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MATH 0212
ELEMENTARY INTEGRAL CALCULUS

VLADIMIR V. KISIL

Module summary. • The concept of integration as anti-differentiation, and the fun-
damental theorem of the calculus.

• Indefinite and definite integrals. Area under a curve.
• Techniques of integration, including by substitution, by parts and by partial fractions.
• Applications of integration, including volumes of revolution.
• Binomial theorem, Pascal’s triangle, sine and cosine rules.
• Revision: Sine and cosine rules, equations of circles.
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1. Integration

Integration is the problem of determining areas and, as we shall see later, volumes. For
a polygon this problem can be solved purely geometrically if we decompose the polygon
into disjoint triangles. In general area is characterised by the following properties:

Axiom 1.1 (Axioms of area). (1) An area of a figure is a non-negative real number.
(2) If a figure is a union of several disjoint (non-overlapping) parts, then area of the

figure is equal to the sum of its parts’ areas.

It is easy to derive from these two properties that the area of a figure is bigger that the
area of any part. Furthermore, we assume that

Any two equal figures has the same area. (Figures are equal if one can be
obtained from another by motions of the plain: shifts, rotations and re-
flections)

A square of the unit area—say 1 cm2—can be divided into 100 equal small squares. By the
previous assumptions each of smaller squares has the area 0.01 cm2. Using elementary
“cut-and-glue” techniques we can derive areas of some basic shapes:

(1) Area of a rectangle is the product of its sides: S = ab.
(2) Area of a paralellogram is the product of its base and height: S = bh.
(3) Area of a trianglle is half of the product of its base and height: S = 1

2ah.
However, for curved shapes we need a kind of limit procedures.

Example 1.2. Suppose we want the area of a circle dividing it into n equal triangles
shown on Fig. 1. Area of the triangle is

At =
1
2

base× height,

where the height is approximately R and that approximation is more accurate for larger
n. Also for large n the sum of all triangles’ bases is the length of the circle, that is 2π.

A = nAt '
1
2
R · 2πR = πR2.
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Figure 1. Area of a circle

If we let n → ∞, then θ → 0, which means the approximation for At becomes exact.
The sum of the areas of the triangles also becomes equal to the area of the circle. Hence
the area of the circle is A = πR2.

A similar ideas can be applied to figures of arbitrary shape as explained below.

Figure 2. Integration

1.1. Riemann Integral. Let f(x) be a function of a real variable taking positive values.
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Definition 1.3. Let I be the area under the graph of f(x) shown on Fig. 2. Then we
introduce the definite integral by

(1)

b∫
a

f(x)dx = I.

An immediate consequence of the Defn. 1.3 and Axiom 1.1 is:

Proposition 1.4. For a function f(x) defined on adjacent intervals [a,b] and [b, c] we have:

(2)

c∫
a

f(x)dx =

b∫
a

f(x)dx+

c∫
b

f(x)dx .

Now we describe a procedure to evaluate a definite interval. Divide the interval
a 6 x 6 b into n parts xk 6 x 6 xk+1, with

xk = a+
k

n
(b− a), for k = 0, 1 · · ·n.

See Fig. 3 for illustration. Write

δx =
b− a

n
.

We can now work out

(3)
n−1∑
k=0

f(xk) · δx,

and this has a limit written as
b∫
a

f(x)dx

when n goes to infinity. For the existence of the limit (and the definite integral) the
function shall not jump too much on small intervals. This can be seen from Fig. 3, which
gives the upper and lower estimations of the area above the interval δx.

Consider a monotonically increasing function f(x), cf. Fig. 3. Then
In Fig. 3 left, area of rectangle shown is δIlk = (xk+1 − xk)f(xk) = δxf(xk),
In Fig. 3 right, area of rectangle shown is δIuk = (xk+1 − xk)f(xk+1) = δxf(xk+1).

Define

(4)

Iln =

n−1∑
k=0

δIlk =

n−1∑
k=0

f(xk) · δx,

Iun =

n−1∑
k=0

δIuk =

n−1∑
k=0

f(xk+1) · δx,

Since f(x) is increasing, we certainly have

Iln 6 I 6 Iun
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Figure 3. Estimating area by rectangles for a monotonic function. Iun
is the area shadowed by the blue (NW) strokes, Iln is the area double
shadowed by green (NE) strokes. Iun − Iln is equal to the area of the
rectangle on the left (shadowed by blue (NW) strokes. A larger number
of small intervals produces a smaller error Iun − Iln.
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As n → ∞ we have δx → 0 and we expect Iln → Iun and Iln → I i.e. limn→∞ Iln =
limn→∞ Iln = I. Indeed:

Iun − Iln =

n−1∑
k=0

f(xk+1) · δx−
n−1∑
k=0

f(xk) · δx = (f(b) − f(a)) · δx.

Informally: the difference is equal to the area of the rectangle with height f(b)− f(a) and
width δx as shown on Fig. 3. Thus (Iun − Iln)→ 0 if δx→ 0.

A similar estimation is possible for a function f(x) which may not be monotonic but
does not “jump up&down” too much.

Definition 1.5. The above limiting value of the sum (3) is called the Riemann integral. The
process of finding integral is called integration.

Recall, that the defined integral was linked to the area for a positive function f(x).
However, the formula (3) suggests a modification of the definition for functions taking
any values. Indeed, in (3) negative values f(xk) of the functions produce areas of rect-
angles with the opposite sign. Thus, in a definite integrals areas between the graph
of f(x) and the horizontal axis is counted with the sign of f(x) on the corresponding
sub-intervals, see Fig. 4.

y

xa b

+

−

+

f(x)

Figure 4. For a function with negative values the integral equal to the
area ”under” the graph taken with appropriate signs.

A definite integral could be calculated from the definition, but this is very difficult for
all but the simplest functions.

Example 1.6. (1) The most elementary (but still important!) example is the constant
function f(x) = c for some constant number c. Then for any finite interval [a,b]
we have xk = a+ k(b− a)/n and δx = (b− a)/n. Thus:

n−1∑
k=0

f(xk) · δx =
n−1∑
k=0

c
b− a

n
= c(b− a)

n−1∑
k=0

1
n

= c(b− a) .

This is independent from n, thus has the same value c(b−a) at the limit n→∞.
Obviously, this is the area of the rectangle with the height c and the base [a,b] of
the length b− a.
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(2) Suppose we have a triangle, given by

f(x) = x, a = 0, b = 1.

Then δx = 1/n, xk = k/n. So the total area of the rectangles is

n−1∑
k=0

f(xk) · δx =
n−1∑
k=0

k

n

1
n

=
1
n2

n−1∑
0

k.

But
n−1∑

0

k =

n−1∑
1

k =
(n− 1)n

2
(sum of an arithmetic series).

Hence we get

1
n2

(n− 1)n
2

=
1
2

(
1 −

1
n

)
→ 1

2
as n→∞.

This is correct since we have a triangle of height 1 and base 1.

(3) We may try to find
1∫
0
x2 dx in a similar fashion, this is indeed possible, see the

second example classes. See also method of exhaustion for this problem proposed
by Archimedes and re-discovered by Ibrahim ibn Sinan some centuries later.

Remark 1.7. In the above discussion we split [a,b] into sub-intervals of the same size for
simplicity only. For an efficient numerical approximation of an integral, points of the
partition shall be spaced differently: we need more points where function changes its
values rapidly and less points where the graph of the functions is almost flat.

From the above procedure for evaluation of a definite integral we can derive the fol-
lowing important properties.

Proposition 1.8. (1) For a function f(x) defined on an interval [a,b] and a constant c we
have:

(5)

b∫
a

cf(x)dx = c

b∫
a

f(x)dx .

(2) For functions f(x) and g(x) defined on an interval [a,b] we have:

(6)

b∫
a

(f(x) + g(x))dx =

b∫
a

f(x)dx+

b∫
a

g(x)dx .

[Compare identities (2) and (6) and notice the difference.]
(3) For a function f(x) defined on an interval [a,b] we let:

a∫
b

f(x)dx = −

b∫
a

f(x)dx

and this agrees with (2).

https://en.wikipedia.org/wiki/The_Quadrature_of_the_Parabola
https://en.wikipedia.org/wiki/Archimedes
https://en.wikipedia.org/wiki/Ibrahim_ibn_Sinan
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1.2. Fundamental Theorem of Calculus. Barrow discovered that integration is the op-
posite process to differentiation, which makes it much easier to calculate integrals. How-
ever, this fundamental theorem is commonly attributed now to Newton (a student of
Barrow) and Leibniz, who lay down foundations of modern analysis.

Figure 5. Fundamental theorem of calculus

Define I(x) to be the area shown on Fig. 5. Have δI ' f(x)δx. From the definition of
the derivative we have

dI
dx

= lim
δx→0

I(x+ δx) − I(x)

δx
= lim
δx→0

δI

δx
= f(x).

The fundamental theorem of calculus says that the definite integral is a substitution
into indefinite integral:

(7)

b∫
a

f(x)dx = I(b) − I(a),

where I(x) is a function that satisfies

(8)
dI
dx

= f(x).

For convenience, we introduce the notation:

[I]ba = I(b) − I(a)

https://en.wikipedia.org/wiki/Isaac_Barrow
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Leibniz%E2%80%93Newton_calculus_controversy
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for substitution of function I(x) from a to b. Using this notation (7) can be written as:

(9)

b∫
a

f(x)dx = [I]ba = I(b) − I(a),

Note that we can add an arbitrary constant to I without changing (8) or (9). Also, any
two functions I1(x) and I2(x) with the same derivative I ′1(x) = I ′2(x) = f(x) are different
by a constant only: I1(x) = I2(x) + c.

In relation to definite integral (1), which is a real number, we also introduce:

Definition 1.9. The indefinite integral is a function, I(x), that satisfies (8), i.e.

(10) I(x) =

∫
f(x)dx is equivalent to

dI
dx

= f(x).

The indefinite integral is also called anti-derivative sometimes.

For all this to work, we have to consider the area to be negative if f(x) < 0 (since then
the δIk are negative from the definition), see Fig. 4.

Note, that for an indefinite integral we again have the rule similar to (6): a sum of
functions is just the sum of the integrals i.e.

(11)
∫
[f(x) + g(x)]dx =

∫
f(x)dx+

∫
g(x)dx.

This follows from the properties of the derivative

d
dx

[F(x) +G(x)] =
dF
dx

+
dG
dx

, where F(x) =

∫
f(x)dx, G(x) =

∫
g(x)dx.

Integrating gives (11). It also follows from the definition.
Similarly we can show for indefinite integrals the rule similar to (5):

(12)
∫
cf(x)dx = c

∫
f(x)dx for any number c and function f(x) .

1.3. Powers of x. Find
∫
xα dx for some constant α. We want a function F(x) so that

dF
dx

= xα.

From MATH 0111 we know that
d

dx
xβ = βxβ−1 for any β. So if we put F(x) = Axα+1,

we get
dF
dx

= A(α+ 1)xα, i.e.,
dF
dx

= xα if A =
1

α+ 1
.

Hence

(13)
∫
xα dx =

1
α+ 1

xα+1 + C (C is an arbitrary constant).

This works both for α > 0 and α < 0, but goes wrong if α = −1 (see § 1.6 later).

Example 1.10. (1)
∫
x2 dx. We have α = 2, so

∫
x2 dx =

1
3
x3 + C.
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(2)
∫
x−2 dx. We have α = −2, so

∫
x−2 dx = −

1
x
+ C.

Now we can do a definite integral, to find the area of the triangle we started
with.

This is
1∫
0

xdx =

[
x2

2

]1

0
=

12

2
−

02

2
=

1
2

.

This is what we got by summing up a series.
Similarly, for the area under a parabola y = x2 from x = 0 to 3, we get

3∫
0

x2 dx =

[
x3

3

]
=

33

3
−

03

3
= 9.

