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Abstract. We compute the Euler characteristics of the individual connected components

of the intersection of two opposed big cells in the real flag variety of type G2, verifying a

conjecture from [6].

1. Introduction

Let G be a connected linear algebraic group. Any flag variety (homogeneous projective

variety G/B) has a myriad of cell decompositions, so–called ‘Bruhat decompositions’. For

every Borel subgroup there is precisely one, and the cells in the decomposition are simply

the orbits under this group. Furthermore there is always a unique open dense orbit called

the ‘big cell’. In the present paper we fix two Borel subgroups opposite to one another

and study the intersection of the two resulting big cells. More precisely we are interested

in the real points of this variety, in the case where everything is split over R. We let

B∗ denote the real points of the intersection of two opposed big cells, endowed with the

Hausdorff topology coming from R. There has been some recent work on determining the

number of connected components and the Euler characteristics of these varieties B∗, see

e.g. [6, 5], and for the type A case [7, 8]. In particular it was open for a long time whether

the connected components are always contractible. This has proved not to be the case.

The first example is in type G2 found in [6] (but it is also false in type A for rank > 4

as follows from the explicit formula for the number of connected components in [8] and a
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computation of the Euler characteristics e.g. using [6]). Therefore to the graph defined in

[6] describing the connected components of B∗ one can in principle add another nontrivial

datum. That is, every connected component of the graph has an integer associated to

it given simply by the Euler characteristic of the corresponding connected component of

B∗. Lusztig showed in [4] that the graphs arising in this setting are ‘mod 2’ quotients of

the graphs parameterizing the canonical basis of the corresponding quantum enveloping

algebra U−. Therefore by taking the Euler characteristics one is assigning in a natural

way an integer to every canonical basis element. No direct canonical basis interpretation

of these integers is known. Moreover they have not up to now been computed in any

nontrivial examples. We focus our attention here on the G2 case. In Figure 2 we have

reproduced the parameterization [6] of the connected components of B∗ in type G2. There

are 11 connected components, and one was conjectured to have Euler characteristic 2 (the

last one), while the others should have Euler characteristic 1. By an independent method

the total Euler characteristic of B∗ was worked out in [6] as 12. The aim of this paper is to

compute the individual Euler characteristics of the connected components of B∗ to verify

the above conjecture. We use two main tools. The first one is a cell decomposition of B∗ due

to Deodhar [2], which is recalled in the next section. The second ingredient is Berenstein

and Zelevinsky’s Chamber Ansatz, explained in Section 3, which we require to be able to

tell which connected component each of the various cells of Deodhar’s decomposition lie

in. The resulting decompositions for the connected components are indicated in Figure 6.

The Euler characteristics are the expected ones as can be read off from that figure.

2. Decomposition of B∗

2.1. Preliminaries. We begin by introducing some notation and standard facts as can be

found e.g. in [9]. Let GC be a complex simple linear algebraic group. After this general

section we will choose it specifically as the one of type G2. In any case we always focus on

its split real form GR = G. All the varieties in this paper will be defined over R, and we

identify them with their R–valued points. The topology we consider is the usual Hausdorff
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topology coming from R (rather than Zariski topology). We write R
∗ for R \ {0}. Let B

denote the (real) flag variety of G. The elements of B are the Borel subgroups of G. We

sometimes write [B] for the Borel subgroup B considered as a point in the flag variety. The

transitive action of G on B is denoted by g · [B] := [gBg−1]. Let T ⊂ G be a fixed split

maximal torus, and B+ a fixed Borel subgroup which contains T . We also automatically

have given the opposite Borel subgroup B− (such that B+ ∩ B− = T ) and the unipotent

radicals U+ and U− of these two Borel subgroups. Let X∗(T ) and X∗(T ) be the character,

respectively cocharacter lattices of T with their canonical perfect pairing

〈 , 〉 : X∗(T )×X∗(T )→ Z.

Let A = (Aij) be the Cartan matrix of G. We denote the positive simple roots (correspond-

ing to B+) by α1, . . . , αr ∈ X∗(T ). We will write α > 0 if α ∈ X∗(T ) is a positive root,

i.e. a nonnegative linear combination of the simple roots. We also have the simple coroots

α∨
1 , . . . , α∨

r ∈ X∗(T ) which are determined by 〈α∨
i , αj〉 = Aij . We will make extensive use of

the 1–parameter simple root subgroups: Let us fix for i = 1, . . . , r, Chevalley generators ei

and fi ∈ Lie(G) of the (real) Lie algebra, with the ei’s lying in positive simple root spaces.

Then we define

xi : R→ B+, xi(t) := exp(tei),

yi : R→ B−, yi(t) := exp(tfi).

The Weyl group NG(T )/T of G is denoted W and is generated by the usual simple reflections

s1, . . . , sr (r being the rank of G). We fix a representative ṡi ∈ G for the Weyl group element

si by defining ṡi := xi(1)yi(−1)xi(1). For any other w ∈ W choose a reduced (minimal

number of factors) expression w = si1 . . . sik and set ẇ := ṡi1 . . . ṡik to get a representative.

It is well known that this definition of ẇ is independent of the reduced expression. Note

that xi(t) ∈ U+ ∩B−ṡiB
− and yi(t) ∈ U− ∩ B+ṡiB

+, whenever t 6= 0. Explicitly,

xi(t) = yi(t
−1) ṡiα

∨
i (−t) yi(t

−1),

yi(t) = xi(t
−1) α∨

i (−t)ṡi xi(t
−1).
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The Weyl group acts on T and hence naturally also on X∗(T ) and X∗(T ). The length of

(a reduced expression of) an element w ∈W is denoted ℓ(w). We also consider the Bruhat

order < on W . The statement wsi < w is equivalent to w · αi < 0, that w sends αi to a

negative root. There is a unique longest element of W which is called w0. We propose to

study the open subvariety of the flag variety

B∗ := B+ẇ0 · [B
+] ∩ B−ẇ0 · [B

−] ⊂ B,

in other words the intersection of the two big cells for the Bruhat decompositions relative

to B−, respectively B+. Note that B∗ is an affine variety and can be identified naturally

with open subvarieties both of U+ and of U−. We have two isomorphisms

(2.1)

B∗

i+ ր տ i−

U+ ∩ (B−ẇ0B
−) U− ∩ (B+ẇ0B

+),

where i+ takes u ∈ U+ to u · [B−] while the right hand map i− takes u ∈ U− to u · [B+].

2.2. Deodhar’s decomposition of B∗. We begin by making the following definition (see

[3, Appendix]).

Definition 2.1. (relative position in B) Let w ∈ W and consider the action of G on

B × B by simultaneous conjugation. We say that two Borel subgroups B, B′ ∈ B are in

relative position w if the pair (B, B′) lies in the G–orbit of (B+, ẇ · B+). From Bruhat

decomposition it follows that such w is unique and exists for any pair (B, B′). We write

B
w
−→ B′.

