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Introduction 1

MagnetoRotational Instability & Dynamo in Accretion Discs

MagnetoRotational Instability:

• Weakly magnetized (β � 1) and differential rotating flows unstable if
dΩ/dr < 0

• Free energy ≡ differential rotation⇒ MRI extremely powerful γ ∼ r|dΩ/dr|
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Introduction 1

MagnetoRotational Instability & Dynamo in Accretion Discs

MagnetoRotational Instability:

• Weakly magnetized (β � 1) and differential rotating flows unstable if
dΩ/dr < 0

• Free energy ≡ differential rotation⇒ MRI extremely powerful γ ∼ r|dΩ/dr|

Nonlinear dynamo:

Flux

Current

Field B

Flow

Main studies:

• Local radially (shearing sheet): vorticity
gradient not taken into account

• Global: no accretion of material in the
basic state

• Rely on numerical dissipation

• No strong conclusion about 〈B〉
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Introduction 2

Global Dissipative Study
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NL evolution equations:

(∂t + U·∇) U = −∇Φ−∇Π + B·∇B + ν∆U

(∂t + U·∇) B = B·∇U + η∆B

∇ · B = ∇ ·U = 0
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(∂t + U·∇) B = B·∇U + η∆B
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BCs: Uϕ =
√
GM?/r{1,2}, ...

Axisymmetric basic state:

Φ = −GM?/r ⇒ Uϕ =
√
GM?/r

Ur = −3ν/2r ⇒ P = C − 9ν/8r
2

Uz = 0

B = Bo ez or B = Bo/r eϕ

The boundaries drive the shearing flow

Linear evolution equations:

• Normal modes:
K(r, t) = κ(r) exp(σt+ im ϕ+ ik z)

• 10th order linear system:
σ I(r) κ(r) = L(r) κ(r)

• BCs: uϕ = 0, ...

LMS Durham Symposium: Astrophysical Fluid Mechanics 29th July-8th August 2002



Cylindrical MRI Modes 3

Ideal MRI Modes

No inflow in the basic state

• Non axisymmetric m = 1 modes globally unstable
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Cylindrical MRI Modes 3

Ideal MRI Modes

No inflow in the basic state

• Non axisymmetric m = 1 modes globally unstable

• Quenching by the magnetic tension

• Saturation: γmax → r1/2 |dΩ/dr|r1
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Cylindrical MRI Modes 4

Dissipative MRI Modes

• Shape of the modes slightly modified by the inflow and
the dissipation
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Cylindrical MRI Modes 4

Dissipative MRI Modes

• Shape of the modes slightly modified by the inflow and
the dissipation

• Growth rates globally reduced

• Damping of the small-scale modes
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Cylindrical Wall Modes 5

Wall Modes

• Wall modes solutions of the linear system too
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Cylindrical Wall Modes 5

Wall Modes

• Wall modes solutions of the linear system too

• γ too large for the free energy available and large range of k unstable

• Ideal case: γ scales linearly with k and increases rapidly with B0

• Significant flux of energy through the boundaries to feed these modes

• