List of errata

1. Page 8, Section 1.3, line 2 should read:
 \[x_{n+1}x_{n+r} = \begin{cases}
 x_{n+1}x_{n+r-1} + x_{n+2}x_{n+r-2} + \cdots + x_{n+\frac{r}{2}}^2 & \text{if } r \text{ is even;} \\
 x_{n+1}x_{n+r-1} + x_{n+2}x_{n+r-2} + \cdots + x_{n+\frac{r-1}{2}}x_{n+\frac{r+1}{2}} & \text{if } r \text{ is odd,}
 \end{cases} \]

2. Page 8, Section 1.3, line 5 should read:
 \[x_{n}x_{n+4} = x_{n+1}x_{n+3} + x_{n+2}^2. \]

3. Page 11, Definition 2.1.3 line 1 should read: “Fix \(k \) in \(I \).”

4. Page 11. Equation (2.1) should read:
 \[x_{k}x'_{k} = \prod_{j=1}^{m} x_{j}^{b_{jk}} + \prod_{j=1}^{m} x_{j}^{-b_{jk}}. \]

5. Page 12, Example 2.1.8. Line 1 should read: “Let \(n = 1, m = 3 \).”

6. Page 14, Definition 2.3.2(a), line 2 should read: “i.e. if there are \(a \) arrows from \(i \) to \(k \) and \(b \) arrows from \(k \) to \(j \), we add \(ab \) arrows from \(i \) to \(j \).”

7. Page 16, Remark 2.4.1, line 5 should read: “a map \(d : Q_0 \to \mathbb{N}_{>0} \) such that \(v(\alpha)_1d(i) = v(\alpha)_2d(j) \) whenever \(\alpha : i \to j \) is an arrow in \(Q \).”

8. Page 19, Section 3.1, line 9 should read:
 \[M_{j}(t) = p_{j}(t) \prod_{i \in I} x_{i}^{n_{i}} \]

Thus \(M_{j}(t) \) is a monomial in the \(x_{i}, i \in I \), while \(M_{j}(x(t)) \) is a monomial in the \(x_{i}(t), i \in I \). This requires additional corrections in the rest of Chapter 3, detailed in the following points.

9. Page 19, Equation (3.2) should read:
 \[x_{j}(t)x_{j}(t') = M_{j}(x(t)) + M_{j}(x(t')) \]

10. Pages 19–30. \(x_{i}(t) \) should read \(x_{i} \) throughout (for any \(i \)), except for the following:
 - Page 19, Section 3.1, line 7.
 - Page 19, Equations (3.1) and (3.2),
 - Section 3.2, lines 4–11.

11. Page 20, Statement (E4). Delete the following: “\(x_{k} \) represents \(x_{k}(t_1) = x_{k}(t_2) \)”, and “(with \(x_{j} = x_{j}(t_2) = x_{j}(t_3) \)”

12. Page 21, Remark 3.1.2(c), line 6 should read:
 \[M_{0} = (M_{k}(t_2) + M_{k}(t_3))|_{x_{j}=0}, \]

13. Page 23, Proof of Lemma 3.3.1, lines 4-5. Delete: “Here \(x_{i} = x_{i}(t) = x_{i}(t') \) for all \(i \in I, i \neq j.\)”

14. Page 23, Proof of Lemma 3.3.1, line 11. Delete: “(where \(x_{i} = x_{i}(t_1) = x_{i}(t_2) \)).”

15. Page 23, proof of Lemma 3.3.1, line 10 should read: “To see (E2), suppose that \(\frac{t_1}{j} \rightarrow t_2 \) is an edge in \(T_{n}, \)”
16. Page 24, line -3. Delete: “for \(i \neq k, \) we write \(x_i = x_i(t_2) = x_i(t_3), \)”
17. Page 25, line 12 should read: “If \(b_{kj} b_{kj} > 0, \) the exponent”
18. Page 26, line 8 should read: “If \(b_{kj}(t_2) > 0 \) then \(b_{jk}(t_2) < 0, \) so \(b_{jk}(t_3) > 0, \) so \(x_j \) appears in the second term.”
19. Page 31, Section 4.1, line 4 should read: “It is positive definite if \((\alpha, \alpha) > 0 \) for all nonzero \(\alpha \in V. \)”
20. Page 31, Section 4.1, line 13 should read: “i.e. \((\varphi(\alpha), \varphi(\beta)) = (\alpha, \beta) \) for all \(\alpha, \beta \in V. \)”
21. Page 35, Lemma 4.2.6, line 1 should read: “If \(\Phi \sim \Phi' \), then \(W_{\Phi} \sim W_{\Phi'}. \)”
22. Page 36, Theorem 4.4.1, line 1 should read: “Let \(W = W_{\Phi} \) be the finite reflection group…”
23. Page 46, line -5, should read: \(B = \langle \sigma_1 \ldots \sigma_n \mid \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, |i - j| = 1 \rangle \)
24. Page 48, Proposition 4.11.3. The equation in (a) should read: \(\sum_{i=1}^{n} e_i = nh/2 = |\Phi^+| \).
The equation in (c) should read \("|W| = \prod_{i=1}^{n} d_i". \)
25. Page 51, line 11 after Lemma 5.2.1 should read: “\(F_4 \) from \(E_6 \)”
26. Page 58, line 10 should read: “in type \(A_n, \) if \(|i - j| = 1 \) then \(s_i(-\alpha_i) = -\alpha_i - \alpha_j. \)”
27. Page 60, Section 6.2, line 2 should read: \(T(V) = \mathbb{C} \oplus V \oplus (V \otimes V) \oplus \ldots \)
28. Page 62, line 4 should read (deleting second ‘if ’): “An element \(x \) of \(\bigwedge^k(V) \) is said to be decomposable if it is of the form”
29. Page 63, Equation (9.1) should read: \(\sum_{r=0}^{k} (-1)^r p_{i_1, i_2, \ldots, i_{k-1}, j, j} p_{j_0, \ldots, j_{r}, \ldots, j_k} = 0, \)
30. Page 65, line 10 should read: “where the sum is taken over all tuples satisfying” should read: “where”.
31. Page 102, Reference 96. The author is A. Hubery.
Contributors to this list: Bing Duan, Lisa Lamberti, Amit Shah and Yang Yang. Further corrections welcome. Many thanks!

REFERENCES