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1 Introduction

Let U = Uq(g) be the quantum group associated to a semisimple Lie algebra g of rank n by Drinfel’d

and Jimbo (see [6] and [7]). The negative part U− of U has a canonical basis B (see Kashiwara [8]

and Lusztig [10, 14.4.6]) with some nice properties. For example, via action on highest weight

vectors it induces bases for all of the finite-dimensional irreducible highest weight U -modules. To

calculate the elements of B explicitly is a hard problem; it is solved completely only in types A1

and A2 (see [9, 3.4]). In [11], Lusztig describes a method to calculate certain elements of B. A

monomial

F
(a1)
i1

F
(a2)
i2

· · ·F
(am)
im

(1)

in U− is said to be tight (respectively, semi-tight) if it belongs to B (respectively, is a nonnegative

integer linear combination of elements of B). Let W be the Weyl group corresponding to g, with

Coxeter generators s1, s2, . . . , sn, and let w0 = si1si2 · · · sim be a reduced expression for the longest

element in W . Fix an orientation of the Dynkin diagram of g. Lusztig associates a quadratic form to

these data, and shows that, given certain linear conditions on a1, a2, . . . , am ∈ N, the monomial (1)

is tight (respectively semi-tight) provided this quadratic form satisfies a certain positivity condition

(respectively, nonnegativity condition). Lusztig shows that the positivity condition (for tightness)

always holds in type A3 and asks when we have (semi-)tightness in type An. We show that, for a

certain orientation of the Dynkin diagram, the positivity condition is always satisfied in type A4

(as opposed to the claim in [11]). We also demonstrate Lusztig’s comment that things get more

complicated in cases with higher rank in type A. In particular, we exhibit a reduced expression for

w0 in type Ar (for any r ≥ 6) with a quadratic form that does not even satisfy the condition for

semi-tightness, for any orientation of the Dynkin diagram.

In Section 2, we describe the situation we are working in, and in Section 3 we summarize the

results about tight monomials from [11] that we shall need. In Section 4 we show how they can be

applied to the type A4 case, and in Section 5 we explain how some techniques of linear programming

providing spanning sets (in a certain sense) for cones can be applied to understanding the quadratic

form. These techniques are applied to a tractable reduced expression in type A5. In Section 6 we

3



give the counter-examples mentioned above, and in Section 7 we give a general description (in type

An) of the spanning vectors used in Section 5, showing how they can be parametrized in a natural

way by cycles in symmetric groups. These vectors seem to be interesting combinatorially and also

should be of use in further understanding the quadratic form.

2 Preliminaries

We use the treatment in [10, §§1-3]. Let g be a semisimple Lie algebra, with root system Φ, simple

roots α1, α2, . . . , αn, and Killing form ( , ). Let h1, h2, . . . , hn be a basis for a Cartan subalgebra

h of g, satisfying (hi, h) = α∗
i (h) for all h in h and all i ∈ I = {1, 2, . . . , n}. Let Y be the Z-

lattice spanned by h1, h2, . . . , hn. Let ω1, ω2, . . . , ωn be the fundamental weights of g, defined by

ωi(hj) = δij , and let X be the Z-lattice spanned by them (the weight lattice). Let d be the minimal

positive integer so that d(αi, αi) is always even. (Note that then d(αi, αj) is always an integer,

as (αi, αj) is always rational and 2(αi, αj)/(αi, αi) is always an integer.) If the highest common

factor of the 1
2d(αi, αi) is not 1, then replace d by d divided by this highest common factor. We

then define i · j to be d(αi, αj) for each i, j ∈ I, so (I, ·) is a Cartan datum as in [10, 1.1.1]. For

µ ∈ Y and λ ∈ X, define 〈µ, λ〉 to be λ(µ). Define an embedding of I into Y by i 7→ hi and

into X by i 7→ αi for all i ∈ I. We then have a root datum of type (I, ·) as in [10, 2.2.1], with

〈hi, αj〉 = αj(hi) = Aij the corresponding symmetrizable Cartan matrix. For each i ∈ I, we define

di to be the integer 1
2d(αi, αi). Then diAij = 1

2d(αi, αi)
(

2(αi,αj)
(αi,αi)

)
= d(αi, αj) for each i, j ∈ I, and

is thus a symmetric matrix over Z. We use the same numbering as [2, Planches 1 to IX].

Let Q(v) be the field of rational functions in an indeterminate v, and A ⊆ Q(v) the ring

Z[v, v−1]. For N,M ∈ N and i ∈ I we put vi = vdi and define the following (which all lie in A):

[N ]i =
vN
i − v−N

i

vi − v−1
i

, [N ]!i = [N ]i[N − 1]i · · · [1]i,

[
M
N

]

i

=
[M ]!i

[N ]!i[M − N ]!i
.

We define the quantized enveloping algebra U corresponding to the above data (as in [10, 3.1.1

& 33.1.5]) to be the Q(v)-algebra U with generators 1, E1, E2, . . . , En, F1, F2, . . . , Fn, and Kµ for
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µ ∈ Y , subject to the relations: (for each i, j ∈ I and µ, µ′ ∈ Y )

K0 = 1,

KµKµ′ = Kµ+µ′ ,

KµEi = vαi(µ)EiKµ,

KµFi = v−αi(µ)FiKµ,

EiFi − FiEi =
K̃i − K̃−1

i

vi − v−1
i

,

EiFj − FjEi = 0, i 6= j,

∑

p+p′=1−Aij

(−1)p′
[

1 − Aij

p′

]

i

Ep
i EjE

p′

i = 0, i 6= j,

∑

p+p′=1−Aij

(−1)p′
[

1 − Aij

p′

]

i

F p
i FjF

p′

i = 0, i 6= j,

(where, for i ∈ I, we put K̃i = Kdihi
and K̃−1

i = K−dihi
). In the last two summations, p and p′ are

restricted to the nonnegative integers.

We make the following definitions (see [10, 3.1.1 & 3.1.13]). For M ∈ N, and i ∈ I, we put

E
(M)
i = EM

i /[M ]!i, and F
(M)
i = FM

i /[M ]!i, which are called divided powers. Let U+ be the Q(v)-

subalgebra of U generated by the Ei, i ∈ I. Let U− be the Q(v)-subalgebra of U generated by the

Fi, i ∈ I. Let W be the Weyl group of g. So W is the group:

W = 〈s1, s2, . . . , sn | s2
i = 1, (sisj)

mij = 1 (i 6= j)〉

where mij = 2, 3, 4, 6 if AijAji = 0, 1, 2, 3, respectively.

3 Tight Monomials

We start by describing the quadratic form mentioned in the introduction, and summarizing some

results from Lusztig’s paper [11] for the situation we are interested in. Let D be the Dynkin graph

of the semisimple Lie algebra g. So D has vertices I and a set of edges Ω. We take an orientation
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of D; i.e. two maps h 7→ h′ and h 7→ h′′ from Ω to I such that the ends of h are h′, h′′. Let

i = (i1, i2, . . . , im) be a sequence in I. We consider the monomial u := F
(a1)
i1

F
(a2)
i2

· · ·F
(am)
im

∈ U−.

Let B ⊆ U− be the canonical basis of U− (see Kashiwara [8] or Lusztig [10, 14.4.6]). Following

Lusztig, we say u is tight (respectively, semi-tight) if u ∈ B (respectively, is an integer linear

combination of elements of B). We now describe a quadratic form defined in terms of D and i, and

a linear form La defined in terms of D, i and a, and give sufficient conditions in terms of these for

u to be tight or semi-tight.

For i ∈ I let Z(i) be the set {j ∈ [1,m] : ij = i}. Let P ′ be the rational vector space with

coordinate functions zpq
i indexed by triples (i, p, q) such that i ∈ I and p, q ∈ Z(i) satisfy p 6= q.

Define zpq
i to be identically zero whenever i ∈ I and p, q ∈ [1,m] are not both contained in Z(i), or

if p = q ∈ Z(i). Let P be the subspace of P ′ defined by the relations:

∑

r≤p<s

zrs
i =

∑

r≤p<s

zsr
i (2)

for all p ∈ [1,m]. Let P+ be the set of all z = (zpq
i ) ∈ P such that zpq

i ≥ 0 for all (i, p, q), p 6= q.

Let P+
Z

be the set of all z = (zpq
i ) ∈ P such that zpq

i ∈ N for all (i, p, q), p 6= q. Define the quadratic

form Q : P ′ 7→ Q by:

Q =
∑

i∈I

∑

r≤p<s≤q

zpq
i zrs

i +
∑

i∈I

∑

q<s≤p<r

zpq
i zrs

i (3)

−
∑

h∈Ω

∑

r≤p<s≤q

zpq
h′ z

rs
h′′ −

∑

h∈Ω

∑

q<s≤p<r

zpq
h′ z

rs
h′′ .

We fix a = (a1, a2, . . . , am) ∈ Nm. For any two indices s < s′ in [1,m] such that s, s′ ∈ Z(i), with

p 6∈ Z(i) whenever s < p < s′, set

N(s, s′) = as + as′ +
∑

i′∈I\{i}

∑

p∈Z(i′)
s<p<s′

eii′ap,

where eii′ is the number of (unoriented) edges joining i with i′. More generally, given s < s′ in

[1,m] with s, s′ ∈ Z(i), set N(s, s′) = N(s0, s1) + N(s1, s2) + · · · + N(sk−1, sk) where {s = s0 <

s1 < · · · < sk = s′} are the elements of Z(i) ∩ [s, s′] in increasing order. This is compatible with

the previous definition. Consider the linear form

La :=
∑

i

∑

s<r

N(s, r)zrs
i
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on P ′. The following is a subcase of the corollary in Section 10 of [11].

Theorem 3.1 (1) If the non-homogeneous quadratic form Q + La takes only positive values on

P+
Z

\ {0}, then the monomial (1) is tight.

(2) If Q + La takes only nonnegative values on P+
Z

, then (1) is semi-tight.

Remark: The forms Q and La arise in [11] in the context of the perverse sheaf approach to the

canonical basis. Given a monomial u as above, set, for each i ∈ I, Vi to be a vector space of dimen-

sion ν(i) :=
∑

p∈Z(i) ap. Let V := ⊕i∈IVi, and let E be the algebraic variety ⊕h∈ΩHom(Vh′ ,Vh′′),

depending only on ν. Let F be the variety of all flags φ = (0 = Vm ⊆ Vm−1 ⊆ · · · ⊆ V1 ⊆ V0 =

V), where each Vp is an I-graded subspace of V such that for each p, the I-graded vector space

Vp−1/Vp is non-zero only in dimension ip, where it has dimension ap. Let F̃ be the variety of all

pairs (x, φ), where x = (xh) ∈ E and φ ∈ F as above are such that xh(Vp
h′) ⊆ V

p
h′′ for all p, h;

let π1 : F̃ → E be the first projection. We have a natural diagonal embedding F̃ ⊆ F̃ ×E F̃ ; let

F := π1(F̃ ), and let π : F̃ → F be the restriction of π1. There is a partition

F̃ ×E F̃ = ⊔y(F̃ ×E F̃ )y,

based on the relative position of two flags in F . Here y varies over a certain subset of Nc for some

c. Lusztig defines a quadratic form Q′(y) := dim(F̃ )−dim(F̃ ×E F̃ )y, and shows that the smallness

of π (respectively, the semi-smallness of π), in the sense of Goresky and Macpherson, follows from

a positivity condition (respectively, nonnegativity condition) on Q′. He then shows, using the

perverse sheaf characterisation of the canonical basis, that u is tight (respectively, semi-tight), if π

is small (respectively, semi-small), and then deduces Theorem 3.1 from the above by a change of

variables in Q′.

We write the conditions in Theorem 3.1 in terms of weak positivity and weak nonnegativity.

Let l be a positive integer and S ⊆ Ql. A quadratic form f on Ql is said to be weakly nonnegative

(respectively, weakly positive) on S if for all x = (x1, x2, . . . , xl) ∈ S, with each xi ≥ 0 (respectively,

each xi ≥ 0 and x 6= 0), we have f(x) ≥ 0 (respectively, f(x) > 0). If S is the whole of Ql we say

f is weakly nonnegative (respectively, weakly positive). We have:
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Corollary 3.2 Suppose that a ∈ Nm and La(z) ≥ 0 for all z ∈ P+
Z

.

(a) If Q weakly positive on P then the monomial (1) is tight.

(b) If Q is weakly nonnegative on P then the monomial (1) is semi-tight.