1.4. Trigonometric Functions. We can find integrals of trigonometric functions as fol-
lows.

1.4.1. Sine.
∫

sin x dx. We know that
d

dx
cos x = − sin x. Hence∫

sin x dx = − cos x+ C.

Suppose we have
∫

sin(ax)dx with a a constant.

Recall the Chain Rule for differentiation from MATH0111

(14)
d

dx
f[g(x)] =

df
dg

dg
dx

.

for any functions f(g), g(x).
Put f(g) = cosg, g(x) = ax+ b so that f = cos(ax+ b). Then (14) gives

d
dx

cos(ax+ b) =
d

dx
f[g(x)] =

d(cosg)
dg

d(ax+ b)
dx

= −a sing = −a sin(ax).

We therefore have

(15)
∫

sin(ax+ b) dx = −
1
a

cos(ax+ b) + C.

1.4.2. Cosine.
∫

cos x dx. We know that
d

dx
sin x = cos x. Hence∫

cos x dx = sin x+ C.

Again using the Chain Rule we have

(16)
∫

cos(ax+ b) dx =
1
a

sin(ax+ b) + C.
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Example 1.11. (1)
∫

sin(3x) dx. Then a = 3 and (15) gives∫
sin(3x) dx = −

1
3

cos(3x) + C.

(2)
∫

cos(x/2) dx. Then a = 1/2 and (16) gives∫
cos(x/2) dx = 2 sin(x/2) + C.

(3)

π/6∫
0

sin(3x)dx =
[
−

1
3

cos(3x)
]π/6

0
= −

1
3

cos
π

2
+

1
3

cos 0 =
1
3

.

(4) Try to independently integrate both sides of the identity cos(x) = sin(π2 −x). Will
you receive the same answer in both cases?

1.5. Exponential Function.
∫
ex dx. Here, e = 2.718281828 . . . is the Euler’s constant.

We know that
d

dx
ex = ex.

As for Sine and Cosine, we want
∫

eax+b dx for any constant a.

Using the Chain Rule (14) with f(g) = eg, g(x) = ax+ b so that f = eax+b, gives

d
dx
eax+b =

d
dx
f[g(x)] =

d(eg)
dg

d(ax+ b)
dx

= aeg = aeax+b.

So

(17)
∫
eax+b dx =

1
a
eax+b + C.

Note, that alternatively we can obtain the same answer from the exponent rules: eax+b =
eb eax.

Example 1.12. (1)
∫
e2x dx. Then a = 2 and (17) gives∫

e2x dx =
1
2
e2x + C.

(2)
∫

ex/3 dx. Then a = 1/3 and (17) gives∫
ex/3 dx = 3ex/3 + C.

(3)
∫

2x dx. Since 2 = eln 2 and 2x = e(ln 2)x we can use the previous formula with

a = ln 2 and (17) gives∫
2x dx =

∫
e(ln 2)x dx =

1
ln 2

e(ln 2)x + C =
1

ln 2
2x + C.

https://en.wikipedia.org/wiki/Leonhard_Euler
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Similarly, in general we can check that
∫
ax dx =

1
lna

ax + C.

(4)

2∫
1

e2x dx =

[
1
2
e2x
]2

1
=
e4

2
−
e2

2
.

(5) Evaluate similarly that

0∫
−a

ex dx = [ex]0−1 = e0 − e−a. Note that this is the area

under the graph of ex over [−a, 0]. Now if (−a) → −∞, then this area tends to
1 since e−a → 0. Thus the area of the infinite region over the half-line (−∞, 0) is
the finite number!

(6) Note, that eax+b = eaxeb = keax for k = eb. Then we can make the calculation:∫
eax+b dx =

∫
keax dx = k

∫
eax dx =

k

a
eax + C =

1
a
ebeax + C =

1
a
eax+b + C ,

again the same answer as expected.

1.6. Logarithmic Function. We wish to consider the indefinite integral of the function
f(x) = 1/x which was not treated in Sect. 1.3. Let us start from a comparison of two
definite integrals:

2∫
1

1
x

dx and

6∫
3

1
x

dx .

Consider Fig. 6 which approximate each of these integrals by areas of three rectangles. It

y

x4
3

3
4

4

1
4

5
3

3
5

5

1
5

6
3

3
6

6

1
6

1 3

f(x) =
1

x

Figure 6. Similarly shaded rectangles under the graph have equal areas:
the bases of right rectangles are three times wider but the left rectangles
are three times taller.

turns out that respective (similarly shaded) rectangles under the graph have equal areas:
the right rectangles are three times wider but the left respective rectangles are three times
taller. And this can be shown for any number of rectangles covering the areas under the
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graph. Thus:
2∫
1

1
x

dx =

6∫
3

1
x

dx =

3·2∫
3·1

1
x

dx .

More generally we can prove (see Example 2.2 below) that:

(18)

b∫
a

1
x

dx =

kb∫
ka

1
x

dx for any number k .

Now we define a function L(t) =

t∫
1

1
x

dx. Then:

L(ab) =

ab∫
1

1
x

dx (by definition of L(t))

=

a∫
1

1
x

dx+

ab∫
a

1
x

dx (by (2))

=

a∫
1

1
x

dx+

b∫
1

1
x

dx (by (18))

= L(a) + L(b) . (by definition of L(t))

Thus, function L(t) behaves like logarithm! We will see now that it is logarithm.
In order to define this, we need the idea of an inverse function. Suppose we have a

function f(x). Then we define the inverse function f−1 by

(19) y = f(x) ⇒ x = f−1(y).

We now define logarithmic function, ln x, as the inverse of the exponential function; i.e.,

(20) y = ln(x) ⇒ ey = x or x = eln(x),

provided x > 0 (since ey > 0 for all y).
We know that the exponential function has the property

(21) exey = ex+y,

for any x, y. From (20) we then have

xy = eln(x)eln(y) = eln(x)+ln(y) = eln(xy);

i.e.,

(22) ln(xy) = ln(x) + ln(y).

If we differentiate (20) we get

ey
dy
dx

= x
dy
dx

= 1.
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Hence

(23)
d

dx
ln(x) =

1
x

.

for any x > 0. Using the chain rule you can show that if x < 0, then

d
dx

ln (−x) =
1
x

.

Recalling that modulus or absolute value is:

|x| =

{
x x > 0,
−x x < 0,

we can combine these statements as
d

dx
ln |x| =

1
x

.

This means that

(24)
∫

dx
x

= ln |x|+ C.

Example 1.13.
−1∫
−e

dx
x

= [ln |x|]−1
−e = ln 1 − ln e = 0 − 1 = −1.

Remember that our equation (13),∫
xα dx =

1
1 + α

x1+α + C (C is an arbitrary constant).

failed when α = −1. We can now see that in this case the integral is ln |x|.

2. Methods of integrations

Different integrals require different methods. We will describe several most general
approaches.

2.1. Change of Variable (Substitution). Assume that x = g(t) for an independent vari-
able t and a function g(t). Differentiation and the chain rule give:

(25)
dx
dt

=
dg(t)

dt
or dx =

dg(t)
dt

dt = g ′(t)dt .

Let we have a function f(x) and its indefinite integral F(x), that is
dF(x)

dx
= f(x). From

the chain rule, (14), have

(26)
d
dt
F[g(t)] =

dF
dx

dg
dt

= f(g(t))g ′(t).

Integrating (26) w.r.t. t and using (25) gives

F[g(t)] =

∫
f(g(t))g ′(t)dt =

∫
f(x)dx = F(x), because dx = g ′(t)dt and x = g(t).

We also used that integration is the inverse of differentiation.
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Thus we obtained the formula for change of variable in an indefinite integral:

(27)
∫
f(g(t))

dg(t)
dt

dt =
∫
f(x)dx

Note, that for a definite integral we have to adjust the limits of integration properly:

(28)

b∫
a

f[g(u)]
dg
du

du =

g(b)∫
g(a)

f(x)dx

because if u = a or u = b then x = g(a) or x = g(b) respectively. This also follows from
the observation:

g(b)∫
g(a)

f(x)dx = F(g(b)) − F(g(a))

=

b∫
a

f[g(u)]
dg
du

du.

Example 2.1. To see that the proper limits of integration do make the difference we

evaluate the simple integral

2∫
0

(2u − 1)du. Using the substitution x = 2u − 1, du = 1
2 dx

and new limits −1 = 2 · 0 − 1 and 3 = 2 · 2 − 1 we get:
2∫
0

(2u− 1)du =

3∫
−1

x

2
dx =

[
x2

4

]3

−1
=

9
4
−

1
4
= 2.(29)

Note that if the limits is not changed we will get a wrong answer 1. To verify the above
solution we make it plainly as well:

2∫
0

(2u− 1)du =
[
u2 − u

]2
0 = (22 − 2) − (02 − 0) = 2.(30)

Finally the answer can be checked by consideration the area of the two triangles formed
by the graph of function y = 2x− 1 and the horizontal axis.

Example 2.2. Let us demonstrate relation (18) using the change of variable g(u) = u/k
in the function f(x) = 1/x:

kb∫
ka

1
u

du =

kb∫
ka

1
u/k

1
k

du =

b∫
a

1
x

dx .

Example 2.3. We can use this to integrate sin(ax) and cos(ax) without having to guess
as we did in sections 2.4.1 and 2.4.2. For example, for∫

sin(ax)dx
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put u = ax. Then
du
dx

= a and dx = du/a, so we get∫
sin(ax)dx =

∫
sin(u)

du
a

= −
1
a

cos(u) = −
1
a

cos(ax),

This is the same as (15).

Example 2.4 (Another example of substitution). For
∫
x5ex

6
dx, put u = x6 and then

du
dx

= 6x5, so dx =
du
6x5 .

We get ∫
x5eu

du
6x5 =

1
6

∫
eu du =

1
6
eu + C =

1
6
ex

6
+ C.

2.1.1. Tangent. We can use change of variable to find
∫

tan xdx =
∫

sin x
cos x

dx.

Put u = cos x. Differentiating gives
du
dx

= − sin x, or dx = −du/ sin x.
We then have ∫

tan xdx =

∫
sin x
cos x

dx =
∫
−

sin x
u

du
sin x

=

∫
−

du
u

= − ln |u|+ C = − ln |cos x|+ C,(31)

from (24). It is worth differentiating tan x just to see what we get. We have

d
dx

tan x =
d

dx
sin x
cos x

=
(cos x)(cos x) − (sin x)(− sin x)

cos2 x
=

1
cos2 x

= sec2x.

So we also have

(32)
∫

sec2xdx = tan x+ C.

2.1.2. Cotangent. Have
∫

cot xdx =
∫

cos x
sin x

dx.

Put u = sin x. Differentiating gives du = cos xdx, or dx = du/ cos x.
We then have

(33)
∫

cot xdx =
∫

cos x
sin x

dx =
∫

cos x
u

du
cos x

=

∫
du
u

= ln |u|+ C = ln |sin x|+ C,

from (24). Again, it is worth differentiating cot x just to see what we get. We have

d
dx

cot x =
d

dx
cos x
sin x

=
(sin x)(− sin x) − (cos x)(cos x)

sin2 x
= −

1
sin2 x

= −cosec2x.

So we have

(34)
∫

cosec2 xdx = − cot x+ C.
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2.1.3. Derivative of a function divided by the function. The integral of the tangent and cotan-
gent is an example of a general class of integrals of the form∫

1
f(x)

df
dx

dx, where f(x) is some function of x.

If we make the substitution u = f(x), then du =
df
dx

dx and the integral becomes

(35)
∫

1
f(x)

df
dx

dx =
∫

du
u

= ln |u|+ C = ln |f(x)|+ C,

from equation (24).

Example 2.5. (1) For example, with f(x) = x2 + 4 and f ′(x) =
df
dx

= 2x, we see that∫
2x

x2 + 4
dx = ln(x2 + 4) + C.