If B
w
−→ B′ and w = si1 . . . sin is a reduced expression, then it also follows from Bruhat

decomposition that there exist uniquely determined Borel subgroups B0, B1, . . . , Bn = B′

such that

B = B0

si1−→ B1

si2−→ B2 −→ · · · −→ Bn−1
sin−→ Bn = B′
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Explicitly, B
w
−→ B′ means B = g ·B+ and B′ = gẇ ·B+ for some g ∈ G. The Bj ’s are then

given by Bj = gṡi1 . . . ṡij · B
+. Using the above notation, we have B∗ = {B ∈ B | B+ w0−→

B
w0←− B−}. The following definition is a special case of [2, Definition 2.3].

Definition 2.2 (distinguished subexpressions for 1). Let si1 . . . sin = w ∈W be a reduced

expression for w (so n = ℓ(w)). Then by a subexpression in this reduced expression we

mean a sequence of Weyl group elements σ = (σ0, σ1, . . . , σn) such that

σ0 = 1, σj =





either σj−1sij

or σj−1,
for all j = 1, . . . n.

In particular the “empty” subexpression σ = (1, . . . , 1) is allowed. We call σ a subexpression

for 1 if σn = 1. A subexpression is called distinguished if we have

σj ≤ σj−1 sij , for all j ∈ {1, . . . , n}.

This means that if right multiplication by sij decreases the length of σj−1, then we must

choose σj = σj−1sij to get a distinguished subexpression.

The following result is stated by Deodhar over an algebraically closed field, but it extends

trivially to any split form, so we state it here in our present setting over the reals.

Theorem 2.3 ([2]). Let si1 . . . siN be a fixed reduced expression for w0.

(1) Suppose B = xẇ0 · B
+ is an element of B∗, where x ∈ B+. Then the sequence

(σ0, . . . , σN ) =: σ(B) defined by

xsi1 . . . sik ∈ B−σkB
+

is a well–defined distinguished subexpression for 1 (in si1 . . . siN ).

(2) Let σ be a distinguished subexpression for 1 in si1si2 · · · siN , and let Dσ := {B ∈

B∗ | σ(B) = σ}. Then

Dσ
∼= (R∗)|I(σ)| × R

|K(σ)|, where I(σ) = {j ∈ {1, . . . , N} | σj = σj−1},

and K(σ) = {j ∈ {1, . . . , N} | σj < σj−1}.
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If σ = (1, si1, si1si2, . . . , si1si2 · · · siN ), then we denote Dσ by Di. An isomorphism as in

part (2) of the theorem (albeit not identical to the one in [2]) will be constructed explicitly

below. We continue to fix the reduced expression si1 . . . siN for w0 in what follows.

Remark 2.4. The definition of Dσ is natural to state using relative position. Suppose

B ∈ B∗, and B1, . . . , BN are defined by

B+ si1−→ B1

si2−→ B2 −→ · · · −→ BN−1

siN−→ BN = B,

that is, B = xẇ0 · B
+ for some x ∈ B+, and Bj = xṡi1 · · · ṡij · B

+ for all j. Then B ∈ Dσ

precisely if B− w0σj

−→ Bj for all j, i.e. xṡi1 · · · ṡij ∈ B−σ̇jB
+ for all j. So the σ controls the

relative positions of the intermediate Bi’s with respect to B−.

2.3. Inductive construction. Let σ be a fixed distinguished subexpression for 1 in

si1 . . . siN . We now want to describe D−
σ ⊂ U− ∩ B+w0B

+, the preimage of Dσ under

the isomorphism i− in (2.1). We will do this by building up the elements B ∈ Dσ from

the Bj’s defined in the previous remark. To begin with note that if Bj−1 = g · B+, then

Bj−1

sij

−→ Bj just says that Bj = gxij(t)ṡij · B
+ for some t ∈ R, or equivalently

Bj =






either gyij(t) · B
+ some t ∈ R

∗,

or gṡij · B
+.

Let us first determine the possible B1’s. There are two cases.

• If σ1 = 1, then we have B+
si1−→ B1

w0←− B−. Therefore B1 = yi1(t) · B
+ for some

t ∈ R
∗.

• If on the other hand σ1 = si1 then B+
si1−→ B1

w0si1←− B− and we get B1 = ṡi1 ·B
+.

Suppose in general we have Bj−1 = g · B+ given, where g = yσ̇j−1 for some y ∈ U−. We

then want to construct all possible Bj = g′ ·B+ from this Bj−1. There are three cases.
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(1) Suppose first that σj = σj−1. Then we have the setting

B− w0σj

−→ Bj−1

w0σj
ց ւsij

Bj

So if Bj−1 = g·B+ where g = yσ̇j−1, then it is easy to rule out gṡij ·B
+ for Bj and the

only possible solutions are of the form Bj = gyij(t) ·B
+ for some t ∈ R

∗. Note that

w0σjsij < w0σj (since σ is distinguished). We claim that therefore Bj = gyij(t) ·B
+

has the correct relative positions for any t ∈ R
∗ and in fact g′ := gyij(t) ∈ U−σ̇j .

All of this follows since we have σj−1 · αij > 0 and therefore

gyij(t) = yσ̇j−1yij(t) = yσ̇j−1yij(t)σ̇
−1
j−1σ̇j ∈ U−σ̇j ,

using σ̇j−1 = σ̇j .

(2) Suppose next that σj > σj−1. Then

B− w0σj−1
−→ Bj−1

w0σj
ց րsij

Bj

and since the lengths add, ℓ(w0σj) + ℓ(sij ) = ℓ(w0σj−1), we get that Bj is uniquely

determined by Bj−1 and equals to gṡij ·B
+. We immediately have that g′ := gṡij ∈

U−σ̇j .

(3) Finally we have the case σj < σj−1. In this case the other two lengths add,

ℓ(w0σj−1) + ℓ(sij) = ℓ(w0σj), and the diagram

B− w0σj−1
−→ Bj−1

w0σj
ց ւsij

Bj

is automatically satisfied for any Bj in position sij relative to Bj−1. Therefore

we can take Bj = gxij(m)ṡij · B
+ for any m ∈ R. We claim that in this case

g′ := gxij(m)ṡ−1
ij
∈ U−σ̇j . This holds because we have σj−1 · αij < 0. Therefore
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σ̇j−1xij (t)σ̇
−1
j−1 ∈ U− and

gxij(m)ṡ−1
ij

= yσ̇j−1xij (m)ṡ−1
ij

= yσ̇j−1xij (m)σ̇−1
j−1σ̇j ∈ U−σ̇j .

Applying this procedure recursively to express finally BN we get the following proposition

(and we also recover Deodhar’s result Theorem 2.3).

Proposition 2.5. For w0 = si1 . . . siN a fixed reduced expression, and σ a distinguished

subexpression for 1 let

I(σ) = {j : 1 ≤ j ≤ N and σj−1 = σj},

J(σ) = {j : 1 ≤ j ≤ N and σj−1 < σj},

K(σ) = {j : 1 ≤ j ≤ N and σj−1 > σj}.