Proof: The conditions in the corollary easily imply the conditions in the theorem. �

Remark: Note that Q takes only positive values on P+ \ {0} (i.e. is weakly positive on P ) if and

only if it takes only positive values on P+
Z
\ {0}. Clearly the latter is necessary for Q to be weakly

positive on P , so suppose that Q takes only positive values on P+
Z

\ {0}, and let z ∈ P+ \ {0}.

For some positive integer t, tz ∈ P+
Z

\ {0}, so Q(tz) > 0, whence Q(z) = 1/(t2)Q(tz) > 0, so Q is

weakly positive on P . Similarly, Q takes only nonnegative values on P+ if and only if it takes only

nonnegative values on P+
Z

. Note also that in case (b), if La(z) > 0 for all z ∈ P+
Z

\ {0}, then the

monomial (1) is actually tight. Thus it doesn’t matter if we work over Z or over Q.

In [11], Lusztig shows the following:

Proposition 3.3 Suppose g is of type An with n ≤ 3, and i = (i1, i2, . . . , im) corresponds to a

reduced expression for the longest word in the Weyl group. Then there exists an orientation of the

Dynkin diagram for which the corresponding quadratic form Q is weakly positive on P . Thus if

a ∈ Nm and La(z) ≥ 0 for all z ∈ P+
Z

, the monomial (1) is tight. �

Remark: Suppose that for every pair is, is′ , with s, s′ ∈ {1, 2, . . . ,m}, is = is′ and such that

ip 6= is whenever s < p < s′, we have that

∑

p

ap ≥ as + as′ ,

where the sum is over all p with s < p < s′ which are joined with i in the Dynkin diagram.

Lusztig remarks in [11, §16] that if this is so, then La(z) ≥ 0 for all z ∈ P+
Z

. He asks under what

circumstances the corresponding monomial (1) is tight or semi-tight. In the next sections we’ll

provide an answer in type A4 and investigate what happens in higher cases.
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4 Some Tight Monomials in Type A4

We now assume g is of type A4, and we fix an orientation of D where the edge h joining vertices i

and i + 1 has h′ = i and h′′ = i + 1 for i = 1, 2, 3. We also assume that we have a ∈ Nm satisfying

La(z) ≥ 0 for all z ∈ P+
Z

. We then test condition (a) of Corollary 3.2. A simple approach to

this is to take the quadratic form Q on P ′ and eliminate zpq
i ’s using the relations (2) (that is, for

each relation, eliminate one zpq
i ). One thus obtains a new quadratic form Q1 in some subset of

the variables zpq
i (denote this subset by S). Note that Q1 depends on a choice of the variables

eliminated. Suppose that Q1 is found to be weakly positive (as a function of the variables in S).

It is then clear that condition (a) is satisfied. This is the approach used for some cases in [11].

However, we should note that it is not necessarily the case that Q1 is weakly positive if condition

(a) is satisfied — when testing the weak positivity of Q1 we don’t assume that the eliminated

variables are nonnegative.

Proposition 4.1 Suppose g is of type A4, the orientation of D is as above, and i = (i1, i2, . . . , im)

is a sequence in I such that si1si2 · · · sim is a reduced expression for the longest word in the Weyl

group. Suppose a ∈ Nm is such that La(z) ≥ 0 for all z ∈ P+
Z

. Then condition (a) is satisfied for

the quadratic form Q corresponding to i, and we can conclude that the corresponding monomial (1)

is tight.

Proof: First a simple program in Maple [14] was written which would produce a list of the reduced

expressions for the longest word in the Weyl group. Let ∼ be the equivalence relation on the set

of reduced expressions for the longest word defined by setting w ∼ w′ if there exists a sequence

of commutations taking w to w′. (A commutation is a relation of the form sisj = sjsi where i

and j are not connected in the Dynkin diagram). We only have to take a list of equivalence class

representatives for ∼ and test condition (a) for each element in this list, since it is clear if condition

(a) is satisfied for one element in an equivalence class, it is satisfied for all. The idea was to use a

theorem of Matsumoto (see [5, 64.20]):
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Theorem 4.2 Suppose that si1si2 · · · sit = sj1sj2 · · · sjt are two reduced expressions for an element

w ∈ W , where W is a Weyl group with Coxeter generators si. Then there exists a finite sequence

of braid relations which, when applied to the first expression, in order, gives the second. �

The algorithm for the program was as follows:

(1) Input: a list L consisting of the single element s1s3s2s4s1s3s2s4s1s3, a reduced expression

for the longest word in the Weyl group W of type A4.

(2) For each element si1si2 · · · sim of L find all subsequences ia, ib, ic of i1, i2, . . . , im such that

commutations can be applied to si1si2 · · · sim to produce a word containing the sequence siasibsic ,

and such that ia = ic and ia is joined to ib in the Dynkin diagram. For each of these, apply the

corresponding long braid relation siasibsia = sibsiasib to produce a new reduced expression for the

longest word; call this new set of words M .

(3) Now pass through the words in M one by one. For each one, test for equivalence with each

element of L; if it is not equivalent to any element of L, add it to L.

(4) If no new element was added to L in step (3), we are done; the algorithm ends and L is the

list we want. Otherwise return to (2).

Then a Maple program was written that would calculate for each reduced expression in our list,

the quadratic form Q. The method described at the start of this section was then applied. For

each i, p, we used the relation

∑

r≤p<s

zrs
i =

∑

r≤p<s

zsr
i

to eliminate ztu
i , where t was the smallest element of Z(i) and u was the smallest element of Z(i)

satisfying p < u. Note that as p varies over [1,m] the same relation will appear several times; we

of course ignored repetitions. Thus we obtained a quadratic form Q1. It turned out that in each

case, the quadratic form Q1 was a unit form, i.e. for each variable zrs
i not eliminated, the term in
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(zrs
i )2 in Q1 was exactly (zrs

i )2. For such a form, there is an algorithm to check for weak positivity

— see [1], which is implemented in Crep [4], which runs via Maple. This algorithm was used to

show that in each case, Q1 is weakly positive. �

Note that to fix the orientation of the Dynkin diagram D is not a severe restriction, as we have

a result independent of the orientation (i.e. the tightness of the corresponding monomial).

5 Type A5

The same method applied to some reduced expressions for the longest word in case A5 did not work

— the quadratic form Q1 was not weakly positive. Various other substitutions were attempted,

without success. Note that such a result tells us nothing about the weak positivity of Q on P .