(2) We know that
∫

1 dx = x+ C, but let us make a twist using (35) for u = ex:∫
1 dx =

∫
ex

ex
dx =

∫
1
u

du = ln(ex) + C

that is ln(ex) = x comparing values of both sides for x = 0. In this fancy way we
see once more that the exponent and logarithm are inverse functions.

Question: why did we write above logarithms ommiting absolute values of their arguments?

2.2. Other Trigonometric Integrals.

(1)
∫

sin2 xdx. Since cos 2x = 1 − 2 sin2 x, we may use the formula

sin2 x =
1
2
[1 − cos(2x)].

Then

(36)
∫

sin2 xdx =
∫

1
2
[1 − cos(2x)]dx =

x

2
−

1
4

sin(2x) + C.

(2)
∫

cos2 xdx. Since cos 2x = 2 cos2 x− 1, we may use the formula

cos2 x =
1
2
[1 + cos(2x)].

Then

(37)
∫

cos2 xdx =
∫

1
2
[1 + cos(2x)]dx =

x

2
+

1
4

sin(2x) + C.

(3)
∫

sin(ax) cos(bx)dx. We have

sin(ax+ bx) = sin(ax) cos(bx) + cos(ax) sin(bx)

and
sin(ax− bx) = sin(ax) cos(bx) − cos(ax) sin(bx).



MATH 0212: ELEMENTARY INTEGRAL CALCULUS 19

Adding gives

(38) sin(ax) cos(bx) =
1
2
[sin(ax+ bx) + sin(ax− bx)].

Then

(39)

∫
sin(ax) cos(bx)dx =

∫
1
2
[sin(ax+ bx) + sin(ax− bx)]dx

= −
1

2(a+ b)
cos(ax+ bx) −

1
2(a− b)

cos(ax− bx) + C.

2.3. Integration by Parts. Consider the product rule for the differentiation of a product
of two functions

(40)
d

dx
f(x)g(x) = g

df
dx

+ f
dg
dx

.

Integrating both sides gives

f(x)g(x) =

∫
g(x)

df
dx

dx+
∫
f(x)

dg
dx

dx.

i.e.,

(41)
∫
f(x)

dg(x)
dx

dx = f(x)g(x) −
∫
g(x)

df(x)
dx

dx.

This formula is know as integration by parts.
For the definite integral integration by parts is:

(42)

b∫
a

f(x)
dg
dx

dx = [f(x)g(x)]ba −

b∫
a

g(x)
df
dx

dx.

We note that integration by parts does not completely solve problem of integration,
instead it expresses one integral

∫
f(x)dg

dx dx through another
∫
g(x) df

dx dx. For this proce-
dure to be possible and useful two conditions need to be observed:

(1) We shall be able to integrate the function which we treat as dg
dx . (This explain the

name: we integrate only a part of the product f(x)dg
dx ).

(2) The “new” integral
∫
g(x) df

dx dx shall be easier to find than the “old” one
∫
f(x)dg

dx dx.
Various situations of such facilitation are illustrated by the following example.

Example 2.6. (1)
∫
xex dx. Let f(x) = x,

dg
dx

= ex. Then g = ex,
df
dx

= 1 and (41) gives∫
xex dx = xex −

∫
ex dx = xex − ex + C.

(2)
∫

ln xdx (for x > 0). Let f(x) = ln x,
dg
dx

= 1. Then g = x,
df
dx

=
1
x

and (41) gives∫
ln xdx = x ln x−

∫
x

1
x

dx = x ln x− x+ C.
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For example
e∫
1

ln xdx = [x ln x− x]e1 = (e− e) − (0 − 1) = 1,

since ln e = 1 and ln 1 = 0.
(3)
∫
x sin xdx. This and the next cases are similar to the example 1. Let f(x) = x,

dg
dx

= sin x. Then g = − cos x,
df
dx

= 1 and (41) gives∫
x sin xdx = −x cos x+

∫
cos xdx = −x cos x+ sin x+ C.

(4)
∫
x cos xdx. Let f(x) = x,

dg
dx

= cos x. Then g = sin x,
df
dx

= 1 and (41) gives∫
x cos xdx = x sin x−

∫
sin xdx = x sin x+ cos x+ C.

(5) For
∫
x2ex dx we may take f(x) = x2 and g ′(x) = ex. Thus we take g(x) = ex, and

(41) gives ∫
x2ex dx = x2ex −

∫
2xex dx,

and we can use the result of example (1) to do the last integral. Effectively, we
have integrated by parts twice, at each stage making the integrand (the function
we have to integrate) simpler.

(6)
∫

sin x ex dx. Let f(x) = sin x,
dg
dx

= ex. Then g = ex,
df
dx

= cos x and (41) gives

I =

∫
sin x ex dx = sin x ex −

∫
cos x ex dx.

Let us integrate the second term by parts. Put f(x) = cos x,
dg
dx

= ex. Then g = ex,
df
dx

= − sin x and (41) gives∫
cos x ex dx = cos x ex +

∫
sin x ex dx.

So we get

I = sin x ex − cos x ex −
∫

sin x ex dx = sin x ex − cos x ex − I.

So

I =

∫
sin x ex dx =

1
2
ex(sin x− cos x) + C.

The same trick gives us
∫

cos x ex dx.
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Remark 2.7. Summing up: by its nature, integration by parts does not solve an integration
question: instead it replaces one integral by another. Hopefully, this would be a step
towards a solution! But the last two examples show that you may need more that just one
step before you will reach your target.

2.3.1. Change of variable vs. integration by parts. Let us compare the formula (27) for
change of variable and (41) of integration by parts re-written more uniformly:∫

f(g(x))
dg(x)

dx
dx =

∫
f(t)dt, where t = g(x);∫

f(x)
dg(x)

dx
dx = f(x)g(x) −

∫
g(x)

df(x)
dx

dx.

We note, that the both method has the common starting point: a factor in the integral
need to be identified as the derivative dg(x)

dx of a function g(x). The required condition in
both cases is: we need to be able to integrate dg(x)

dx to obtain g(x).
However, two methods has the different mechanism to approach a solution. We change

the variable from f(g(x))) to f(t) if we expect that f(t) can be integrated. In integration by
part, we look for the product g(x)df(x)

dx to be more suitable for integration than f(x)dg(x)
dx .

Yet, there are examples, where the both methods are efficient.

Example 2.8. We already discussed how to evaluate
∫

cos x · sin xdx using trigonometric

formulae in § 2.2(3) in slightly more general form. Now we will do it differently.

(1) We make the change of variable g(x) = cos x, then dg(x)
dx = − sin x. Thus, for

t = g(x) = cos x we have:∫
cos x · sin xdx = −

∫
cos x

d cos x
dx

dx = −

∫
tdt = −

1
2
t2 + C = −

1
2

cos2 x+ C.

(2) Integrating by parts we again put dg(x)
dx = sin x and f(x) = cos x. Then g(x) =

− cos x and df(x)
dx = − sin x and we obtain:

(43)
∫

cos x · sin xdx = − cos2 x−

∫
cos x · sin xdx.

Now we in a position similar to Example 2.6(6): put I =
∫

cos x · sin xdx, then
equation (43) means I = − cos2 x− I or 2I = − cos2 x. Thus again we obtained:∫

cos x · sin xdx = −
1
2

cos2 x+ C.

Note, that
∫

cos x · sin xdx = 1
2 sin2 x + C is a correct answer as well, since − 1

2 cos2 x and
1
2 sin2 x are different by a constant only (Pythagoras theorem!)

See also further Example 6.3.

2.4. Rational functions and partial fractions. There is a large class of functions which
can be integrated in a routine fashion, we are discussing it in this section. Recall, that a
multiple of a power function, say 3x4, is called minomial. A sum of monomials (all with
integer powers), say 7x4 + 5x3 + 6x, is called polynomial. The degree of a polynomial is the
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maximal degree of a constituting monomials. For the previous example of polynomial
degree is 4.

Definition 2.9. A rational function is a function of the form

f(x) =
p(x)

q(x)

where p(x) and q(x) are polynomials in x with q(x) 6≡ 0.

For example
x+ 3
x− 7

,
x− 2

2x3 + x2 − x
,

x2 + 3x+ 2
1

.

The last is the same as x2 + 3x+ 2 , so any polynomial is also a rational function.

Definition 2.10. A proper rational function is one in which the degree of the numerator
is less than the degree of the denominator. Otherwise it is called improper.

Remark 2.11. Any rational function can be written as the sum of a polynomial and a
proper rational function.

For example

x3 + x2 + 2
x2 − 4

= x+
x3 + x2 + 2 − x(x2 − 4)

x2 − 4
= x+

x2 + 4x+ 2
x2 − 4

,

where we got the x by dividing the highest-degree term on top, x3, by the highest-degree
term below, x2. We continue:

x+
x2 + 4x+ 2
x2 − 4

= x+ 1 +
x2 + 4x+ 2 − 1(x2 − 4)

x2 − 4
= x+ 1 +

4x+ 6
x2 − 4

,

where we got the 1 by dividing the highest-degree term on top, x2, by the highest-degree
term below, x2.

Recall that if you divide a polynomial by a divisor (this can be done by long division
if you know it), then

polynomial = divisor · quotient + remainder

Therefore
polynomial

divisor
= quotient +

remainder
divisor

.

In our case, x3 + x2 + 2 = (x2 − 4)(x+ 1) + (4x+ 6), which gives us the same answer.

The equality
3x+ 4

(x+ 1)(x+ 2)
=

1
x+ 1

+
2

x+ 2
expresses a complicated rational function as a sum of simple ones, a partial fraction. This
is a key observation for the following method of integration proposed by Ostrogradsky1.

1Ostrogradsky was a dedicated and successful lecturer. In particular, he said: “A better learning is not
limited to memorising, it develops skills to use the learned material for problem solving”.

https://en.wikipedia.org/wiki/Mikhail_Ostrogradsky
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Example 2.12. Consider
3x− 1

(x+ 1)(x− 3)
.

We try to write it as
3x− 1

(x+ 1)(x− 3)
=

A

x+ 1
+

B

x− 3
where A and B are constants. Multiplying both sides by (x+ 1)(x− 3) gives

(44) 3x− 1 = A(x− 3) + B(x+ 1) .

This is an identity which is true for all x.
Putting x = 3, it gives 8 = 4B, so B = 2.
Putting x = −1, it gives −4 = −4A, so A = 1.
With these values of A and B the identity does hold, for

3x− 1 = (x− 3) + 2(x+ 1).

Therefore
3x− 1

(x+ 1)(x− 3)
=

1
x+ 1

+
2

x− 3
.

Alternatively, find A and B as follows:
Coefficient of x in (44): 3 = A+ B.
Constant term in (44): −1 = −3A+ B.
Now solve for A and B, to get A = 1 and B = 2 again.
Now, we can do an integral:

2∫
0

3x− 1
(x+ 1)(x− 3)

dx =

2∫
0

(
1

x+ 1
+

2
x− 3

)
dx = [ln |x+ 1|+ 2 ln |x− 3|]20

= (ln 3 + 2 ln 1) − (ln 1 + 2 ln 3) = − ln 3,

since ln 1 = 0.

This method only works for proper rational functions. In general, first write the
rational function as the sum of a polynomial and a proper rational function, and then
convert that to partial fractions using the method above.

Example 2.13. Write
x3

(x+ 1)(x+ 2)
in partial fractions.

This is not a proper rational function. Note that (x+ 1)(x+ 2) = x2 + 3x+ 2.
We have

x3

x2 + 3x+ 2
= x+

x3 − x(x2 + 3x+ 2)
x2 + 3x+ 2

= x+
−3x2 − 2x
x2 + 3x+ 2

= x− 3 +
−3x2 − 2x− (−3(x2 + 3x+ 2))

x2 + 3x+ 2
= x− 3 +

7x+ 6
x2 + 3x+ 2

.