Then we have explicitly

D−
σ =






z1z2 . . . zN

∣∣∣∣∣∣∣∣∣∣

zj =






yij (tj) if j ∈ I(σ)

ṡij if j ∈ J(σ)

xij (mj)ṡ
−1
ij

if j ∈ K(σ)

, where mj ∈ R, tj ∈ R
∗






.

Proof. By the inductive construction in 2.3 above we showed that any B ∈ Dσ is of the

form z ·B+ for z = z1 . . . zN as in the proposition (and that these z ·B’s all lie in Dσ). We

also showed that z1 . . . zk ∈ U−σ̇k for all k, so in particular z1 . . . zN ∈ U−, since σN = 1.

Therefore D−
σ is precisely the set of these z = z1 . . . zN . �

Remark 2.6. Note that the map

(R∗)I(σ) ×R
K(σ) → D−

σ

arising from the proposition is an isomorphism, with inverse basically constructed in 2.3.
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2.4. Further refinement. Over R it is natural to consider the connected components of

the Dσ’s to get a cell decomposition. Let h : I(σ) → {1,−1} be a choice of signs for the

elements of I(σ). Then we define

D−
σ (h) =





z1z2 . . . zN

∣∣∣∣∣∣∣∣∣∣

zj =





yij (tj) with h(j)tj ∈ R>0 if j ∈ I(σ),

ṡij if j ∈ J(σ),

xij (mj)ṡ
−1
ij

with mj ∈ R if j ∈ K(σ).





.

D−
σ (h) is a (real) semi–algebraic cell in U− ∩ B+ẇ0B

+ of dimension |I(σ)| + |K(σ)|. Its

image i−(D−
σ (h)) in B∗ is denoted Dσ(h).

3. Type G2

From now on let G be of type G2. Then the Cartan matrix A = (Aij) for type G2 is given

by

A =


 2 −3

−1 2


 .

The Weyl group W has two generators s1, s2 corresponding to reflection by the short root

α1 and the long root α2, respectively (see Figure 3). The fundamental weights are ω1 = ε1,

giving rise to a 7–dimensional representation, and ω2 = 2ε1 + ε2, the highest weight of the

14–dimensional adjoint representation. The longest element is

w0 = s1s2s1s2s1s2 = s2s1s2s1s2s1.

We let i = (1, 2, 1, 2, 1, 2) and ĩ = (2, 1, 2, 1, 2, 1) stand for these two reduced expressions

of w0. To give Deodhar’s decomposition of B∗ in this case we first need to fix a reduced

expression of w0, so let us pick i = (1, 2, 1, 2, 1, 2). Let Σi denote the set of all of the

distinguished subexpressions for 1 in i. We list the elements of Σi in Table I, together with

our notation for them.

Table I. Notation for distinguished subexpressions for 1 in s1s2s1s2s1s2.
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ε2 α1

ε1

ε1 ε22 +

α2

ε3

Figure 1. G2 root system

Notation Distinguished subexpression

xxxxxx (1, 1, 1, 1, 1, 1, 1)

xxx2x2 (1, 1, 1, 1, s2, s2, 1)

1x1xxx (1, s1, s1, 1, 1, 1, 1)

1x12x2 (1, s1, s1, 1, s2, s2, 1)

x2x2xx (1, 1, s2, s2, 1, 1, 1)

12x21x (1, s1, s1s2, s1s2, s1, 1, 1)

xx1x1x (1, 1, 1, s1, s1, 1, 1)

x21x12 (1, 1, s2, s2s1, s2s1, s2, 1)
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Furthermore, define

yxxxxxx(t1, . . . , t6) := yi(t1, . . . , t6) := y1(t1)y2(t2)y1(t3)y2(t4)y1(t5)y2(t6)

y1x1xxx(t1, m1, t2, t3, t4) := ṡ1y2(t1)x1(m1)ṡ
−1
1 y2(t2)y1(t3)y2(t4)

yx2x2xx(t1, t2, m1, t3, t4) := y1(t1)ṡ2y1(t2)x2(m1)ṡ
−1
2 y1(t3)y2(t4)

yxx1x1x(t1, t2, t3, m1, t4) := y1(t1)y2(t2)ṡ1y2(t3)x1(m1)ṡ
−1
1 y2(t4)

yxxx2x2(t1, t2, t3, t4, m1) := y1(t)y2(t2)y1(t3)ṡ2y1(t4)x2(m1)ṡ
−1
2

y1x12x2(t1, m1, t2, m2) := ṡ1y2(t1)x1(m1)ṡ
−1
1 ṡ2y1(t2)x2(m2)ṡ

−1
2

y12x21x(t1, m1, m2, t2) := ṡ1ṡ2y1(t1)x2(m1)ṡ
−1
2 x1(m2)ṡ

−1
1 y2(t2)

yx21x12(t1, t2, m1, m2) := y1(t1)ṡ2ṡ1y2(t2)x1(m1)ṡ
−1
1 x2(m2)ṡ

−1
2 .

By Proposition 2.5 we have

D−
i := D−

xxxxxx = {yi(t1, t2, t3, t4, t5, t6) | t1, . . . , t6 ∈ R
∗}

D−
1x1xxx = {y1x1xxx(t1, m1, t2, t3, t4) | t1, . . . , t4 ∈ R

∗, m1 ∈ R}

...

D−
x21x12 = {yx21x12(t1, t2, m1, m2) | t1, t2 ∈ R

∗, m1, m2 ∈ R},

with the property that

U− ∩B+ẇ0B
+ =

⊔

σ∈Σi

D−
σ .

From these we also get the D−
σ (h)’s and Dσ(h)’s defined in 2.4, where h : I(σ) → {1,−1}

determines the signs of the ti ∈ R
∗.

4. Parameterization of the connected components of B∗ : using the

opposite reduced expression

We recall the parameterization of the set of connected components of B∗ from [6]. Consider

the open subset Di =
⊔

h:{1,...,6}→{±1} Di(h) of B∗ from above. Explicitly,

Di(h) =
{
yi(t1, . . . , t6) · [B

+] = y1(t1)y2(t2) . . . y1(t5)y2(t6) · [B
+] | h(i)ti ∈ R>0

}
.
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We also have analogs of these for ĩ = (2, 1, 2, 1, 2, 1),

Dei
(h) :=

{
yei

(t1, . . . , t6) · [B
+] := y2(t1) . . . y1(t6) · [B

+] | h(i)ti ∈ R>0

}

Dei
:=

⊔

h:{1,...,6}→{±1}

Dei
(h).

It was proved in [6] that the union D∗ := Di∪Dei
has complement of codimension ≥ 2 in B∗.

Hence the connected components of B∗ correspond bijectively to the connected components

of D∗, because B∗ is smooth. These were determined by checking which of the Dei
(h′)’s

overlap with which Di(h)’s. Figure 2 adapted from [6] shows which Di(h)’s and Dei
(h′)’s

lie in the same connected component, and these components are numbered for later use.