A method is required which will give us an answer in these cases. Dr.H. von Höhne suggested

using linear programming techniques to deduce from Q a quadratic form Q′ which is weakly pos-

itive (respectively, weakly nonnegative) if and only if Q is weakly positive (respectively, weakly

nonnegative) on P . These techniques were found in [12]. The author would like to thank Dr. von

Höhne for some useful discussions on the problem. It will be seen that for the reduced expres-

sion w0 = s1s3s5s2s4s1s3s5s2s4s1s3s5s2s4 for the longest word in the Weyl group of type A5 this

corresponding quadratic form is weakly nonnegative for the orientation of D given by h′ = i and

h′′ = i+1 if h is the edge joining vertices i and i+1 and that for any orientation of D the quadratic

form is not weakly positive. In the sequel we start in a more general setup, with g of type An, take

the orientation of D just mentioned and i = (i1, i2, . . . , im) a sequence in I.

We have the quadratic form Q corresponding to i, defined on P ′ = Ql for some l, and the

subspace P of Ql defined by certain relations on the coefficients. We want to look at the values of

Q on the set of points of P where all of the coefficients are nonnegative, so we must understand

this set. Let z ∈ P ′; then the relations can be written in the form Az = 0, where A is an integer

matrix. We wish to understand the set P+ = {z ∈ P ′ : z ≥ 0, Az = 0} (where z ≥ 0 means each

component of z is nonnegative).
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Using linear programming techniques, we can find a finite set of vectors v1, v2, . . . vs in P+ so

that

P+ = {

s∑

j=1

λjvj : λj ∈ Q, λj ≥ 0}.

We summarize how this works.

To simplify things a bit, we fix i ∈ I and consider only the subspace P ′
i of P ′ given by

the relations zrs
j = 0 for j 6= i. This has coordinate functions zrs

i for r, s ∈ Z(i), r 6= s.

We impose the relations involving the zrs
i and call this subspace Pi. We denote a point in P ′

i

or Pi by the vector z = (zrs
i ), where r,s vary over Z(i), with r 6= s. We investigate the set

P+
i := {z ∈ P ′

i : z ≥ 0, Aiz = 0}, where Ai is the matrix of the relations involving only the

zrs
i . For ease of notation, we relabel Z(i) = {1, 2, . . . , k}. This makes no difference to the resulting

calculations. We order the k(k− 1) coordinates thus: z12
i , z13

i , . . . , z1k
i , z23

i , z24
i , . . . , z2k

i , . . . , zk−1,k
i ,

z21
i , z31

i , . . . , zk1
i , z32

i , z42
i , . . . , zk2

i , . . . , zk,k−1
i . With this ordering, the matrix Ai = (Ci −Ci), where

Ci is the k − 1 by 1
2k(k − 1) matrix given by:

Ci =




1 1 . . . 1
1 . . . 1

... . . . 1 1 1
1 1 1 1

1 1 1 1




,

where an entry which doesn’t appear is taken to be zero. We see that Ai is a k − 1 by k(k − 1)

matrix, of rank k − 1. Add a row to the bottom of Ai consisting entirely of 1′s, to give a matrix

Bi of rank k. An extreme homogeneous solution of our problem is one obtained in the following

manner. Take k columns of Bi such that the corresponding k×k matrix X is invertible. Set zrs
i = 0

if it does not correspond to one of these columns and solve the equation Biz = (0, 0, . . . , 0, 1)t with

this restriction — it has a unique solution by the invertibility of X. This is said to be an extreme

homogeneous solution if each zrs
i ≥ 0. Then we have:

Lemma 5.1 Either P+
i = {0} (in the case there are no extreme homogeneous solutions) or P+

i is

the set of nonnegative (rational) linear combinations of the extreme homogeneous solutions.
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Proof: see [12, Lemma 1, P116].

We have thus solved our problem for P+
i . We consider some small cases. If k = 1, there are no

coordinates zrs
i . If k = 2, Ai = (1 −1) and we get the single vector given by z12

i = z21
i = 1

2 . If k = 3

we obtain the vectors which are the transposes of: (1
2 , 0, 0, 1

2 , 0, 0), (0, 1
2 , 0, 0, 1

2 , 0), (0, 0, 1
2 , 0, 0, 1

2),

(1
3 , 0, 1

3 , 0, 1
3 , 0) and (0, 1

3 , 0, 1
3 , 0, 1

3). This is easy to see merely by considering the order-3 subsets of

the set of columns of Ai. In fact the vectors obtained have a nice description in the general case

— see §7. By multiplication by a suitable scalar (in this case 2 or 3) we make all of these vectors

integer vectors; note that this does not affect their nonnegative rational linear span.

So for each i we have ki vectors vi,1, vi,2, . . . , vi,ki
such that P+

i = {λ1vi,1+λ2vi,2+· · ·+λki
vi,ki

:

λj ∈ Q, λj ≥ 0}. It is clear that we have P+ = {
∑

i∈I

∑ki

j=1 λijvij : λij ∈ Q, λij ≥ 0}. For each λ =

(λij), with each λij ∈ Q (where for each i, j runs from 1 to ki), define Q′(λ) = Q(
∑

i∈I

∑ki

j=1 λijvij).

Then we have:

Lemma 5.2 Q is weakly nonnegative (respectively, weakly positive) on P if and only if Q′ is weakly

nonnegative (respectively, weakly positive). �

We now set g to be of type A5 and fix i = (1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4). Note that here

|Z(i)| = 3 for all i, so we only need the case k = 3. Using the ordering of vectors given above, the

25 × 25-matrix of the quadratic form Q′ was calculated (with Maple), and found to be as follows:

X :=




A −B 0 0 0
−Bt A −Bt 0 0

0 −B A −B 0
0 0 −Bt A −Bt

0 0 0 −B A




,

where the zeros stand for 5 × 5 zero matrices,

A =




2 1 1 2 2
1 2 1 2 2
1 1 2 2 2
2 2 2 4 2
2 2 2 2 4




and B =




1 1 0 1 1
0 1 1 1 1
1 0 1 1 1
1 1 1 2 1
1 1 1 1 2




.
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We first note that Q is not weakly positive on P , since if z16
1 = z61