Alternatively, we may divide x3 by x2 + 3x + 2. It gives quotient x − 3 and remainder
7x+ 6.
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Therefore
x3

(x+ 1)(x+ 2)
= x− 3 +

7x+ 6
(x+ 1)(x+ 2)

.

Now using the usual method,
7x+ 6

(x+ 1)(x+ 2)
=

A

x+ 1
+

B

x+ 2
.

Therefore

(45) 7x+ 6 = A(x+ 2) + B(x+ 1) .

Putting x = −2 gives −8 = −B, so B = 8.
Putting x = −1 gives −1 = A.
Alternatively, the coefficient of x in (45) is 7 = A+B. The constant term is 6 = 2A+B.

Again A = −1 and B = 8.
Therefore

7x+ 6
(x+ 1)(x+ 2)

= −
1

x+ 1
+

8
x+ 2

so
x3

(x+ 1)(x+ 2)
= x− 3 −

1
x+ 1

+
8

x+ 2
.

2.4.1. Quadratic factors. Recall, that for a quadratic polynomial of the form ax2 + bx + c,
where a 6= 0, its discriminant is D = b2 − 4ac. Using completing the square method we
can show that the quadratic polynomial has two distinct (real) roots if and only if D > 0.

If one of the factors is quadratic and cannot be factorised (that is, its discriminant is
negative), then one has to allow the corresponding numerator to be linear (i.e., of degree
1).

Example 2.14. Write
5x+ 7

(x− 1)(x2 + x+ 2)
in partial fractions.

Assume
5x+ 7

(x− 1)(x2 + x+ 2)
=

A

x− 1
+

Bx+ C

x2 + x+ 2
.

Multiply both sides by the denominator.

5x+ 7 = A(x2 + x+ 2) + (Bx+ C)(x− 1) .

Putting x = 1 gives 12 = 4A, so A = 3. Therefore

5x+ 7 = 3(x2 + x+ 2) + (Bx+ C)(x− 1).

Since this is true for all x, we can compare coefficients. Therefore

coefficient of x2 : 0 = 3 + B

constant term : 7 = 6 − C

Therefore B = −3 and C = −1, and

(46)
5x+ 7

(x− 1)(x2 + x+ 2)
=

3
x− 1

−
3x+ 1

x2 + x+ 2
.

Can we integrate these functions? It turns out that we still need to learn some theory,
see Example 2.24.

https://www.mathsisfun.com/algebra/completing-square.html
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Example 2.15.
∫

x3 + x

x2 − x− 6
dx.

This is not proper, since the top has degree one more than the bottom, so we must
write

(47) x3 + x = (ax+ b)(x2 − x− 6) + (cx+ d),

where a,b, c,d are constants. Equivalently,

x3 + x

x2 − x− 6
= ax+ b+

cx+ d

x2 + x− 6
.

This can be done by long division (if you know it), or by the method we did earlier, or
simply by equating coefficients in (47).

Coefficient of x3: 1 = a.
Coefficient of x2: 0 = b− a, so b = 1.
Coefficient of x: 1 = −6a− b+ c, so c = 8.
Coefficient of 1 (constant term): 0 = −6b+ d, so d = 6.

Hence
x3 + x

x2 − x− 6
= x+ 1 +

8x+ 6
x2 − x− 6

. But x2 − x− 6 = (x+ 2)(x− 3).

So we can write
8x+ 6

x2 − x− 6
=

A1

x+ 2
+

A2

x− 3
.

This gives 8x+ 6 = A1(x− 3) +A2(x+ 2).
Put x = −2 to get −10 = −5A1. Put x = 3 to get 30 = 5A2.
Solving these gives A1 = 2, A2 = 6. So we finally have

∫
x3 + x

x2 − x− 6
dx =

∫ [
x+ 1 +

2
x+ 2

+
6

x− 3

]
dx =

x2

2
+ x+ 2 ln |x+ 2|+ 6 ln |x− 3|+ C,

from equations (13) and (23).

2.4.2. Repeated factors. So far each factor has occurred just once. If the denominator
includes a factor like (x− a)2, we include partial fractions of the form

A

x− a
+

B

(x− a)2 .

Example 2.16. Write
3x+ 5
(x− 2)2 in partial fractions.

Write
3x+ 5
(x− 2)2 =

A

x− 2
+

B

(x− 2)2 .

As usual, multiply by the denominator to get

3x+ 5 = A(x− 2) + B.

Comparing coefficients gives A = 3 and B = 11, and so
3x+ 5
(x− 2)2 =

3
x− 2

+
11

(x− 2)2 .

Hence ∫
3x+ 5
(x− 2)2 dx =

∫ [
3

x− 2
+

11
(x− 2)2

]
dx = 3 ln |x− 2|−

11
x− 2

+ C.



26 VLADIMIR V. KISIL

Example 2.17. Write
x2 − 17x− 8

(x− 3)(x+ 2)2 in partial fractions.

Write
x2 − 17x− 8

(x− 3)(x+ 2)2 =
A

x− 3
+

B

x+ 2
+

C

(x+ 2)2 .

Multiply by the denominator to get

x2 − 17x− 8 =A(x+ 2)2 + B(x− 3)(x+ 2) + C(x− 3)

=A(x2 + 4x+ 4) + B(x2 − x+ 6) + C(x− 3) .

Put x = 3 to get 9 − 17× 3 − 8 = 25A, so A = −2.
Put x = −2 to get 4 + 17× 2 − 8 = −5C, so C = −6.
Compare coefficients of x2 to get 1 = A+ B, so B = 3.
Therefore

x2 − 17x− 8
(x− 3)(x+ 2)2 = −

2
x− 3

+
3

x+ 2
−

6
(x+ 2)2 .

Example 2.18. Write as partial fractions:

3 + 2x− x2

(x− 1)(2x2 + x+ 1)
.

We need to write
3 + 2x− x2

(x− 1)(2x2 + x+ 1)
=

A

x− 1
+

Bx+ C

2x2 + x+ 1
,

and find the constants A, B and C. So we multiply by (x− 1)(2x2 + x+ 1) to get

3 + 2x− x2 = A(2x2 + x+ 1) + (Bx+ C)(x− 1).

Take x = 1 so that 3 + 2 − 1 = A(2 + 1 + 1), or A = 1.
Look at the coefficient of x2, so −1 = 2A+ B, and B = −3.
Look at the constant term, so 3 = A− C, and C = −2.
Hence

3 + 2x− x2

(x− 1)(2x2 + x+ 1)
=

1
x− 1

−
3x+ 2

2x2 + x+ 1
.

2.4.3. Summary of Ostrogradsky’s method. To find
∫ p(x)
q(x) dx perform the following steps:

(1) If the fraction is proper (that is the order of numerator p(x) is smaller then the
order of denominator q(x)) proceed to the next step letting r(x) = p(x) and
p1(x) = 0. Otherwise, perform polynomial long-division to find the quotient
p1(x) and reminder r(x):

p(x)

q(x)
= p1(x) +

r(x)

q(x)
.

(2) Factor the denominator q(x) into irreducible polynomials: linear and irreducible
quadratic polynomials:

q(x) = (x− a)α · · · (x− b)β(x2 + px+ q)µ · · · (x2 + rx+ s)ν .
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(3) Find the partial fraction decomposition:

r(x)

q(x)
=

A

(x− a)α
+

A1

(x− a)α−1 + . . . +
Aα−1

x− a
+ . . .

+
B

(x− b)β
+

B1

(x− b)β−1 + . . . +
Bβ−1

x− b

+
Kx+ L

(x2 + px+ q)µ
+

K1x+ L1

(x2 + px+ q)µ−1 + . . . +
Kµ−1x+ Lµ−1

x2 + px+ q
+ . . .

+
Mx+N

(x2 + rx+ s)ν
+

M1x+N1

(x2 + rx+ s)ν−1 + . . . +
Mν−1x+Nν−1

x2 + rx+ s
.

(4) Integrate the polynomial p1(x) and rational function r(x)
q(x) as was decomposed in

the previous step.

Remark 2.19. We do not consider integration of repeated quadratic factors of the denom-
inator in this course. If you are curious, watch a sample of such integration from this
video or read a more formal description of Ostrogradski’s method.

2.5. Trigonometric t Substitution. One calculus textbook (Spivak) describes this as “un-
doubtedly the world’s sneakiest substitution”! It was invented by Weierstrass. The sub-
stitution allows to reduce an integral from trigonometric functions to an integral from
rational functions, the later can be calculated by the Ostrogradsky’s method, see subsec-
tion 2.4.3.

Put t = tan(x/2). Then

(48) tan x =
2 tan(x/2)

1 − tan2(x/2)
=

2t
1 − t2 ,

Also:

sin x = 2 sin(x/2) cos(x/2)

= 2
sin(x/2)
cos(x/2)

cos2(x/2)

= 2 tan(x/2)
1

1 + tan2(x/2)

=
2t

1 + t2(49)

Finally:

(50) cos x =
sin x
tan x

=
1 − t2

1 + t2 .

Differentiating t = tan(x/2) gives

(51)
dt
dx

=
1
2

sec2(x/2) =
1
2
(
1 + tan2(x/2)

)
=

1
2
(1 + t2), so dx =

2dt
1 + t2 .

Example 2.20.
∫

dx
sin x

, for x such that sin x > 0. Put t = tan(x/2) to get∫
1 + t2

2t
2dt

1 + t2 =

∫
dt
t

= ln (t) + C = ln [tan (x/2)] + C.

https://www.youtube.com/watch?v=OZ4chYM0uR0
https://www.youtube.com/watch?v=OZ4chYM0uR0
https://www.encyclopediaofmath.org/index.php/Ostrogradski_method
https://en.wikipedia.org/wiki/Karl_Weierstrass
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This can also be used for
∫

dx
cos x

, etc.

Example 2.21. Let us consider once more the integral
∫

cos x ·sin xdx, which was already

solved by three different methods in § 2.2(3) and Example 2.8. Using the trigonometric
substitution we obtain:∫

cos x · sin xdx =
∫

1 − t2

1 + t2

2t
1 + t2

2 dt
1 + t2 =

∫
4t(1 − t2)

(1 + t2)3 dt .

Although, the last integral is still doable through the partial fraction decomposition (us-
ing repeated factors), this approach would be the least efficient among all considered so
far.

Remark 2.22. Note that cosec x+ cot x =
1 + t2

2t
+

1 − t2

2t
=

1
t

, so we can express functions

of t in terms of trigonometric functions of x rather than x/2 if we wish.

2.6. Inverse Trigonometric Functions. To complete Ostrogradsky’s method we will need
to integrate irreducible quadratic fractions, for example

∫ 1
x2+1 d. Surprisingly, to this end

we need to study inverse trigonometric functions. See the previous discussion of inverse
functions producing logarithm in subsection 1.6.

Definition 2.23. Define the inverse trigonometric functions in the standard way i.e.

(52)
y = sin−1(x) ⇒ x = sin(y) a)
y = cos−1(x) ⇒ x = cos(y) b)
y = tan−1(x) ⇒ x = tan(y) c)

However, we have to restrict the domain, and decide which range of values to take.
As shown on Fig. 7, the inverse functions are well-defined if

(53)
sin−1(x) Domain − 1 6 x 6 1, Range − π/2 6 y 6 π/2 a),
cos−1(x) Domain − 1 6 x 6 1, Range 0 6 y 6 π b),
tan−1(x) Domain −∞ 6 x 6∞, Range − π/2 6 y 6 π/2 c).

We can use the chain rule to determine the derivatives in the same way as for ln(x). If

y = sin−1(x), then x = sin(y),

Differentiate to get

1 = cos(y)
dy
dx

, so
dy
dx

=
1

cos(y)
.