The sequences of signs in the figure stand for the values of h : {1, . . . , 6} → {±1}, and the

columns indicate whether Di(h) or Dei
(h) is meant. So for example the sequence of signs in

the third row first column stands for Di((1, 1,−1, 1,−1, 1)), and the figure says that this

cell lies in connected component 5.

5. Berenstein–Zelevinsky’s generalized chamber Ansatz for G2

We wish to determine which connected component of B∗ each Dσ(h) lies in. We shall do this

by proving that each Dσ(h) actually intersects one of the cells Dei
(h′) (for some choice h′ of

signs) listed in the previous section. It then follows that Dσ(h) lies in the same connected

component as this cell. In order to show that an element y ∈ D−
σ also lies in one of the cells

D−
ei

(h′), we need to show that y can be expressed in the form

y = yei
(a1, . . . , a6) = y2(a1)y1(a2)y2(a3)y1(a4)y2(a5)y1(a6) for some non–zero real numbers

a1, a2, a3, a4, a5, a6 ∈ R
∗ with signs h′(1), h′(2), h′(3), h′(4), h′(5), h′(6). We can then

deduce which connected component Dσ(h) lies in. There already exists in the literature

a beautiful method for determining a1, a2, a3, a4, a5, a6, should they exist — this is the

Chamber Ansatz of Berenstein, Fomin and Zelevinsky; we therefore employ this method.

There is a natural map ε : U+∩B−ẇ0B
− → U−∩B+ẇ0B

+, given explicitly by ε = i−1
− ◦ i+
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Di(h) Dei
(h) Di(h) Dei

(h)

1 + + + + + + + + + + ++ −−−−−− −−−−−− 2

3 +−+−+− −+−+−+ −+−+−+ +−+−+− 4

5

+ +−+−+ +−+−++

−−+ +−+ +−+ +−−

−+−−−+ +−−−+−

−−−−++ + +−−−−

−+−+ +− −+ +−+−

−−−+−− −−+−−−

−+ +−−− −−−+ +−

+−−−−− −−−−−+

−−+−+− −+−+−−

+ +−−+− −+−−++

+−+ + +− −+ + +−+

+ + + +−− −−+ + ++

+−+−−+ +−−+−+

+ + +−++ + +−+ ++

+−−+ ++ + + +−−+

−+ + + ++ + + + + +−

6

7

+−+−++ + +−+−+

+−+ +−− −−+ +−+

+−−−+− −+−−−+

+ +−−−− −−−−++

−+ +−+− −+−+ +−

−−+−−− −−−+−−

−−−+ +− −+ +−−−

−−−−−+ +−−−−−

−+−+−− −−+−+−

−+−−++ + +−−+−

−+ + +−+ +−+ + +−

−−+ + ++ + + + +−−

+−−+−+ +−+−−+

+ +−+ ++ + + +−++

+ + +−−+ +−−+ ++

+ + + + +− −+ + + ++

8

9

−+−+ ++ + + + +−+

+−−+ +− + +−+−−

−+ + + +− + +−−++

−−−+−+ +−+ + ++

+−+−−− −−−−+−

−+ +−−+ −−+−++

+−−−−+ −−+ +−−

+ + +−+− −+−−−−

10

+ + + +−+ −+−+ ++

+ +−+−− +−−+ +−

+ +−−++ −+ + + +−

+−+ + ++ −−−+−+

−−−−+− +−+−−−

−−+−++ −+ +−−+

−−+ +−− +−−−−+

−+−−−− + + +−+−

11

−−−+ ++ + + +−−−

−+ +−++ + +−+ +−

+−−−++ + +−−−+

+−+ +−+ +−+ +−+

+ + +−−− −−−+ ++

+−−+−− −−+−−+

−+ + +−− −−+ + +−

−+−−+− −+−−+−
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(see 2.1); similarly we define α : U− ∩ B+wB+ → U+ ∩ B−w−1B− to be α = i−1
+ ◦ i−, the

inverse of ε.

U+ ∩ B−ẇ0B
− −→

ε
U− ∩B+ẇ0B

+

U+ ∩ B−ẇ0B
− ←−

α
U− ∩B+ẇ0B

+

Let y ∈ U− ∩ B+ẇ0B
+. Then Theorem 1.4 in [1] can be used to calculate α(y) ∈ U+ ∩

B−ẇ0B
− as an element of the form

x = xei
(a, b, c, d, e, f) := x2(a)x1(b)x2(c)x1(d)x2(e)x1(f).

A second application of this Theorem can be used to calculate y = ε(x) ∈ U− ∩ B+ẇ0B
+

as an element of the form yei
(a′, b′, c′, d′, e′, f ′). If the minors in the Chamber Ansatz do

not vanish, then we have found a′, b′, c′, d′, e′, f ′ ∈ R
∗ such that y = yei

(a′, b′, c′, d′, e′, f ′)

as required. We shall therefore need a description of the Chamber Ansatz in type G2. If

w ∈ W and i = 1, 2, then Berenstein and Zelevinsky define wωi to be a chamber weight

of level i, and define a corresponding ‘generalised minor’ ∆wωi, which is a function on G.

These minors reduce to usual minors of a matrix in type A. The generalised minors can be

described (using section 6 of [1]) in the following way. Let g ∈ G, w ∈W , and ω a dominant

weight. Then there is a module Vω for G of highest weight ω. Fix a vector vω ∈ Vω of

highest weight ω, fix a reduced expression w = sj1sj2 · · · sjl
for w, and for k = 1, . . . , l set

bk =
〈
α∨

jk
, sjk−1

· · · sj1ω
〉
. Then

vwω := f
(bl)
jl

f
(b(l−1))

jl−1
· · · f

(b1)
j1

vω

is an extremal weight vector of weight wω. Then ∆wω(g) is defined to be the coefficient of

vω in g · vwω. Note that ∆wω is determined by the vector wω. We have:

Theorem 5.1. (Berenstein and Zelevinsky) Let x ∈ U+ ∩ B−ẇ0B
−, and suppose that

j = (j1, . . . , jN) is a reduced expression for w0. Then

ε(x) = y = yj1(a1)yj2(a2) · · · yjN
(aN),

where a1, a2, . . . , aN are given by:

ak =
1

∆wkωjk (x)∆wk−1ωjk (x)

∏

j 6=jk

∆wkωj (x)−Aj,jk ,
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where wk = sj1sj2 · · · sjk
.

If we are in the situation of the Theorem, we write εj(x) = (a1, a2, . . . , aN). Again using [1,

Theorem 1.4], we can describe α using the Chamber Ansatz. Define ∆−wω
− (g) to be the

coefficient of v−ω in g · v−wω, where v−wω is the extremal weight vector of weight −wω as

defined above.