1 = 1, z49
2 = z94

2 = 1, z4,14
2 =

z14,4
2 = 1, z27

3 = z72
3 = 2, z5,10

4 = z10,5
4 = 1, z5,15

4 = z15,5
4 = 1, z38

5 = z83
5 = 1, and all other coordinates

are set to zero, then z ∈ P+ and Q(z) = 0. This was found with the help of Maple and Crep. Note

that this z is invariant under the map taking all zrs
i to zsr

i . It is clear from the definition of the

quadratic form that if we used any orientation of the Dynkin diagram, the value of the quadratic

form on such a z would be the same. Thus for any orientation of D the corresponding quadratic

form is not weakly positive. We can represent any such z ∈ P+ in pictorial form in the following

manner:

Draw a graph containing |I| rows of vertices, such that for each i ∈ I the ith row contains one

vertex corresponding to each element of Z(i). The vertices are arranged in such a manner so that

if r ∈ Z(i) and s ∈ Z(i + 1) then the vertex corresponding to the smaller of r and s appears to the

left of the vertex corresponding to the larger of the two. If zrs
i = zsr

i is non-zero then an edge is

drawn between the vertices (in row i) corresponding to r and s, and it is labelled with the value of

zrs
i (we omit the label if zrs

i = 1).

Such a representation makes it easy to calculate Q(z) (for our fixed orientation). Pairs r, s in

[1,m] should be thought of as intervals; contributions to Q(z) come from certain types of inter-

sections of these intervals (thanks are due to Dr. von Höhne for the idea of thinking in terms of

intervals). For example, to calculate the contribution to Q from the first of the four terms in the

definition, we should calculate for each i the product of the labels on edges corresponding to pairs

of intervals ([p, q], [r, s]) appearing in the ith row of the pictorial representation which intersect in

such a way that we have r ≤ p < s ≤ q. This includes identical pairs of intervals (which don’t

appear in any of the other terms). Then we should add up the results coming from each i ∈ I. The

values of the other three terms can be calculated in a similar manner. In this example the picture

is as in Figure 1.

Note the diagram indicates there is an edge from 4 to 14. (We won’t draw any z’s where there

are edges corresponding to intervals [p, q] and [r, s] with q = r.) Now we calculate the value of the

first term of Q. We get 6 × 12 + 22 = 10 from the identical pairs of intervals. The interval [4, 9]

14



◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

2

1 6 11

4 9 14

2 7 12

5 10 15

3 8 13

Figure 1

intersects the interval [4, 14] (in the correct way), and the interval [5, 10] intersects the interval

[5, 15]. Thus we get a total of 10 + 2 = 12 for the first term. The contribution from the second

term is 0 — no pairs of intervals corresponding to a fixed i intersect in the correct way. Since there

are no loops in the Dynkin diagram, the third and fourth terms of Q can be written as

−
∑

h∈Ω

∑

r<p<s<q

zpq
h′ z

rs
h′′ −

∑

h∈Ω

∑

q<s<p<r

zpq
h′ z

rs
h′′ . (4)

We thus get a contribution to this for every pair of intervals in adjacent rows which intersect such

that neither completely contains the other. (Note that we cannot have s=p as the sets Z(i) are

disjoint). In our example we have a contribution of −1 from each of 12 intersections, a total of

−12. Thus we have Q(z) = 12 − 12 = 0.

So, Q is not weakly positive on P , but the question remains as to whether it is weakly nonneg-

ative on P . We need a criterion for checking that a quadratic form is weakly nonnegative, so we

can check if this condition holds for Q′ (and thus for Q on P ). We use the following:

Theorem 5.3 Suppose f is a quadratic form and M = M t is the matrix of f . Then f is weakly

nonnegative if and only if for every principal submatrix D of M with det(D) < 0 there is a cofactor

of the last column of D which is negative.

Proof: This is due to E. Keller and cited without proof as Theorem 4.2 in [3]; see [15, 4.7] for a

proof. Note that copositivity as referred to in these papers is the same as weak nonnegativity. �
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Let M be the matrix of Q′; the rank of M is 18 (using Maple). Therefore we need only check

principal submatrices of order ≤ 18. Also note that the following vectors are in the kernel of M

(again from Maple):

(1, 1, 1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 1, 1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,−1,−1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,−1,−1),

(1, 0,−1, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0,−1, 0, 1, 0, 0),

(0,−1, 1, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 1,−1, 0, 0).

Therefore, since the first vector lies in the kernel, any principal submatrix corresponding to

a subset of {1, 2, . . . , 25} which contains {1, 2, 3, 4, 5} will have determinant zero, and needn’t be

checked. Similarly with the other vectors. A computer program in the C programming language

was written to test the condition in the theorem for Q′, using the short cuts described here.

The algorithm used cycled through all subsets of {1, 2, . . . , 25} of size ≤ 18 and checked the

corresponding submatrix if the subset didn’t contain one of the subsets corresponding to the kernel

vectors above. Determinants were calculated using row reduction. In the end Q′ was found to be

weakly nonnegative. We conclude:

Proposition 5.4 Suppose that g is of type A5, and i = (1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4) ∈ N15.

Suppose a ∈ N15 is such that La(z) ≥ 0 for all z ∈ P+. Then condition (2) in Theorem 3.1 is

satisfied by Q + La, so we can conclude that the corresponding monomial F
(a1)
i1

F
(a2)
i2

· · ·F
(am)
im

is

semi-tight. �

Note: If we have La(z) > 0 for all z ∈ P+ then in fact condition (1) is satisfied by Q + La and we

can conclude in this case that the corresponding monomial is tight.
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We consider now the sequence i = (1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1) which corresponds to a

reduced expression for the longest word in the Weyl group. Define z ∈ P+ using the picture in

Figure 2 as we did in the previous case.

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦

◦ ◦

◦

1 3 6 10 15

2 5 9 14

4 8 13

7 12

11

Figure 2

So z3,10
1 = z10,3

1 = 1, z2,5
2 = z5,2

2 = 1, z9,14
2 = z14,9

2 = 1, z4,13
3 = z13,4

3 = 1 and all other coordinates

are set to zero. Then a calculation as before shows Q(z) = 0, so Q is at best weakly nonnegative

on P . (Note that as above the fact that always zrs
i = zsr

i ensures this result is independent of

orientation). However to check if Q is weakly nonnegative or not on P using Theorem 5.3 as before

would take too long because of the size of the matrix of the quadratic form involved.