Using sin2 y+ cos2 y = 1 we get

(54)
d

dx
sin−1(x) =

1
cos(y)

=
1√

1 − sin2(y)
=

1√
1 − x2

.

Similarly
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y

x1

−1

π
2

−π
2

sin−1(x)

y

x1−1

π
cos−1(x)

y

x

π
2

−π
2

tan−1(x)

Figure 7. Inverse trigonometric functions are drawn in blue. Their
graphs are mirror reflections in the red dotted line of the part of trigono-
metric function green graph.

d
dx

cos−1(x) =
−1√

1 − x2
,(55)

d
dx

tan−1(x) =
1

1 + x2 .(56)

So ∫
dx√

1 − x2
= sin−1(x) + C and

∫
dx

1 + x2 = tan−1(x) + C.

We won’t normally use cos−1(x) as it gives us nothing new.
This works for definite integrals too, so

1∫
0

dx√
1 − x2

=
[
sin−1(x)

]1
0 =

π

2
− 0 =

π

2
.
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The above formulae tell us how to do certain types of integrals.

Example 2.24. (1)
∫

dx√
a2 − x2

. Put x = a sin θ. Then dx = a cos θdθ. We get∫
dx√
a2 − x2

=

∫
a cos θ√

a2 − a2 sin2 θ
dθ =

∫
dθ = θ+ C = sin−1(x/a) + C .

(2)
∫

dx√
8 − 2x− x2

. Since x2 + 2x − 8 = (x + 1)2 − 9, this is just
∫

dx√
9 − (x+ 1)2

. So

put u = x+ 1 and du = dx, so we get∫
du√

9 − u2
= sin−1(u/3) + C = sin−1

(
x+ 1

3

)
+ C .

(3)
∫

dx
x2 + a2 . Put x = a tan θ. Then dx = a sec2 θdθ. We get

∫
dx

x2 + a2 =

∫
a sec2 θ

a2 tan2 θ+ a2
dθ =

∫
dθ
a

=
θ

a
+ C =

1
a

tan−1(x/a) + C ,

since sec2 θ = 1 + tan2 θ.

(4)
∫

dx
x2 − 4x+ 20

. We can write x2 − 4x + 20 = (x − 2)2 + 16. Put x − 2 = 4 tan θ.

Then dx = 4 sec2 θdθ.
We get ∫

dx
x2 − 4x+ 20

=

∫
4 sec2 θ

16 tan2 θ+ 16
dθ =

∫
dθ
4

=
θ

4
+ C

=
1
4

tan−1[(x− 2)/4] + C

For example,
2∫

−2

dx
x2 − 4x+ 20

=
1
4

[
tan−1 x− 2

4

]2

−2
=

1
4
(0 − (−π/4)) =

π

16
.

(5)
∫

2x+ 3
x2 − 2x+ 5

dx . Here we need a combination of techniques from Example 2.5

and the above 2.24(4):∫
2x+ 3

x2 − 2x+ 5
dx =

∫
(2x− 2) + (2 + 3)
x2 − 2x+ 5

dx

=

∫
2x− 2

x2 − 2x+ 5
dx+

∫
5

x2 − 2x+ 5
dx.(57)

For the first integral (57) we make the substitution u = x2 − 2x + 5 with du =
(2x− 2)dx:∫

2x− 2
x2 − 2x+ 5

dx =
∫

du
u

= ln |u|+ C = ln
∣∣x2 − 2x+ 5

∣∣+ C.(58)
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For the second integral (57) we complete the square x2 − 2x+ 5 = (x− 1)2 + 4 and
make the substitution x− 1 = 2 tan t with dx = 2 dt

cos2 t
:∫

5
x2 − 2x+ 5

dx = 5
∫

2 dt
cos2 t(4 tan2 t+ 4)

=
5
2

∫
dt =

5
2
t+ C

=
5
2

tan−1
(
x− 1

2

)
+ C.(59)

Combining two integrals (58) and (59) together we obtain the answer:∫
2x+ 3

x2 − 2x+ 5
dx = ln

∣∣x2 − 2x+ 5
∣∣+ 5

2
tan−1

(
x− 1

2

)
+ C.

(6) Integrate (46).

We can see that we cannot use partial fractions for examples 2.24(3) and 2.24(4) be-
cause x2 + a2 and x2 − 4x+ 20 cannot be factorised (at least not with real numbers).

3. Hyperbolic functions

We have seen that the integral
∫ 1√

1−x2 dx is solved by the inverse sine function. Inte-
gration of an apparently similar function

∫ 1√
1+x2 dx requires introduction of new hyper-

bolic functions. They were discovered by Vincenzo Riccati and Lambert.

3.1. Hyperbolic functions and exponent. We define the hyperbolic sine and cosine func-
tions using exponents.

Definition 3.1. We define hyperbolic functions

(60) sinh(x) =
1
2
(ex − e−x), cosh(x) =

1
2
(ex + e−x), tanh(x) =

sinh(x)
cosh(x)

.

Note, that sinh and tanh are odd functions (that is f(−x) = −f(x)) and cosh is even function
(that is f(−x) = f(x)), the same as with the trigonometric sin, cos and tan. This may be
used to recover which function is defined through a sum of exponents and which one
with the difference.

Sometimes we also write

(61) cosech(x) =
1

sinh(x)
, sech(x) =

1
cosh(x)

, coth(x) =
1

tanh(x)
.

We can show from the definitions that

(62) cosh2x− sinh2 = 1,

since

cosh2 x− sinh2 =
1
4
(ex + e−x)2 −

1
4
(ex − e−x)2

=
1
4
(e2x + 2 + e−2x) −

1
4
(e2x − 2 + e−2x) = 1.

Dividing (62) by cosh2 x we also have

1 − tanh2 x = sech2 x.

https://en.wikipedia.org/wiki/Vincenzo_Riccati
https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
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x

cosh x

x

cosh x

x

sinh x

x

tanh x

Figure 8. Graphs of hyperbolic functions.

We see that the formulae relating the hyperbolic functions are often the same as for
the trigonometric functions, with some sign changes. The important difference between
hyperbolic and trigonometric functions is that former are not periodic.

The derivatives of these functions are:

d
dx

sinh(x) =
d

dx
1
2
(ex − e−x) =

1
2
(ex + e−x) = cosh(x),(63)

d
dx

cosh(x) =
d

dx
1
2
(ex + e−x) =

1
2
(ex − e−x) = sinh(x),(64)

d
dx

tanh(x) =
d

dx
sinh(x)
cosh(x)

= 1 −
sinh2(x)

cosh2(x)
.

Using (62), we get

(65)
d

dx
tanh(x) =

1
cosh2(x)

= sech2(x),

from (61b).
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Note that tanh(x)→ −1 as x→ −∞, and tanh(x)→ 1 as x→∞.

3.2. Inverse hyperbolic functions.

Definition 3.2. Define the inverse hyperbolic functions in the standard way i.e.

y = sinh−1(x) ⇒ x = sinh(y),(66)

y = cosh−1(x) ⇒ x = cosh(y),(67)

y = tanh−1(x) ⇒ x = tanh(y),(68)

Again we have to be careful with the domain and range, see Fig. 8. The inverse
functions are well defined if:

sinh−1(x) Domain −∞ < x <∞ Range −∞ < y <∞
cosh−1(x) Domain 1 6 x <∞ Range 0 6 y <∞
tanh−1(x) Domain −1 < x < 1 Range −∞ < y <∞

We can get the derivatives of these functions as for the inverse trigonometric functions
e.g.

y = sinh−1(x) ⇒ sinh(y) = x.
Differentiating gives

cosh(y)
dy
dx

= 1.

Hence

(69)
d

dx
sinh−1(x) =

dy
dx

=
1

cosh(y)
=

1

[1 + sinh2(y)]
1/2 =

1
(1 + x2)1/2 ,

from (62).
Similarly we get

(70)
d

dx
cosh−1(x) =

1
(x2 − 1)1/2 ,

(71)
d

dx
tanh−1(x) =

1
1 − x2 ,

We can get explicit expressions for these functions. We have

y = sinh−1(x) ⇒ sinh(y) =
1
2
(ey − e−y) = x.

Then

e2y − 2xey − 1 = 0.
Put z = ey to get z2 − 2xz− 1 = 0. Solving this gives

z = ey = x±
√
x2 + 1.
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So

(72) y = sinh−1(x) = ln
(
x+

√
x2 + 1

)
.

The right-hand side of (72) is known as “long” logarithm.
Note that we must take the + sign since x <

√
x2 + 1 and we cannot take the logarithm

of a negative number.
Similarly, we get

(73) cosh−1(x) = ln
(
x+

√
x2 − 1

)
provided x > 1.

Note the restriction on x: coshy > 1 for all y.
Suppose now that y = tanh−1(x). Then

tanh(y) =
ey − e−y

ey + e−y
= x.

Then
e2y − 1
e2y + 1

= x ⇒ e2y =
1 + x

1 − x
⇒ y =

1
2

ln
(

1 + x

1 − x

)
.

Hence

(74) tanh−1(x) =
1
2

ln
(

1 + x

1 − x

)
provided |x| < 1.

Note the restriction on x. The right-hand side of (74) is known as “tall” logarithm.
As for the inverse trigonometric functions, these results tell us how to do certain types

of integrals.
For example, from (69) we can say that∫

dx√
1 + x2

= sinh−1(x) + C.

We can also see this by substitution. Let x = sinhu, dx = coshudu, so the integral
becomes∫

1√
1 + sinh2 u

coshudu =

∫
du = u+ C = sinh−1 x + C = ln(x+

√
x2 + 1) + C.

Example 3.3. It is instructive to compare this set of examples with Example 2.24 and
observe the explicit similarities.

(1)
∫

dx√
x2 − a2

. Put x = a cosh(θ). Then dx = a sinh(θ)dθ. We get∫
dx√
x2 − a2

=

∫
a sinh(θ)√

a2cosh2(θ) − a2
dθ =

∫
sinh(θ)
sinh(θ)

dθ =

∫
dθ = θ+ C,

where we have used cosh2(x) − sinh2(x) = 1 (62). We therefore get

(75)
∫

dx√
x2 − a2

= cosh−1
( x
a

)
+ C.
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(2) Now try
∫

dx√
x2 + 6x+ 5

. We have x2 + 6x+ 5 = (x+ 3)2 − 4, so let’s put u = x+ 3

and du = dx, so we get
∫

du√
u2 − 4

.

From 1, with a = 2, this is cosh−1 u

2
+ C, i.e., cosh−1 x+ 3

2
+ C.

(3)
∫

dx√
x2 + a2

. Put x = a sinh(θ). Then dx = a cosh(θ)dθ. We get

∫
dx√
x2 + a2

=

∫
a cosh(θ)√

a2sinh2(θ) + a2
dθ =

∫
cosh(θ)
cosh(θ)

dθ =

∫
dθ = θ+ C,

where we have used cosh2(x) − sinh2(x) = 1 (62). We therefore get

(76)
∫

dx√
x2 + a2

= sinh−1
( x
a

)
+ C.

(4) Now try
∫

dx√
x2 + 2x+ 10

. Since x2 + 2x+ 10 = (x+ 1)2 + 9, we put u = x+ 1, so

du = dx, to get
∫

du√
u2 + 9

.

From 3 with a = 3 this is sinh−1 u

3
+ C, i.e. sinh−1 x+ 1

3
+ C.

(5)
∫

dx
a2 − x2 , for |x| < a. Put x = a tanh(θ). Then dx = a sech2(θ)dθ. We get

∫
dx

a2 − x2 =

∫
a sech2(θ)

a2[1 − tanh2(θ)]
dθ =

∫
sech2(θ)

a sech2(θ)
dθ =

∫
dθ
a

=
θ

a
+ C,

where we have used cosh2(x) − sinh2(x) = 1 (62), so 1 − tanh2x = sech2x. We
therefore get

(77)
∫

dx
a2 − x2 =

1
a

tanh−1
( x
a

)
+ C.