Theorem 5.2. (Berenstein and Zelevinsky) Let y ∈ U− ∩ B+ẇ0B
+, and suppose that

j = (j1, . . . , jN) is a reduced expression for w0. Then

α(y) = x = xj1(a1)xj2(a2) · · ·xjN
(aN),

where a1, a2, . . . , aN are given by:

ak =
1

∆
−wkωjk

− (y)∆
−wk−1ωjk

− (y)

∏

j 6=jk

∆
−wkωj

− (y)−Aj,jk ,

where wk = sj1sj2 · · · sjk
.

If we are in the situation of this Theorem, we write αj(x) = (a1, a2, . . . , aN). We can use

a wiring diagram to describe these maps in type G2, much as in type A. Recall that our

two reduced expressions of w0 are i = (1, 2, 1, 2, 1, 2) and ĩ = (2, 1, 2, 1, 2, 1). We begin

by calculating ε212121 = ε
ei; this can be done using the Chamber Ansatz in Figure 3. The

chambers in the first row of the diagram are labelled, from left to right, with the weights

ω2, s2ω2, s2s1s2ω2, and s2s1s2s1s2ω2, and the chambers in the second row of the diagram

are labelled ω1, s2s1ω1, s2s1s2s1ω1 and s2s1s2s1s2s1ω1 (these are the weights appearing in

Theorem 5.1). If X is a chamber in Figure 3, we write ∆X = ∆x, where x is the vector in

X. Suppose that aj is one of the parameters in Theorem 5.1, and suppose that adjacent to

the jth crossing from the left in Figure 3, chamber A is above, D below, and B and C on

the same horizontal level. Let ∆A, ∆B, ∆C , ∆D be the generalized minors corresponding

to these four chambers (taking the value 1 on unbounded chambers). It is easy to see that

Theorem 5.1 states that:

aj =
∆A(x)∆3

D(x)

∆B(x)∆C(x)
.
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We also need to calculate α
ei = α212121, which can be done using the Chamber Ansatz in

Figure 4. The value of the component at a crossing is calculated as for ε, but using this

second picture.

6. The map i+

Note that our approach to parameterizing B∗ in Section 4 was inherently asymmetric, suited

to the map i− : U− ∩ B+ẇ0B
+ → B∗. That is, the cells Dj(h) came naturally from cells

D−
j (h) defined in U−. We now need to consider another set of cells in B∗ coming from the

isomorphism i+ : U+ ∩B−ẇ0B
− → B∗. Let us define

xei
(a1, . . . , a6) := x2(a1)x1(a2)x2(a3)x1(a4)x2(a5)x1(a6),

D+
ei

(h) := {xei
(a1, . . . , a6) | aih(i) ∈ R>0}.

for any map h : {1, 2, 3, 4, 5, 6} → {±1}. It is clear that two cells D+
ei

(h) and D+
ei

(h′) lie

in the same connected component of U+ ∩ B+ẇ0B
+ precisely if D−

ei
(h) and D−

ei
(h′) lie in

the same component, by symmetry between U+ and U−. Reading off from Figure 2 when

this happens, we obtain the new Figure 5, which groups together all sequences of signs

(determining maps h : {1, 2, 3, 4, 5, 6} → {±1}) such that the corresponding D+
ei

(h)’s lie

in the same connected component of U+ ∩ B−ẇ0B
−. We have labeled these connected

components by letters A–K.

Our aim is now to identify which connected components of U+ ∩ B−ẇ0B
− labeled by A–

K correspond to which components labeled 1–11 of B∗ under the map i+. To do this

2 1 2 1 2 1..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................."1 � "3 "1 � "2 "3 � "2 "3 � "1"1 �"2 "3 �"1
Figure 3. The Chamber Ansatz for ε212121.
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� "1 "2 � "1 "2 � "3 "1 � "3�"1 "2 �"3 "1
Figure 4. The Chamber Ansatz for α212121.

A + + + + ++ −−−−−− B C −+−+−+ +−+−+− D

E

+−+−++

+−+ +−−

+−−−+−

+ +−−−−

−+ +−+−

−−+−−−

−−−+ +−

−−−−−+

−+−+−−

−+−−++

−+ + +−+

−−+ + ++

+−−+−+

+ +−+ ++

+ + +−−+

+ + + + +−

F G

+ +−+−+

−−+ +−+

−+−−−+

−−−−++

−+−+ +−

−−−+−−

−+ +−−−

+−−−−−

−−+−+−

+ +−−+−

+−+ + +−

+ + + +−−

+−+−−+

+ + +−++

+−−+ ++

−+ + + ++

H

I

+ + + +−+ −−−−+−

+ +−+−− −−+−++

+ +−−++ −−+ +−−

+−+ + ++ −+−−−−

J

−+−+ ++ +−+−−−

+−−+ +− −+ +−−+

−+ + + +− +−−−−+

−−−+−+ + + +−+−

K

+ + +−−− −−−+ ++

+ +−+ +− −−+−−+

+ +−−−+ −−+ + +−

+−+ +−+ −+−−+−

+−−+−− −+ +−++

+−−−++ −+ + +−−

Figure 5. The connected components of U+ ∩B−ẇ0B
− in terms of the cells D+

ei
(h).
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we simply need to evaluate the map ε212121 on 11 test points, one from each component of

U+∩B−ẇ0B
−. It suffices to calculate ε212121 on elements x of the form x = xei

(a, b, c, d, e, f).

From the Chamber Ansatz we have

ε(xei
(a, b, c, d, e, f)) = yei

(a′, b′, c′, d′, e′, f ′),

where

a′ =
1

∆ε1−ε3(x)∆ε1−ε2(x)
,

b′ =
∆ε1−ε2(x)

∆ε1(x)∆−ε2(x)
,

c′ =
∆−ε2(x)3

∆ε1−ε2(x)∆ε3−ε2(x)
,

d′ =
∆ε3−ε2(x)

∆−ε2(x)∆ε3(x)
,

e′ =
∆ε3(x)3

∆ε3−ε2(x)∆ε3−ε1(x)
,

f ′ =
∆ε3−ε1(x)

∆ε3(x)∆−ε1(x)
.

By considering the usual action of the Chevalley generators of the Lie algebra in the two

fundamental representations Vω1 and Vω2 of G2, the action of x1(t),x2(t),y1(t),y2(t),ṡ1 and

ṡ2 can be computed explicitly. We list below the relevant matrix coefficients for the element
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x = xei
(a, b, c, d, e, f).