6 Counter-examples

We now demonstrate that there are cases where Q is not even weakly nonnegative on P . We set g

to be of type A6 and take our usual orientation of the Dynkin diagram. We consider the sequence

i = (1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1), which corresponds to a reduced expression for

the longest element in the Weyl group. We look at the corresponding quadratic form Q. and define

z using the picture in Figure 3.

So: z3,6
1 = z6,3

1 = 1, z10,15
1 = z15,10

1 = 1, z5,14
2 = z14,5

2 = 2, z4,8
3 = z8,4

3 = 1, z13,19
3 = z19,13

3 = 1,

z7,18
4 = z18,7

4 = 1, and all other coordinates are set to zero. Then we have z ∈ P+ and Q(z) = −1.
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11 17

16

2

Figure 3

So Q is not weakly nonnegative on P . Now fix any a ∈ Nm, and let L = La(z). We have, for t ∈ N,

La(tz) + Q(tz) = tL− t2, which is negative for t large enough, so we see that in this case condition

(2) of Theorem 3.1 fails. Note that again because this z is invariant under the map taking all zrs
i

to zsr
i , for any orientation of D the corresponding quadratic form is not weakly nonnegative.

The above examples can clearly be generalized, with the help of the pictures. For example,

suppose U is the quantum group of type An and i = (i1, i2, . . . , im) is a sequence (for example,

corresponding to a reduced expression for the longest word in the Weyl group), such that the

corresponding graph of the Z(i)’s admits such a construction as in the example above. Then

the corresponding quadratic form (for any orientation of D) Q will not be weakly nonnegative

on the subspace P given by the relations (2) (and condition (2) in Theorem 3.1 will fail). This

includes, for example, in type An, n ≥ 6, the sequence i = (1, 2, 1, 3, 2, 1, . . . , r, r − 1, . . . , 2, 1)

(which corresponds to a reduced expression for the longest word in the Weyl group). In this case

the picture is a triangle with r points in the first row, r − 1 in the second, and so on.

This also includes, in type An, n ≥ 6, the reduced expression for the longest word which is

obtained in the following way. Let O be the sequence (1, 3, 5, . . . , o), where o is the largest odd

number smaller than or equal to n, and let E be the sequence (2, 4, 6, . . . , e), where e is the largest

even number smaller than or equal to n. Let OE be the concatenation of the two. If n is even,
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let i be the sequence obtained by writing OE 1
2n times followed by O, and if n is odd let i be the

sequence obtained by writing OE 1
2(n + 1) times. Then i corresponds to a reduced expression for

the longest word in the Weyl group. Using the above construction, the corresponding quadratic

form is not weakly nonnegative for any orientation of D. Thus we see that in higher cases, things

do not work out nicely (although it may turn out that the corresponding monomials are still tight).

7 Cycles and Spanning Vectors

In this section we give a general description (for type An) of a set of vectors whose nonnegative

rational linear span is P+
i ; existence is guaranteed by Lemma 5.1. Such a description should be

helpful in further understanding the quadratic form Q and its application in the theory of Lusztig,

as well as being interesting in its own right.

Recall that

P+
i := {z ∈ P ′

i : z ≥ 0, Aiz = 0},

where P ′
i is the subspace of P ′ spanned by those zrs

j for which j = i, and Ai is the matrix given in

the previous section. Note that we simplify matters by relabelling Z(i) as {1, 2, . . . , k}. We start

with the matrix Bi, which is a k by k(k − 1) matrix, and we must look at the k × k submatrices of

Bi with non-zero determinant. We first need the following:

Definition 7.1 Let M be a (not necessarily square) rational matrix. Then M is said to be totally

unimodular if every subdeterminant of M is ±1 or zero.

Lemma 7.2 The matrix Ai is totally unimodular.

Proof: Note that each column of Ai consists of a string of 0’s, followed by a string of 1’s, followed

by a string of 0’s (where the strings can be empty). By Example 7 on page 279 of [13], we conclude

that Ai is unimodular. �
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Proposition 7.3 Let x be an extreme homogeneous solution of our problem. Then x is a positive

multiple of a vector with entries in {0, 1}. Furthermore, if S is the set of columns of Ai corre-

sponding to the non-zero entries of x, then
∑

c∈S c = 0 (this is clear) and if
∑

c∈S′ c = 0 for some

non-empty subset S′ ⊆ S, then S′ = S.

Proof: Let M be a k × k submatrix of Bi leading to an extreme homogeneous solution x; suppose

that M is constructed from the columns cp1 , cp2 , . . . , cpk
of Ai together with a bottom row of 1’s.

Let y = (xp1 , xp2, . . . , xpk
). We know that det(M) 6= 0 and that y is the unique vector satisfying

My = (0, 0, . . . , 0, 1)t. Now let us use Cramer’s Rule to calculate y = (y1, y2, . . . , yk). To calculate

yj, we take the matrix M and replace the jth column by (0, 0, . . . , 0, 1)t. Then yj is the determinant

of this new matrix, divided by the determinant of M . Because Ai is totally unimodular, the new

matrix has determinant in {0,±1} (as it is plus or minus the determinant of a square submatrix of

Ai), whence each yj is ±1/det(M) or is zero. But because x is an extreme homogeneous solution,

each yj must be nonnegative and must therefore be either zero or 1/|det(M)|. We also have xt = 0

if t 6∈ {p1, p2, . . . , pk}, so we have proved the first part of the proposition.

Next, let S be the set of columns of Ai corresponding to the non-zero entries of x. Then it is

clear that
∑

c∈S c = 0. Suppose φ 6= S′ ⊆ S, S′ 6= S and
∑

c∈S′ c = 0. Then also
∑

c∈S\S′ c = 0.

Now let’s calculate the determinant of M by expanding along the bottom row (consisting entirely of

1’s). We get that det(M) is the sum of (plus or minus) the determinants of the matrices obtained by

taking various subsets (of size k − 1) of the columns {cp1 , cp2 , . . . , cpk
} of Ai. But each such subset

must completely contain S or S′, so each such determinant is zero. We conclude that det(M) = 0,

a contradiction. �

We would thus like to calculate the sets of up to k columns of Ai whose sum is zero, such

that no non-empty proper subset has zero sum. Note that there is a correspondence between the

positive columns of Ai and the intervals contained in {1, . . . , k − 1}, given by taking a column to

the subset consisting of the numbers of the rows where 1’s appear in the column. There is a similar

correspondence for the negative columns. In the sequel, the identity permutation is considered not
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to be a cycle. The sets of columns we are interested in can be described in the following manner:

Proposition 7.4 Let Sk be the symmetric group on {1, 2, ..., k}, and let π be a cycle in Sk. Let

E be the set of all positive columns of Ai corresponding to the (integer) intervals [i, π(i) − 1], for

i ∈ {1, 2, ..., k} with π(i) > i. Let F be the set of all negative columns of Ai corresponding to the

(integer) intervals [π(i), i − 1], for i ∈ {1, 2, ..., k} with π(i) < i. Then E ∪ F is a set of at most k

columns whose sum is zero, such that no proper subset has zero sum, and in fact every such set of

columns arises in this way.