This could also be done using partial fractions. Write

1
a2 − x2 =

A1

a− x
+

A2

a+ x
,

so 1 = A1(a+ x) +A2(a− x). Put x = a and x = −a to find A1 and A2.
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This gives A1 = A2 =
1

2a
, so∫

dx
a2 − x2 =

1
2a

∫ [
1

a− x
+

1
a+ x

]
dx

=
1

2a
[ln |a+ x|− ln |a− x|]

=
1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣
=

1
2a

ln
(
a+ x

a− x

)
;

we remove the absolute value signs because −a < x < a implies that a+x
a−x > 0.

This should be the same as (77). From (74) we have

1
a

tanh−1
( x
a

)
=

1
2a

ln
(
a+ x

a− x

)
=

1
2a

[ln(a+ x) − ln(a− x)]

which agrees with our previous result.

3.3. Summary of useful substitutions. Here we list some common expressions and
methods suitable for their integration.∫

1
x2 − a2 dx (or anything that factorizes). Partial fractions (the substitution x = a tanh t

works as well).∫
1

x2 + a2 dx. Put x = a tan θ.∫
x

x2 ± a2 dx. Put u = x2 ± a2.∫
1√

a2 − x2
dx (or some other expression of

√
a2 − x2). Put x = a sin θ.∫

1√
a2 + x2

dx (or some other expression of
√
a2 + x2). Put x = a sinh θ.∫

1√
x2 − a2

dx (or some other expression of
√
x2 − a2). Put x = a cosh θ.∫

x√
x2 ± a2

dx. Put u = x2 ± a2.

4. Applications of integrals

We will show some applications of integrals to geometric problems.

4.1. Areas. Since the definite integral is defined as an area, we can use it to calculate the
areas of different shapes.

4.1.1. Circle. We have already found the area of a circle by elementary considerations in
the beginning of Section 1. Now we solve this question again using integration technique.

Consider a quarter of the circle centre (0, 0), radius R. The equation is x2 + y2 = R2,
i.e., y =

√
R2 − x2.
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Figure 9. Area of a circle

So the area is A =

R∫
0

√
R2 − x2 dx.

To evaluate this integral, put x = R sin θ. Then dx = R cos θ and the new limits are
x = 0, θ = 0, x = R, θ = π/2.

Then

R∫
0

√
R2 − x2 dx =

π/2∫
0

R2
√

1 − sin2 θ cos θdθ

=

π/2∫
0

R2 cos2 θdθ

=

π/2∫
0

R2
(

1
2
+

1
2

cos 2θ
)

dθ =

[
R2θ

2
+
R2

4
sin(2θ)

]π/2

0

=
πR2

4
(78)

This gives the area of the whole circle πR2 as expected.
There is an easier way to do it. Consider a the strip shown on Fig. 10 with width δr.
Its area is δA =

πr

2
δr (“the product of its width by depth”), so

A =

R∫
0

πrdr
2

=

[
πr2

4

]R
0
=
πR2

4
.

4.1.2. Ellipse. Consider a quarter of the ellipse
x2

a2 +
y2

b2 = 1, or y = b
√

1 − x2/a2.



38 VLADIMIR V. KISIL

Figure 10. Circular strip

x

y

O a

b

Figure 11. Area of an ellipce

So the area is A =

a∫
0

b

√
1 − x2/a2 dx.

Put x = a sin θ. Then dx = a cos θ and new limits are x = 0, θ = 0, x = a, θ = π/2.
Then

a∫
0

b

√
1 − x2/a2 dx =

π/2∫
0

ab
√

1 − sin2 θ cos θdθ

=

π/2∫
0

ab cos2 θdθ =

[
abθ

2
+
ab

4
sin(2θ)

]π/2

0
.

This gives A =
πab

4
as expected. Note, that for a = b the ellipse becomes a circle of

the radius a, then the above answer coincides with (78).

4.1.3. Area under Curves.
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x

y

2A

1A

Figure 12. Area under the graph of sine

Example 4.1. The area between sin x and the x-axis for −π/2 6 x 6 π/2.

This is A = A1 +A2. But

π/2∫
−π/2

sin xdx = [− cos x]π/2
−π/2 = 0.

This is because areas with negative y are counted as negative. To get the right answer
we have to write

A =

π/2∫
−π/2

| sin x|dx =

0∫
−π/2

− sin xdx+

π/2∫
0

sin xdx = 2

π/2∫
0

sin xdx = 2[− cos x]π/2
0 = 2.

Example 4.2. The area between y = x and y = x2 for 0 6 x 6 1.

This is A =

1∫
0

(x− x2)dx =
[
x

2
−
x3

3

]1

0
=

1
2
−

1
3
=

1
6

.

In general the area between two curves, y = f(x) and y = g(x), with x running from a
to b is

b∫
a

|f(x) − g(x)|dx,

and the way to do this is to split the range into interval in which f(x) > g(x) or
f(x) 6 g(x).

So, in our example, if we wanted the area from 0 6 x 6 2 we would need to split the
range of integration into two pieces, on one of which x > x2 and on the other x2 > x, so
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x

y

1

y=x

y=x

2

Figure 13. Area under a parabola

we would get
1∫
0

(x− x2)dx+

2∫
1

(x2 − x)dx.

x

y

−2 2

Figure 14. Area under a curve

Example 4.3. The area between y = x3 − 4x+ 15 and the x-axis for −2 6 x 6 2.

This is A =

2∫
−2

(x3 − 4x+ 15)dx =
[
x4

4
− 2x2 + 15x

]2

−2
=
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= 4 − 8 + 30 − 4 + 8 + 30 = 60.

4.2. Volumes. One can also use integration to calculate volumes, but this complicated in
the general case. However, it is not too difficult if the object has some symmetry.

4.2.1. Volumes of Revolution. For any curve y = f(x), we can form a solid of revolution by
rotating the curve about the x-axis.

δ

f(x)

f(x)y

x
a x b x

Figure 15. Integration of rotation solids

If we cut out a disc at x with thickness δx by slicing the solid perpendicular to the
x-axis. This disc has radius f(x) and so has volume δV = πy2δx. Hence if the body lies
between x = a and x = b, then its volume is

(79) V =

b∫
a

πy2 dx =

b∫
a

π[f(x)]2 dx.

h

a

x

y

Figure 16. Volume of a cone

Example 4.4. Consider a cone whose height is h and whose base has radius a.
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In this case f(x) =
ax

h
and (79) gives

(80)

h∫
0

π
a2x2

h2 dx = π
a2

h2

[
x3

3

]h
0
=

1
3
πa2h.

Note this is 1/3 of the volume of a cylinder with the same base and height.

y

xx−a a

Figure 17. Volume of a sphere

Example 4.5. Consider a sphere of radius a. This is obtained by rotating a half-circle
with radius a.

In this case f(x) =
√
a2 − x2 and (79) gives

(81) V =

a∫
−a

π(a2 − x2)dx = π
[
a2x−

x3

3

]a
−a

=
4π
3
a3.

Note that V is a function of a, and that
dV
da

= 4πa2. So, if we add a thin shell of

thickness δa, we increase the volume by 4πa2δa. This suggests (and leads to a proof)
that the area of the surface of the sphere is 4πa2.

The next example shows that integrals can be used not only for solids of revolution.

Example 4.6. Consider a pyramid of height h, base with side a. The cross-section at x is

a square with side
xa

h
. So a slice at x with thickness δx has volume δV =

(xa
h

)2
δx. The
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x

y

a

h

Figure 18. Volume of a pyramid

volume is then

(82)

h∫
0

dV =

h∫
0

(xa
h

)2
dx =

a2

h2

[
x3

3

]h
0
=
a2h

3
.

Note, that this is 1/3 of the volume of a rectangular block with same base and height.
Also, similar calculations can be used for the volume of a pyramid with the base of an
arbitrary shape, cf. Example 4.4.

Example 4.7. Find the volume of the torus (or “ring”) obtained by rotating the disc

x2 + (y− 1)2 =
1
4

about the x-axis. This is a circle with centre (0, 1) and radius 1/2.

The equation of the top semi-circle is y = 1 +

√
1
4
− x2, and of the bottom semi-circle

is y = 1 −

√
1
4
− x2; in each case for −1/2 6 x 6 1/2. To get the volume we want we

subtract the two volumes, to get

V = π

1/2∫
−1/2

(
1 +

√
1
4
− x2

)2

−

(
1 −

√
1
4
− x2

)2

dx.

This simplifies to

V = 4π

1/2∫
−1/2

√
1
4
− x2 dx.
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Put x =
1
2

sin θ, dx =
1
2

cos θdθ, to get

V = 4π

π/2∫
−π/2

(
1
2

cos θ
)

1
2

cos θdθ

= π

π/2∫
−π/2

(
1
2
+

1
2

cos 2θ
)

dθ

= π

[
θ

2
+

1
4

sin 2θ
]π/2

−π/2
= π(π/4 − (−π/4)) =

π2

2
.

Example 4.8. Consider the curve y = 1/(x + 1) with x > 0. Show that the total area
enclosed by it and the x-axis is infinite, and find the volume of the solid obtained by
rotating the area about the x-axis.

First, the area underneath is∞∫
0

1
x+ 1

dx = [ln(x+ 1)]∞0 =∞,

since ln(x+ 1) tends to +∞ as x tends to +∞.

Surprisingly, the volume is finite: it is

V = π

∞∫
0

1
(x+ 1)2 dx = π

[
−

1
x+ 1

]∞
0

= π(0 − (−1)) = π.

In other words, to “make” such a body of revolution we would need only a finite amount
of material, but to colour it surface we would need an infinite amount of paint.

5. Binomial Coefficients and Polynomials

5.1. Binomial Coefficients.

Definition 5.1. The binomial (or combinatorial) coefficients, denoted as
(
n

r

)
, are the number

of ways one can pick r elements from a set of n elements. The symbol
(
n

r

)
is read as “n

choose r”.

They can also be written as nCr (from combinations or choices) and many other similar
notations.

Recall the fundamental principle of combinatorics—the rule of product or multiplication
principle— a basic counting principle: if there are n ways of doing something and m
ways of doing another thing independently, then there are n · m ways of performing
both actions.
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To find a formula for
(
n

r

)
, first consider the number of ways that we can order n

elements. This is also called the number of permutations of the n elements.
We can choose the 1st element in n ways.
We can choose the 2nd element in n− 1 ways.
We can choose the 3rd element in n− 2 ways.

·
·

We can choose the last element in 1 way.
So the total number of ways is

(83) n! = n(n− 1)(n− 2) · · · 1.

This is called n factorial. For a convenience we define 0! = 1. Note, the important
recurrence relation for factorials:

(84) n! = (n− 1)! · n .

This formula together with the initial value 0! = 1 is equivalent to the definition (83).
Now suppose that we want to pick r elements from a set of n elements if the order in

which they are picked matters.
We can choose the 1st element in n ways.
We can choose the 2nd element in n− 1 ways.
We can choose the 3rd element in n− 2 ways.

·
·

We can choose the last element in n− r+ 1 ways,
since we have n − r + 1 elements left when we pick the last one. From the definition of
the factorial this is

(85) nPr =
n!

(n− r)!
,

For
(
n

r

)
, we do not care about the order of the elements. So we must have

(86)
(
n

r

)
=
nPr

r!
=

n!
r!(n− r)!

,

since r! is the number of ways in which we can order each set of r elements.
Note that

(87)
(
n

n

)
=

(
n

0

)
= 1 ,

because there is only one way how to to chose all n elements or none of them. Also:

(88)
(
n

r

)
=

(
n

n− r

)
.