∆ε1(x) = 1,

∆−ε3(x) = f + d + b,

∆−ε2(x) = ed + eb + bc,

∆ε2(x) = f 2ed + f 2eb + f 2bc + 2 bcdf + bcd2,

∆ε3(x) = bcd2e,

∆−ε1(x) = bcd2ef,

∆ε1−ε3(x) = 1,

∆ε1−ε2(x) = e + c + a,

∆ε2−ε3(x) = f 3e + f 3c + f 3a + 3 f 2cd + 3 f 2ad + 3 f 2ab + 3 fd2c + 3 fd2a +

+ 6fabd + 3 fab2 + d3c + d3a + 3 abd2 + 3 ab2d + ab3,

∆ε3−ε2(x) = e2d3c + e2d3a + 3 e2abd2 + 3 e2ab2d + e2ab3 + 3 eab2cd + 2 eab3c

+ ab3c2,

∆ε2−ε1(x) = f 3e2d3c + f 3e2d3a + 3 f 3e2abd2 + 3 f 3e2ab2d + f 3e2ab3 +

+ 3 f 3eab2cd + 2 f 3eab3c + f 3ab3c2 + 3 f 2eab2cd2 + 3 f 2eab3cd+

+ 3 f 2ab3c2d + 3 ab3c2d2f + ab3c2d3,

∆ε3−ε1(x) = ab3c2d3e.

Applying the Chamber Ansatz, we obtain the components a′, b′, c′, d′, e′, f ′:

a′ =
1

e + c + a
,

b′ =
e + c + a

ed + eb + bc
,

c′ =
(ed + eb + bc)3

u (e + c + a)
,
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d′ =
u

bcd2e (ed + eb + bc)
,

e′ =
e2d3c

au
,

f ′ =
ab

def
,

where

u =
(
e2d3c + e2d3a + 3 e2abd2 + 3 e2ab2d + e2ab3 + 3 eab2cd + 2 eab3c + ab3c2

)
.

The next step is to substitute values for a, b, c, d, e, f with specific combinations of signs,

one choice from each component of Figure 5, ensuring that the matrix coefficients in the

Chamber Ansatz do not vanish. It turns out that this can be achieved by setting a =

±1, b = ±2, c = ±3, d = ±5, e = ±7 and f = ±11. For any choice of signs of a, b, c, d, e, f ,

we obtain the signs of a′, b′, c′, d′, e′, f ′, and thus the connected component using Figure 2.

The resulting bijection between connected components of U+ ∩ B−ẇ0B
− and B∗ is shown

below.

(6.1)

A←→ 1 B ←→ 2 C ←→ 3 D ←→ 4

E ←→ 5 F ←→ 6 G←→ 7 H ←→ 8

I ←→ 10 J ←→ 9

K ←→ 11

7. Calculation of the Euler Characteristics

We need to determine which connected components of U− ∩ B+ẇ0B
+ the D−

σ (h) belong

to. If one point in such a D−
σ (h) lies in a particular connected component, then the whole

of it does. So a similar approach to that in the previous section will work. We start with a

general point in D−
σ (h) ⊆ U− ∩ B+ẇ0B

+, apply α to it, to get a point in U+ ∩ B−ẇ0B
−;

we ensure this is of the form x212121(a
′, b′, c′, d′, e′, f ′) for some a′, b′, c′, d′, e′, f ′; then it lies

in one of the components A–K of Figure 5; the bijection (6.1) above will then give us the

connected component of D−
σ (h). Again, not every point in D−

σ need be in the domain of
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α212121 but we can always find one which is. We use the Chamber Ansatz for α212121 as

described above. Our computation is as follows:

The following are the components of α212121 applied to yx21x12(t1, t2, m1, m2) (provided

this is well-defined).

a = −m2
−1,

b =
m2

t1 m2 + m1

,

c =
(t1 m2 + m1 )3

m2 (−m2 t2 + m1
3)

,

d =
−m2 t2 + m1

3

(t1 m2 + m1 ) (t1 m1
2 + t2 )

,

e = −
(t1 m1

2 + t2 )
3

(−m2 t2 + m1
3) t2

2 ,

f =
t2

(t1 m1
2 + t2 ) t1

.

The following are the components of α212121 applied to y12x21x(t1, m1, m2, t2).

a = t2
−1,

b = −m2
−1,

c =
m2

3

3 t1 m2 + m1

,

d =
3 t1 m2 + m1

m2 (2 t1 m2 + m1 )
,

e =
(2 t1 m2 + m1 )3

(3 t1 m2 + m1 ) t1
3 ,

f = −
t1

2 t1 m2 + m1

.
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The following are the components of α212121 applied to y1x12x2(t1, m1, t2, m2).

a = −m2
−1,

b = −
m2

m1 m2 + t2
,

c = −
(m1 m2 + t2 )3

m2 (t1 m2
2 − t2

3)
,

d =
t1 m2

2 − t2
3

(m1 m2 + t2 ) (t1 m2 + m1 t2
2)

,

e =
(t1 m2 + m1 t2

2)
3

(t1 m2
2 − t2

3) t1 t2
3
,

f =
t2

2

t1 m2 + m1 t2
2 .

The following are the components of α212121 applied to yxx1x1x(t1, t2, t3, m1, t4).

a = (t2 + t4 )−1 ,

b =
t2 + t4

t1 t2 −m1 t4 + t4 t1
,

c = −
(t1 t2 −m1 t4 + t4 t1 )3

(t2 + t4 ) t4 (−t2 t3 + t4 m1
3t2 − t4 t3 )

,

d = −
−t2 t3 + t4 m1

3t2 − t4 t3
(t1 t2 m1

2 − t3 ) (t1 t2 −m1 t4 + t4 t1 )
,

e =
(t1 t2 m1

2 − t3 )
3
t4

(−t2 t3 + t4 m1
3t2 − t4 t3 ) t2 t3

2 ,

f = −
t3

(t1 t2 m1
2 − t3 ) t1

.
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The following are the components of α212121 applied to y1x1xxx(t1, m1, t2, t3, t4).

a = (t2 + t4 )−1 ,

b = −
t2 + t4

m1 t2 + m1 t4 − t4 t3
,

c = −
(m1 t2 + m1 t4 − t4 t3 )3

(t2 + t4 ) (t1 t2
2 + 2 t1 t2 t4 + t4

2t1 + t2 t3
3t4

2)
,

d =
t1 t2

2 + 2 t1 t2 t4 + t4
2t1 + t2 t3

3t4
2

(m1 t2 + m1 t4 − t4 t3 ) (t1 t2 + t4 t1 + t2 t3
2t4 m1 )

,

e = −
(t1 t2 + t4 t1 + t2 t3

2t4 m1 )
3

(t1 t2
2 + 2 t1 t2 t4 + t4

2t1 + t2 t3
3t4

2) t1 t2
2t3

3t4
,

f =
t2 t3

2t4
t1 t2 + t4 t1 + t2 t3

2t4 m1

.