Proof: Let S be a set of columns from the matrix with zero sum such that no proper subset has

zero sum. Let E be the set of positive columns in S and F− the set of negative columns in S. Let

F be the set of positive columns corresponding to the negative columns in F−. We will identify

positive columns by their corresponding intervals (of 1’s), and talk about sums of intervals to mean

sums of the corresponding positive columns. The fact that no proper subset of S has zero sum is

equivalent to:

(∗) we can find no pair of non-empty subsets E1 ⊆ E and F1 ⊆ F such that the sum of the intervals

in E1 is equal to the sum of the intervals in F1, unless E1 = E and F1 = F .

Lemma 7.5 If [i, j] is an interval in E (respectively, F ) then no other interval in E (respectively,

F ) has starting point i or finishing point j. If [i, j] is an interval in E (respectively, F ) then no

interval in F (respectively E) has starting point j + 1, or finishing point i − 1. That is, no pair of

intervals in one of the sets can have a common starting point or end point, and it is not possible

for a pair of intervals, one from E and one from F , to have an empty intersection but have their

union equal to an interval.

Proof: This lemma is the major step in proving the proposition. We will construct a ‘loop’ in S.

First, we define a directed graph, G, with vertices V given by

{(c,E) : c ∈ E}
.
∪ {(c, F ) : c ∈ F}
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In the notation for vertices, E and F are treated merely as two distinct symbols. The edges are

defined as follows:

(a) ([i, j], E) −→ ([j + 1, k], E),

(b) ([j + 1, k], F ) −→ ([i, j], F ),

(c) ([i, j], E) −→ ([k, j], F ),

(d) ([i, k], F ) −→ ([i, j], E),

in each case for all i, j, k ∈ {1, 2, . . . , k − 1} such that the two vertices exist.

It will turn out that this graph is merely a single cycle on its vertices. Suppose first that G

contains no (directed) cycles. The first claim is that if ([i, j], P ) (where P = E or F ) is a vertex of

the graph, there must be at least one vertex connected to it, with the arrow going from ([i, j], P )

to the new vertex. Suppose no such new vertex exists and, firstly, that P = E. Then by (a) and

(c) there is

(i) no interval [j + 1, k] in E, and

(ii) no interval in F of the form [k, j].

We conclude that the (j + 1)th entry in the sum of the columns in E is less than the jth entry by

at least 1. This is because any interval in E containing j + 1 must also contain j, by (i). We now

consider what is happening in F at this point. It must be true that at least one interval finishes

also at j, since the entries in the sum of the columns in F are the same as the entries in the sum

of the columns in E. This is a contradiction, by (ii). The argument is entirely similar if [i, j] is an

interval in F . Thus we have an arrow leading from ([i, j], P ) to another vertex.

But now we can start at ([i, j], P ), find an edge ([i, j], P ) −→ ([i1, j1], P1), and repeat the

process. But as we have assumed that G contains no cycles, we never repeat a vertex in this chain,

a contradiction as S is finite.

We conclude G contains at least one cycle. Let V ′ ⊆ V be the set of vertices in a minimal cycle

in G, and G′ the corresponding full subgraph. By minimality the graph G′ must merely be a cycle

on its vertices; there can be no arrows other than those in the cycle. Let E′ := {c ∈E : (c,E) ∈ V ′}

and let F ′ := {c ∈F : (c, F ) ∈ V ′}.
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We now show that the lemma is true for the pair E′, F ′. For, suppose that [i, j] and [i, j′] both

occurred in E′ (with j, j′ distinct). Then since G′ is just a cycle, there must be a unique ([a, b], P )

in V ′ such that ([a, b], P ) −→ ([i, j], E). But if P = E, then by definition of edges, b = i − 1

and ([a, b], E) −→ ([i, j′], E) is also an edge, a contradiction to the structure of G′. Similarly, if

P = F , then by the definition of edges, a = i, and we also have the edge ([a, b], F ) −→ ([i, j′], E),

a contradiction to the structure of G′.

Suppose next that [i, j] and [i′, j] both occurred in E′ (j and j′ distinct). Let ([a, b], P ) be a

vertex in V ′ so that ([i, j], E) −→ ([a, b], P ) is an edge. If P = E, then a = j +1 and ([i′, j], E) −→

([a, b], E) is also an edge. If P = F , then b = j and ([i′, j], E) −→ ([a, b], F ) is also an edge. In

both cases we get a contradiction to the structure of G′.

The arguments for the corresponding cases in F ′ are very similar. Next suppose that [i, j] is

an interval in E′ and [j + 1, k] is an interval in F ′. Let ([a, b], P ) be a vertex in V ′ such that

([j + 1, k], F ) −→ ([a, b], P ). If P = E we must have j + 1 = a and thus ([i, j], E) −→ ([a, b], E) is

an edge. If P = F we must have b = j and thus ([i, j], E) −→ ([a, b], F ) is an edge. In both cases

we get a contradiction to the structure of G′.

Finally, suppose that [i, j] is an interval in F ′ and [j + 1, k] is an interval in E′. Let ([a, b], P )

be a vertex in V ′ such that ([a, b], P ) −→ ([j + 1, k], E). If P = E then we have b = j and thus

([a, b], E) −→ ([i, j], F ) is an edge. If P = F then we have a = j+1 and thus ([a, b], F ) −→ ([i, j], F )

is an edge. In both cases we get a contradiction to the structure of G′.