This is easy to see:(
n

n− r

)
=

n!
(n− r)!(n− n+ r)!

=
n!

r!(n− r)!
=

(
n

r

)
.
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Practically it also means that there are as many possibilities to pick r elements out of the
set of n elements as possibilities to un-pick n− r elements.

We can also prove the important recurrence relation for binomial coefficients:

(89)
(
n

r

)
=

(
n− 1
r

)
+

(
n− 1
r− 1

)
.

To show this, we have(
n− 1
r

)
+

(
n− 1
r− 1

)
=

(n− 1)!
r!(n− r− 1)!

+
(n− 1)!

(r− 1)!(n− r)!

=
(n− 1)!
r!(n− r)!

[(n− r) + r]

=
(n− 1)!
r!(n− r)!

× n =
n!

r!(n− r)!
=

(
n

r

)
,

where we use several times the fact that n! = n(n− 1)! (84).
An alternative proof of the same identity (89) can be received from combinatorial

arguments. Assume I have the set of n elements: n− 1 pens and one pencil. How many
possibilities are to take r objects from this set? There are two main cases: either I will
choose the pencil or not. If pencil is not taken, then I need to take r pens from the set

of n − 1, that is
(
n− 1
r

)
. Alternatively, if I take a pencil then i need to choose only

r − 1 pens from the set of n − 1, that is
(
n− 1
r− 1

)
. Adding those two numbers I get the

expression (89) for
(
n

r

)
.

5.2. Pascal’s Triangle. The recurrence relation (89) together with the initial values (87)
can be used to show that Pascal’s triangle contains the binomial coefficients.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
·
·

The rule for constructing the triangle is that each number is the sum of the number
on its left in the row above and the number on its right in the row above.

If we look at the row beginning with “1 5”, we see that we have(
5
0

)
= 1,

(
5
1

)
= 5,

(
5
2

)
= 10,

(
5
3

)
= 10,

(
5
4

)
= 5,

(
5
5

)
= 1,

so these are just the binomial coefficients for n = 5. This follows from (89).
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Remark 5.2. Traditionally, we name Pascal’s triangle after Blaise Pascal. However it was
known much earlier to Indian, Persian and Chinese mathematicians, e.g. Al-Karaji and
Shen Kuo.

5.3. The Binomial Theorem.
(
n
r

)
are called the binomial coefficients because they are the

coefficients in the expansion of (a+ b)n. We have

(90) (a+ b)n =

n∑
r=0

(
n

r

)
an−rbr.

The binomial theorem is commonly attributed to Newton.
So

(a+ b)2 = a2 + 2ab+ b2,

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4,

and so on.
To see this in general, we note that each term in the expansion consists of n factors

each of which is either a or b. Consider one such term, an−rbr. We have

(a+ b)n = (a+ b)(a+ b) · · · (a+ b),
i.e., a product of n factors a + b. To get the term an−rbr, we have to pick a from n − r
factors and b from r factors. This is just picking r elements (the b) from n elements i.e.(
n
r

)
by definition.

For example, consider

(a+ b)3 = (a+ b)(a+ b)(a+ b).

To get a3 we have to pick a from each factor, i.e., no b. This is done in
(3

0

)
= 1 way.

To get a2b we have to pick a from 2 factors and b from 1 factor. This is done in
(3

1

)
= 3

ways.
To get ab2 we have to pick a from 1 factors and b from 2 factors. This is done in(3

2

)
= 3 ways.

To get b3 we have to pick b from each factor, i.e., no a. This is done in
(3

3

)
= 1 way.

So

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3.

Example 5.3. Expand (a− b)4. Use the binomial theorem (89); we get

(a− b)4 =

4∑
r=0

(
4
r

)
a4−r(−b)r

=

(
4
0

)
a4 +

(
4
1

)
a3(−b) +

(
4
2

)
a2(−b)2 +

(
4
3

)
a(−b)3 +

(
4
4

)
(−b)4.

We have(
4
0

)
= 1,

(
4
1

)
=

4!
1!3!

= 4,
(

4
2

)
=

4!
2!2!

= 6,
(

4
3

)
=

4!
3!1!

= 4,
(

4
4

)
= 1.

https://en.wikipedia.org/wiki/Blaise_Pascal
https://en.wikipedia.org/wiki/Al-Karaji
https://en.wikipedia.org/wiki/Shen_Kuo
https://en.wikipedia.org/wiki/Isaac_Newton
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So
(a− b)4 = a4 − 4a3b+ 6a2b2 − 4ab3 + b4.

Example 5.4. Expand (a+ 3b)3 by the binomial theorem: we get

(a+ 3b)3 =

3∑
r=0

(
3
r

)
a3−r(3b)r

=

(
3
0

)
a3 +

(
3
1

)
a2(3b)1 +

(
3
2

)
a1(3b)2 +

(
3
3

)
(3b)3

= (1)(a3) + (3)(3a2b) + (3)(9ab2) + (1)(27b3)

= a3 + 9a2b+ 27ab2 + 27b3.

Example 5.5. As a connection with the main theme of this course let us integrate both
sides of the binomial formula (90) for (x+ a)n where x is a variable, a is a constant and
n is a natural number. Then for the right-hand side the substitution u = x+a do the job:∫

(x+ a)n dx =
∫
un du =

1
n+ 1

un+1 + C =
1

n+ 1
(x+ a)n+1 + C1 .

For the left-hand side we use additivity (11) and homogeneity (12) of the integral:∫ n∑
r=0

(
n

r

)
xn−rar dx =

n∑
r=0

∫ (
n

r

)
xn−rar dx

=

n∑
r=0

(
n

r

)
ar
∫
xn−r dx

=

n∑
r=0

(
n

r

)
ar

1
n− r+ 1

xn−r+1 + C2 .

In other words, we shall have:

1
n+ 1

(x+ a)n+1 + C1 =

n∑
r=0

1
n− r+ 1

(
n

r

)
xn−r+1ar + C2 .

or using the binomial formula (90) for (x+ a)n+1

1
n+ 1

n+1∑
r=0

(
n+ 1
r

)
xn+1−rar + C1 =

n∑
r=0

1
n− r+ 1

(
n

r

)
xn−r+1ar + C2 .

The left- and right-hand side of the last identity are similar, but you still need to check
that:

(1)
1

n+ 1

(
n+ 1
r

)
=

1
n− r+ 1

(
n

r

)
.

(2) The term for r = n+ 1 missing in the right-hand sum shall be equal to C2 − C1.

6. Some revision examples

We revise different examples for many previous methods.
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6.1. Polynomial Division. We mentioned earlier in Section 2.4, that if P(x) is an nth
order polynomial and Q(x) is an mth order polynomial, then we could write

(91) P(x) = N(x)Q(x) + R(x), or equivalently:
P(x)

Q(x)
= N(x) +

R(x)

Q(x)
,

where
• N(x) (the quotient) is an (n−m)th order polynomial if n > m and 0 otherwise;
• R(x) (the remainder) is at most an (m − 1)th order polynomial, thus the rational

function R(x)
Q(x) is proper.

We can find N(x) and R(x) by either:
• equating coefficients of powers of x; or
• by a method of long (polynomial) division.

Example 6.1. Find the quotient and remainder for x4 − 2x3 − 7x2 + x + 40 is divided by
x2 − 6x+ 10.

x2 + 4x+ 7
x2 − 6x+ 10 |x4 − 2x3 − 7x2 + x+ 40

x4 − 6x3 + 10x2

4x3 − 17x2 + x See (1) below
4x3 − 24x2 + 40x See (2) below

7x2 − 39x+ 40 See (3) below
7x2 − 42x+ 70

3x− 30

The sequence of steps (that is the algorithm) is:
(1) DIVIDE the highest term remaining by x2 (e.g. 4x3/x2 = 4x);
(2) MULTIPLY everything in the divisor by what you got, so

4x(x2 − 6x+ 10) = 4x3 − 24x2 + 40x;

(3) SUBTRACT, and notice that this reduces the degree of what’s remaining.
So the quotient is N = x2 + 4x+ 7, and the remainder is R = 3x− 30.

Now ∫
x4 − 2x3 − 7x2 + x+ 40

x2 − 6x+ 10
dx =

∫
(x2 + 4x+ 7)dx+

∫
3x− 30

x2 − 6x+ 10
dx.

The first integral is just
x3

3
+2x2+7x (+C), and for the second we complete the square,

putting u = x− 3, since x2 − 6x+ 10 = (x− 3)2 + 1. We get∫
3u− 21
u2 + 1

du = 3
∫

u

u2 + 1
du− 21

∫
du
u2 + 1

=
3
2

ln(u2 + 1) − 21 tan−1 u+ C

=
3
2

ln(x2 − 6x+ 10) − 21 tan−1(x− 3) + C.
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So the final answer is
x3

3
+ 2x2 + 7x+

3
2

ln(x2 − 6x+ 10) − 21 tan−1(x− 3) + C.

Example 6.2. Find the quotient and remainder for 2x4 − 2x3 − 15x2 + 9x− 2 is divided by
x2 − 4x+ 4.

Hence find ∫
2x4 − 2x3 − 15x2 + 9x− 2

x2 − 4x+ 4
dx.

2x2 + 6x+ 1
x2 − 4x+ 4 |2x4 − 2x3 − 15x2 + 9x− 2

2x4 − 8x3 + 8x2

6x3 − 23x2 + 9x
6x3 − 24x2 + 24x

x2 − 15x− 2
x2 − 4x+ 4
−11x− 6

So the quotient is N = 2x2 + 6x+ 1 and the remainder is R = −11x− 6.
Now since x2 − 4x+ 4 = (x− 2)2 we write

−11x− 6
(x− 2)2 =

A

x− 2
+

B

(x− 2)2 ,

where −11x− 6 = A(x− 2) + B. Thus A = −11 and B = −28. So∫
2x4 − 2x3 − 15x2 + 9x− 2

x2 − 4x+ 4
dx =

∫ (
2x2 + 6x+ 1 −

11
x− 2

−
28

(x− 2)2

)
dx

=
2
3
x3 + 3x2 + x− 11 ln |x− 2|+

28
x− 2

+ C.

6.2. Various examples.

Example 6.3.
∫
(ln x)2 dx. We try integration by parts:

∫
f ′g = fg −

∫
fg ′. Here we put

f(x) = 1 and g(x) = (ln x)2.
This gives∫

(ln x)2 dx = x(ln x)2 −

∫
x

2 ln x
x

dx

= x(ln x)2 − 2
∫

ln xdx

= x(ln x)2 − 2x(ln x) + 2
∫
x

1
x

dx, integrating by parts again,

= x(ln x)2 − 2x(ln x) + 2x+ C.

Alternatively, the substitution u = ln x, x = eu, so dx = eu du, turns the integral into∫
u2eu du,
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but you still need to integrate by parts to solve this. This is another illustration to the rela-
tion of integration by parts and integration by substitution discussed in subsection 2.3.1.

Example 6.4.
∫ √

x

1 + x
dx.

The substitution u =
√
x or x = u2, dx = 2udu turns this into∫

u

1 + u2 (2u)du =

∫
2u2

1 + u2 du

=

∫ (
2 −

2
1 + u2

)
du, by long division or just observation,

= 2u− 2 tan−1 u+ C

= 2
√
x− 2 tan−1(

√
x) + C.

Example 6.5.
∫

1
1 + tan x

dx.

You could use the t = tan x/2 substitution, but it turns into a very complicated calcu-
lation. Instead, ∫

1
1 + tan x

dx =
∫

1
1 + sinx

cosx

dx =
∫

cos x
sin x+ cos x

dx.