The following are the components of α212121 applied to yxxx2x2(t1, t2, t3, t4, m1).

a = − (m1 − t2 )−1 ,

b =
m1 − t2

t1 m1 + m1 t3 − t1 t2 − t4
,

c =
(t1 m1 + m1 t3 − t1 t2 − t4 )3

(m1 − t2 ) (t2 t3
3m1

2 − 3 t2 t3
2t4 m1 + 3 t2 t3 t4

2 − t4
3)

,

d =
t2 t3

3m1
2 − 3 t2 t3

2t4 m1 + 3 t2 t3 t4
2 − t4

3

(t1 m1 + m1 t3 − t1 t2 − t4 ) (t1 t2 t3
2m1 − 2 t1 t2 t3 t4 + t4

2t1 + t3 t4
2)

,

e = −
(t1 t2 t3

2m1 − 2 t1 t2 t3 t4 + t4
2t1 + t3 t4

2)
3

(t2 t3
3m1

2 − 3 t2 t3
2t4 m1 + 3 t2 t3 t4

2 − t4
3) t2 t3

3t4
3
,

f =
t3 t4

2

(t1 t2 t3
2m1 − 2 t1 t2 t3 t4 + t4

2t1 + t3 t4
2) t1

.
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The following are the components of α212121 applied to yx2x2xx(t1, t2, m1, t3, t4).

a = − (m1 − t4 )−1 ,

b =
m1 − t4

t1 m1 − t2 − t4 t1 − t4 t3
,

c = −
(t1 m1 − t2 − t4 t1 − t4 t3 )3

(m1 − t4 ) (t2
3 + 3 t2

2t3 t4 + 3 t2 t3
2t4

2 + t4
2m1 t3

3)
,

d = −
t2

3 + 3 t2
2t3 t4 + 3 t2 t3

2t4
2 + t4

2m1 t3
3

(t1 m1 − t2 − t4 t1 − t4 t3 ) (t1 t2 2 + 2 t1 t2 t3 t4 + t4 t3 2t1 m1 − t2 t3 2t4 )
,

e = −
(t1 t2

2 + 2 t1 t2 t3 t4 + t4 t3
2t1 m1 − t2 t3

2t4 )
3

(t2
3 + 3 t2

2t3 t4 + 3 t2 t3
2t4

2 + t4
2m1 t3

3) t2
3t3

3t4
,

f = −
t2 t3

2t4
(t1 t2

2 + 2 t1 t2 t3 t4 + t4 t3
2t1 m1 − t2 t3

2t4 ) t1
.

We now substitute in values for the ti and the mi in order to obtain points in the D−
σ (h) on

which α212121 is defined. In the first three cases we set t1 = ±1, t2 = ±2, m1 = 3, m2 = 5,

and in the last 4 cases, we set t1 = ±1, t2 = ±2, t3 = ±3, t4 = ±5, and m1 = 7. In this

way, we obtain the connected component for each D−
σ (h). To denote a choice of sign we

write a list of 6 symbols, with + or − indicating the sign associated to an element j of

I(σ), 0 indicating an element of J(σ), and ∗ indicating elements of K(σ).

1. y1x12x2(t1, m1, t2, m2).

Sign choice Signs of a, b, c, d, e, f Connected Component

0 + ∗0 + ∗ − −−+ ++ K ←→ 11

0 + ∗0− ∗ − −−+−+ J ←→ 9

0− ∗0 + ∗ − −+−++ I ←→ 10

0− ∗0− ∗ − −+−−+ K ←→ 11
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2. yxx1x1x(t1, t2, t3, m1, t4).

Sign choice Signs of a, b, c, d, e, f Connected Component

+ + 0 + ∗+ +−+ + +− H ←→ 8

+ + 0 + ∗− − −+ + +− K ←→ 11

+ + 0− ∗+ +−+ + ++ I ←→ 10

+ + 0− ∗− −−+ + ++ F ←→ 6

+− 0 + ∗+ +−−+−+ F ←→ 6

+− 0 + ∗− −−−+−+ J ←→ 9

+− 0− ∗+ +−−+−− K ←→ 11

+− 0− ∗− −−−+−− G←→ 7

−+ 0 + ∗+ +−+−−− J ←→ 9

−+ 0 + ∗− −−+−−− E ←→ 5

−+ 0− ∗+ +−+−−+ H ←→ 8

−+ 0− ∗− −−+−−+ K ←→ 11

−− 0 + ∗+ +−−−++ K ←→ 11

−− 0 + ∗− −−−−++ G←→ 7

−− 0− ∗+ +−−−+− E ←→ 5

−− 0− ∗− −−−−+− I ←→ 10
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3. y1x1xxx(t1, m1, t2, t3, t4).

Sign choice Signs of a, b, c, d, e, f Connected Component

0 + ∗+ ++ +−−+−+ F ←→ 6

0 + ∗+ +− −−−+−+ J ←→ 9

0 + ∗+−+ +−+−−+ H ←→ 8

0 + ∗+−− −−+−−+ K ←→ 11

0 + ∗ −++ +−+ +−+ K ←→ 11

0 + ∗ −+− −−+ +−+ G←→ 7

0 + ∗ − −+ +−−−−+ J ←→ 9

0 + ∗ − −− −−−−−+ E ←→ 5

0− ∗+ ++ +−−+ ++ H ←→ 8

0− ∗+ +− −−−+ ++ K ←→ 11

0− ∗+−+ +−+−++ E ←→ 5

0− ∗+−− −−+−++ I ←→ 10

0− ∗ −++ +−+ + ++ I ←→ 10

0− ∗ −+− −−+ + ++ F ←→ 6

0− ∗ − −+ +−−−++ K ←→ 11

0− ∗ − −− −−−−++ G←→ 7

4. y12x21x(t1, m1, m2, t2).

Sign choice Signs of a, b, c, d, e, f Connected Component

00 + ∗ ∗+ +−+ + +− H ←→ 8

00 + ∗ ∗ − − −+ + +− K ←→ 11

00− ∗ ∗+ +−−+−− K ←→ 11

00− ∗ ∗ − − −−+−− G←→ 7
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5. yxxx2x2(t1, t2, t3, t4, m1).

Sign choice Signs of a, b, c, d, e, f Connected Component

+ + +0 + ∗ −+ + +−+ F ←→ 6

+ + +0− ∗ −+ + + ++ H ←→ 8

+ +−0 + ∗ − −+ +−− I ←→ 10

+ +−0− ∗ − −+ + +− K ←→ 11

+−+0 + ∗ −+−−−+ G←→ 7

+−+0− ∗ −+−+−− F ←→ 6

+−−0 + ∗ − − −+ ++ K ←→ 11

+−−0− ∗ −−−+−+ J ←→ 9

−+ +0 + ∗ −+ +−++ K ←→ 11

−+ +0− ∗ −+ +−−+ J ←→ 9

−+−0 + ∗ − −+−+− H ←→ 8

−+−0− ∗ −−+−−− E ←→ 5

−−+0 + ∗ −+−−−− I ←→ 10

−−+0− ∗ −+−−+− K ←→ 11

−−−0 + ∗ − − −−−+ E ←→ 5

−−−0− ∗ −−−+−− G←→ 7
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6. yx2x2xx(t1, t2, m1, t3, t4).