Next, the sum of the intervals in E′ is equal to the sum of the intervals in F ′. To see this,

consider an edge ([i, j], E) −→ ([j + 1, k], E) in G′. We can replace this by a vertex ([i, k], E) (i.e.

replace the vertices ([i, j], E) and ([j + 1, k], E) by ([i, j]), E) and replace the edge coming into

([i, j], E) with one going into ([i, k], E) from the same vertex and similarly replace the edge going

out of ([j + 1, k], E) with an edge going out of ([i, k], E) and ending at the same vertex. We do this

for each edge which is between two vertices of the form (c,E). We do exactly the same thing with

edges in G′ between vertices both of the form (c, F ). Overall, we have just redrawn the graph with
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the same rules and the new reduced set of vertices. We are left with edges of type (c) and (d) only.

Call the reduced sets of vertices V1 and V2. We still have a cycle. Thus if ([i, j], E) is now a vertex

in V1 there is in fact a unique vertex ([i, s], F ) in V2 and a unique vertex ([t, j], F ) in V2 (for some s

and t). It is possible that s = j and t = i, in the case when V1 = {([i, j], E)} and V2 = {([i, j], F )}.

It is now clear that the sum of the intervals in V1 is the sum of the intervals in V2: whenever an

interval in V1 starts, a unique interval in V2 starts, and vice versa, and whenever an interval in V1

finishes, a unique interval in V2 finishes, and vice versa. But the sum of the intervals in V1 is the

sum of the intervals in E′ and the sum of the intervals in V2 is the sum of the intervals in F ′, by

construction. By (∗), we conclude that E′ = E and F ′ = F . We have thus proved the lemma, since

we know it already holds for E′ and F ′. �

We now finish the proof of the proposition. We construct a permutation π in Sk as follows. If

[i, j] is an interval in E (= E′), we define π(i) to be j + 1. If [i, j] is an interval in F (= F ′), we

define π(j + 1) to be i. For other i we define π(i) = i. The lemma is exactly what is needed to

ensure π is a well defined permutation. The proof of the lemma (the structure of the graph G′ = G)

shows that in fact π is a cycle. It is clear by construction that E and F arise from π in the same

way as in the statement of the proposition.

We next show that if π is any cycle in Sk and E and F are the corresponding sets of intervals

as defined in the statement of the proposition, then the sum of the intervals in E is equal to the

sum of the intervals in F . Let l be the order of π ∈ Sk. Fix j ∈ {1, 2, . . . , k − 1}. We must check

that

|i : i <= j ≤ π(i) − 1| = |i : π(i) <= j ≤ i − 1|. (5)

The left hand side is the jth entry in the column sum from E, and the right hand side is the jth

entry in the column sum from F . Firstly note the following:

i <= j ≤ π(i) − 1 ⇔ i ≤ j +
1

2
≤ π(i), and

π(i) <= j ≤ i − 1 ⇔ π(i) ≤ j +
1

2
≤ i,

since j and π(i) are integers. Next, we draw a graph of π. A point is marked on the graph at

(t, πt(1)), for t = 0, 1, . . . , l. For t = 0, 1, . . . , l−1, a line is drawn from (t, πt(1)) to (t+1, πt+1(1)).
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Now the line y = j + 1
2 is drawn on the graph. Since j + 1

2 is never an integer, the left hand side

in (5) is the number of passes up through this line the graph makes, and the right hand side is the

number of down passes. (Note that the graph has no turning points on the line y = j + 1
2). It is

clear that these two numbers are equal. For example, take the case π = (13524), j = 2 and k = 5.

The graph of π is as in Figure 4.
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Figure 4

We see that the graph of π passes up through the line y = 21
2 exactly twice, and down also

exactly twice.

Thus, given a cycle in Sk we have two sets of intervals with the same sum, E and F . From the

construction of E and F , it is clear that the graph in the lemma for this pair must already be a

cycle (since π is a cycle). Suppose we had φ 6= E′ ⊆ E and φ 6= F ′ ⊆ F satisfying (∗) such that

the sum of the intervals in E was the same as the sum of the intervals in F . Then we could apply

the lemma, and from its proof conclude that the corresponding graph (for E′ and F ′) was a cycle.

But the graph for E and F is already a cycle, so we must have E = E′ and F = F ′.

So, given a cycle in Sk we have a pair E and F with equal sums satisfying (∗), and conversely.

It is clear by construction that these two operations are inverse to each other, so the proposition is

proved. �
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Example

We take k = 5 and the cycle (13524). Basically the graph of this cycle above shows us what is

happening. We have E = {[1, 2], [3, 4], [2, 3]} and F = {[2, 4], [1, 3]}, and the graph in the lemma

consists of the cycle

([1, 2], E) −→ ([3, 4], E) −→ ([2, 4], F ) −→ ([2, 3], E) −→ ([1, 3], F ) −→ ([1, 2], E).

Corollary 7.6 The vectors, provided by Lemma 5.1, whose nonnegative rational span is P+
i , can

all be taken to be of the form x = (x1, x2, . . . xk(k−1)) with each xj ∈ {0, 1}, where the set of columns

of Ai corresponding to the non-zero xj correspond to a cycle in Sk as in Proposition 7.4.

Remark: It seems reasonable to suggest that every vector corresponding to a cycle is an extreme

homogeneous solution. The remarks after Lemma 5.1 show that this is true for k = 2, 3, and a

calculation shows it to be true also for k = 4. Of course, if we are searching for a set of vectors

whose nonnegative rational span is P+
i , we can include all of the vectors corresponding to cycles in

Sk as in Proposition 7.4 (and possibly have some redundant vectors).
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[2] N. Bourbaki. Groupes et algèbres de Lie, Chapitres 4,5 et 6. Masson, Paris, 1981.

[3] R. W. Cottle, G. J. Habetler, and C. E. Lemke. On classes of copositive matrices. Linear

Algebra Appl., 3:295–310, 1970.

26



[4] CREP, Version 1.1. Bielefeld University, Germany.

[5] C. W. Curtis and I. Reiner. Methods of Representation Theory with Applications to Finite

Groups and Orders, volume II. Wiley, New York, 1987.

[6] V. G. Drinfel’d. Hopf algebras and the Yang–Baxter equation. Soviet Math. Dokl., 32:254–258,

1985.

[7] M. Jimbo. A q-difference analogue of U(g) and the Yang–Baxter equation. Lett. Math. Phys.,

10:63–69, 1985.

[8] M. Kashiwara. On crystal bases of the q-analogue of universal enveloping algebras. Duke Math.

J., 63(2):465–516, 1991.

[9] G. Lusztig. Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc.,

3:447–498, 1990.

[10] G. Lusztig. Introduction to Quantum Groups. Birkhäuser, Boston, 1993.
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