Now we have something of the form
P(x)

Q(x)
, where we can write P = aQ+ bQ ′ for some

constants a and b. Indeed Q ′(x) = cos x− sin x, so P(x) =
1
2
(Q(x) +Q ′(x)), and∫

cos x
sin x+ cos x

dx =
1
2

∫
sin x+ cos x
sin x+ cos x

dx+
1
2

∫
cos x− sin x
sin x+ cos x

dx

=
1
2
x+

1
2

ln | sin x+ cos x|+ C.

Example 6.6.
∫

x2
√

1 − x2
dx.

The
√

1 − x2 suggests a substitution x = sinu, dx = cosudu, so we get∫
x2

√
1 − x2

dx =
∫

sin2 u

cosu
cosudu =

∫
sin2 udu.

Now, we did this before using double angles:

sin2 u =
1
2
(1 − cos 2u).

We get ∫
sin2 udu =

1
2
u−

1
4

sin 2u =
1
2
u−

1
2

sinu cosu

=
1
2

sin−1 x−
1
2
x
√

1 − x2 (+C).
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Appendix A. Triangles

Definition A.1. A triangle is a polygon with three sides (a polygon is a plane figure
whose edges are straight lines), Fig. 19.

Figure 19. A triangle and notations: angles are A, B, C and the opposite
sides are a, b, c.

A.1. Area of a Triangle. We will need the concept of area of a geometric figure. In
particular, we note that area is additive: if a figure with an area S is split into two disjoint
subfigures with areas S1 and S2 then S = S1 + S2.

We also assume the formulae for the area of a rectangle with sides a and b the area is
S = ab.

Figure 20. Basic relations in a triangle.
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Here h is the height of the triangle in Fig. 20, it splits the side c into two intervals cb
and ca. The area of the triangle is T = T1 + T2. But we have

T1 =
1
2
hcb, T2 =

1
2
hca,

since each is just half of a rectangle with these sides. So

(92) T = T1 + T2 =
1
2
(cb + ca)h =

1
2
ch “half base times height”,

since c = ca + cb.

A.2. Sine Rule. Trigonometric functions – sine and cosine – are intimately connected with
the geometry of triangles.

We have h = b sinA, so

T =
1
2
bc sinA.

But we could also draw the perpendicular to sides b and a to get

T =
1
2
ab sinC =

1
2
bc sinB.

Dividing by abc/2 gives

(93)
sinA
a

=
sinB
b

=
sinC
c

,

which is the Sine Rule.

Remark A.2. It is noteworthy that the value of fractions in (93) is the diameter of the
circumscribed circle. Can you prove this?

The sine rule has been discovered by Nasir al-Din al-Tusi in XIII century.

Example A.3. Suppose we are given c and the angles A, B. We can use the Sine Rule to
determine the other sides. Note that we know the angle C since

(94) A+ B+ C = 180◦,

since the internal angles of a triangle add up to 180◦.
We then have from (93)

sinC
c

=
sinA
a

=
sinB
b

.

Since we know C, c, A, B, this gives us a and b; i.e., everything about the triangle. For
example, suppose

A = 32◦, B = 65◦, c = 9 cm.

Then C = 83◦ and we have sinA = 0.5299, sinB = 0.9063, sinC = 0.9925. (Let us suppose
we want to give two decimal places for our answer: then we should keep at least four
for the sines.) So we have

a = c
sinA
sinC

= 9
0.5299
0.9925

= 4.81 cm, b = c
sinB
sinC

= 9
0.9063
0.9925

= 8.22 cm.

https://en.wikipedia.org/wiki/Nasir_al-Din_al-Tusi#Mathematics
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Figure 21. Relation between sides and cosines.

A.3. Cosine Rule. As shown on Fig. 21, we have c = b cosA + a cosB. Multiply this by
c.

(95) c2 = bc cosA+ ac cosB.

Similarly we get

a2 = ab cosC+ ac cosB(96)

b2 = bc cosA+ ab cosC(97)

Adding (96) and (97) gives

a2 + b2 = 2ab cosC+ bc cosA+ ac cosB.

Subtracting (95) from this gives

a2 + b2 − c2 = 2ab cosC+ bc cosA+ ac cosB− bc cosA− ac cosB = 2ab cosC.

Rearranging, we get

(98) c2 = a2 + b2 − 2ab cosC,

which is the Cosine Rule. In a different form it was already published in Euclid’s Elements
(300 BC), but obtained the modern form in works Jamshid al-Kashi (XV century).

Corollary A.4 (Pythagoras theorem). If C = 90◦ (and thus cosC = 0) we have:

(99) c2 = a2 + b2.

Example A.5. Suppose that we are given a, b and the angle C. We can use the Cosine
Rule to determine c. For example, suppose

a = 8 cm, b = 9 cm, C = 48◦; i.e., cosC = 0.66913.

Then (98) gives

c2 = 64 + 81 − 2× 8× 9× 0.66913 = 48.65, so c = 6.97 cm.

We can now use the Sine Rule and A+ B+ C = 180◦ to get the other angles.

https://en.wikipedia.org/wiki/Euclid's_Elements
https://en.wikipedia.org/wiki/Jamsh%C4%ABd_al-K%C4%81sh%C4%AB


MATH 0212: ELEMENTARY INTEGRAL CALCULUS 55

Remark A.6. Note we could also use the Cosine Rule if we are given all three sides: just
use (98) to get A, B given a, b, c. This gives a unique A (and B) since −1 6 cosA 6 1 for
180◦ > A > 0.

These cases give a unique triangle. But if we are given two sides and an angle which
is not the one between the sides then the triangle is not necessarily unique.

Suppose we are given a, b, A. Then from the Sine Rule (93), we have
sinA
a

=
sinB
b

, so sinB =
b

a
sinA.

Unfortunately this does not give a unique B: we have two possibilities since sin(180◦−
B) = sinB. This is because sinB has a maximum as B goes from 0◦ to 180◦.

For example, suppose
a = 5 cm, b = 7 cm, A = 35◦.

We then get

sinB =
b

a
sinA =

7
5

0.57358 = 0.80301,
so

B = 53.42◦ or B = 180◦ − 53.42◦ = 126.58◦.
For B = 53.42◦, we have C = 180◦ −A− B = 91.58◦.

Then from the Sine Rule (93), we get

c = a
sinC
sinA

= 5
0.9996
0.5736

= 8.71 cm.

For B = 126.58◦, we have C = 180◦ −A− B = 18.42◦, and we get

c = a
sinC
sinA

= 5
0.316

0.5736
= 2.75 cm.

Summary
1) Two angles and a side A+ B+ C = 180◦ and Sine Rule.
2) Three sides Cosine Rule to get angles.
3) Two sides and angle in between Cosine Rule to get other side,

then as for 2).
4) Two sides and angle not in between Sine Rules: two solutions in general.

Example A.7.
a = 6 cm, c = 3 cm, B = 60◦.

This is case 3). Use the Cosine Rule (98). We have

b2 = a2 + c2 − 2ac cosB = 36 + 9 − 2× 6× 3× 1
2
= 27,

so
b =
√

27 = 3
√

3 = 5.1962.
We can get the other angles from the Cosine Rule:

a2 = b2 + c2 − 2bc cosA

so
cosA =

1
2bc

(b2 + c2 − a2) =
1

2× 5.1962× 3
(27 + 9 − 36) = 0.

This means that A = 90◦ and hence B = 180◦ − 90◦ − 60◦ = 30◦.



56 VLADIMIR V. KISIL

Example A.8.
A =

π

3
= 60◦, B =

π

2
= 90◦, c = 20 cm.

This is case 1). We have C = π − A − B = π/6 = 30◦. Now use the Sine Rule (93) to get
the other sides.

a = c
sinA
sinC

= 20
0.866

0.5
= 34.64 cm, b = c

sinB
sinC

= 20
1

0.5
= 40 cm.

Figure 22. Distance in cartesian coordinates

A.4. Circles.

Definition A.9. The circle with the centre O and its radius R is all points on the plane
which are at the distance R from O .

Let the centre O has Cartesian coordinates (a,b). From the Pythagoras theorem (99),
the circle’s equation in the Cartesian coordinates is, see Fig. 22:

(100) (x− a)2 + (y− b)2 = R2.

Example A.10. Find the equation of the circle with centre (2,−5) and radius 3. From
(100), we have

(x− 2)2 + (y+ 5)2 = 32 → x2 − 4x+ y2 + 10y = −20.

We can also find the centre and radius of a circle from its equation. We have

(x− a)2 + (y− b)2 = x2 − 2ax+ a2 + y2 − 2by+ b2.

Thus,

(x− a)2 + (y− b)2 = R2 is equivalent to x2 − 2ax+ y2 − 2by+ (a2 + b2 − R2) = 0.

So the coefficient of x gives −2a and that of y −2b. For example, if the circle has equation

x2 + y2 − 16x+ 12y = −19,

we have a = 8, b = −6. Then R2 − 64 − 36 = −19 → R2 = 81 → R = 9.
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paralillogram, 3
rectangle, 3
rectangle, of, 52
sphere, of, 42
triangle, 3
triangle, of, 53
under a graph, see also definite integral

Barrow, 8
binomial

coefficient
recurrence relation, 46

coefficients, 44
theorem, 47

binomial coefficients, 47

chain rule, 11
change of variable

definite integral, 15
indefinite integral, 15
vs. integration by parts, 21

choices, 44
circle, 56

area, 4, 37
equation of, 56

coefficient
binomial, 44, 47

recurrence relation, 46
combinations, 44
completing the square, 24
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ellipse, 37
area, 38

equation

circle, of, 56
Euclid, 54
Euler, 12
Euler’s constant, 12
even function, 31
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factorial, 45
recurrence relation, 45

fraction
partial, 22

function
even, 31
exponential, 12
hyperbolic, 31
inverse, 14
logarithmic, 14
odd, 31
polynomial, 10
rational, 21

improper, 22
proper, 22

trigonometric, 53
fundamental theorem of calculus, 9

hyperbolic function, 31
hyperbolic functions

inverse, 33

improper rational function, 22
indefinite integral, 10

change of variable, 15
integral

definite, 5
indefinite, 10
Riemann, 7

integration, 7
by parts, 19

vs. change of variable, 21
trigonometric function, 11

inverse function, 14
trigonometric, 28

inverse hyperbolic functions, 33

Jamshid al-Kashi, 54

Lambert, 31
Leibniz, 8
logarithm, see also logarithmic function

“long”, 34
“tall”, 34

logarithmic function, 14

minomial, 21
modulus, 14
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multiplication principle, 44

Nasir al-Din al-Tusi, 53
Newton, 8, 47

odd function, 31
Ostrogradsky, 22
Ostrogradsky’s method (integration of rational

functions), 26

paralillogram
area, 3

partial fraction, 22
Pascal, 47
Pascal’s triangle, 46
permutations, 45
polynomial, 21

degree, 21
quadratic, 24

completing the square, 24
discriminant, 24

polynomial function, 10
principle

multiplication, of, 44
product

rule (combinatorics), 44
proper rational function, 22
Pythagoras theorem, 54

quadratic polynomial, 24
completing the square, 24
discriminant, 24

rational function, 21
Ostrogradsky’s method of integration, 26

rectangle
area, 3

recurrence relation
binomial coefficients, 46
factorial, 45

Riemann integral, 7
rule

of product, 44

Shen Kuo, 47
Sine rule, 53
sphere

area, 42
volume, 42

substitution, see also change of variable
trigonometric, 27

substitution, notation, 9

theorem
binomial, 47
fundamental of calculus, 9
Pythagoras, 54

triangle, 52
area, 3
area of, 53
Pascal’s, 46

trigonometric
function, 53

integration, 11
inverse, 28

substitution, 27

value
absolute, 14

Vincenzo Riccati, 31
volume

cone, of, 41
pyramid, of, 42
revolution, of, 41
ring, of, see also volume of torus
sphere, of, 42
torus, of, 43

Weierstrass, 27
Weierstrass substitution, see also trigonometric

substitution
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