Sign choice Signs of a, b, c, d, e, f Connected Component

+0 + ∗+ + −−+ +−− I ←→ 10

+0 + ∗+− −+−+−− F ←→ 6

+0 + ∗ −+ −+ + +−− K ←→ 11

+0 + ∗ − − −−−+−− G←→ 7

+0− ∗+ + −−+ + ++ F ←→ 6

+0− ∗+− −+−+ ++ J ←→ 9

+0− ∗ −+ −+ + + ++ H ←→ 8

+0− ∗ −− −−−+ ++ K ←→ 11

−0 + ∗+ + −−+−+− H ←→ 8

−0 + ∗+− −+−−+− K ←→ 11

−0 + ∗ −+ −+ +−+− E ←→ 5

−0 + ∗ − − −−−−+− I ←→ 10

−0− ∗+ + −−+−−+ K ←→ 11

−0− ∗+− −+−−−+ G←→ 7

−0− ∗ −+ −+ +−−+ J ←→ 9

−0− ∗ −− −−−−−+ E ←→ 5

7. yx21x12(t1, t2, m1, m2).

Sign choice Signs of a, b, c, d, e, f Connected Component

+00 + ∗∗ −+ + +−+ F ←→ 6

+00− ∗∗ −+ + +−− K ←→ 11

−00 + ∗∗ − −−+ ++ K ←→ 11

−00− ∗∗ − −−+ +− E ←→ 5

We now have a decomposition of each connected component of B∗ into a disjoint union of

subsets of form Dσ(h). This allows us to calculate the Euler characteristic (for compactly
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supported cohomology) of each connected component X as an alternating sum:

χ(X) =

dim(X)∑

c=0

(−1)cnc,

where nc is the number of subsets of form Dσ(h) of codimension c contained in X (note

that the dimension of X is even). Since the components X are smooth (open in B) this

compactly supported Euler characteristic coincides with the usual one by Poincaré duality.

We note that each Dσ(h) has codimension at most 2. All the required information is

displayed in Figure 6, using a format similar to that used in [6], grouping the subsets of

form Dσ(h) by connected component. We denote each Dσ(h) by the sign choice string

listed above (first column); note that the number of 0’s gives the codimension.
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1 + + + + ++ −−−−−− 2

3 −+−+−+ +−+−+− 4

5

+ +−+−+ −−+ +−+

−+−−−+ −−−−++

−+−+ +− −−−+−−

−+ +−−− +−−−−−

−+ 0 + ∗− −− 0− ∗+

0 + ∗ − −− 0− ∗+−+

−+−0− ∗ −−−0 + ∗

−0 + ∗ −+ −0− ∗ − −

−00− ∗∗

−−+−+− + +−−+−

+−+ + +− + + + +−−

+−+−−+ + + +−++

+−−+ ++ −+ + + ++

+ + 0− ∗− +− 0 + ∗+

0 + ∗+ ++ 0− ∗ −+−

+ + +0 + ∗ +−+0− ∗

+0 + ∗+− +0− ∗+ +

+00 + ∗∗

6

7

+−+−++ +−+ +−−

+−−−+− + +−−−−

−+ +−+− −−+−−−

−−−+ +− −−−−−+

+− 0− ∗− −− 0 + ∗−

0 + ∗ −+− 0− ∗ −−−

+−+0 + ∗ − −−0− ∗

+0 + ∗ − − −0− ∗+−

00− ∗ ∗ −

−+−+−− −+−−++

−+ + +−+ −−+ + ++

+−−+−+ + +−+ ++

+ + +−−+ + + + + +−

+ + 0 + ∗+ −+ 0− ∗+

0 + ∗+−+ 0− ∗+ ++

+ + +0− ∗ −+−0 + ∗

+0− ∗ −+ −0 + ∗+ +

00 + ∗ ∗+

8

9

−+−+ ++ +−−+ +− −+ + + +− −−−+−+

+−+−−− −+ +−−+ +−−−−+ + + +−+−

+− 0 + ∗− −+ 0 + ∗+ 0 + ∗+ +− 0 + ∗ − −+

+−−0− ∗ −+ +0− ∗ +0− ∗+− −0− ∗ −+

0 + ∗0− ∗
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10

+ + + +−+ + +−+−− + +−−++ +−+ + ++

−−−−+− −−+−++ −−+ +−− −+−−−−

+ + 0− ∗+ −− 0− ∗− 0− ∗+−− 0− ∗ −++

+ +−0 + ∗ − −+0 + ∗ +0 + ∗+ + −0 + ∗ − −

0− ∗0 + ∗

11

−−−+ ++ −+ +−++ +−−−++ +−+ +−+

−−+−−+ + +−−−+ + + +−−− +−−+−−

−+ + +−− −+−−+− + +−+ +− −−+ + +−

+ + 0 + ∗− +− 0− ∗+ −+ 0− ∗− −− 0 + ∗+

0 + ∗+−− 0 + ∗ −++ 0− ∗+ +− 0− ∗ −−+

+ +−0− ∗ +−−0 + ∗ −+ +0 + ∗ − −+0− ∗

+0 + ∗ −+ +0− ∗ −− −0 + ∗+− −0− ∗+ +

+00− ∗∗ −00 + ∗∗ 00 + ∗ ∗ − 00− ∗ ∗+

0 + ∗0 + ∗ 0− ∗0− ∗

Figure 6. The connected components of B∗ with their cell decompositions.

Remarks 7.1. Fix σ such that Dσ is of codimension 2 (cases 1–3). Then, as |I(σ)| = 2

there are 22 = 4 possible choices of sign, giving rise to 4 subsets Dσ(h). Two of these lie

in component 11, and the other two lie in either components 5 and 6, components 7 and

8, or components 9 and 10 respectively. Fix σ such that Dσ is of codimension 1 (cases

4–7). Then, as |I(σ)| = 4 there are 24 = 16 possible choices of sign, giving rise to 16

subsets Dσ(h). Each connected component 5–10 contains precisely two of these subsets,

while connected component 11 contains precisely 4 of these.

Theorem 7.2. The Euler characteristic of each connected component of B∗ is given in

Table II. We also give, for each connected component, and for codimension 0, 1, and 2, the

number of subsets of the form Dσ(h) of that codimension contained in that component. We
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thus conclude that there are 10 connected components of Euler characteristic 1 and one of

Euler characteristic 2, confirming a total Euler characteristic of B∗ of 12, the sum of these.

Table II. Euler characteristics of the connected components.

Connected component Codim 0 Codim 1 Codim 2 Euler characteristic

1 1 0 0 1

2 1 0 0 1

3 1 0 0 1

4 1 0 0 1

5 8 8 1 1

6 8 8 1 1

7 8 8 1 1

8 8 8 1 1

9 8 8 1 1

10 8 8 1 1

11 12 16 6 2
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Birkhäuser, Boston, 1998.

Department of Mathematics and Computer Science, University of Leicester, University

Road, Leicester LE1 7RH

E-mail address : R.Marsh@mcs.le.ac.uk

Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical

Sciences, Wilberforce Road, Cambridge CB3 0WB

E-mail address : rietsch@dpmms.cam.ac.uk


