal{H}$ over L is isomorphic to \mathcal{G}/\mathcal{H}.

3) For $\mathcal{H} \in \mathfrak{H}$, the extension $E/E^\mathcal{H}$ is separable if and only if \mathcal{H} is reduced.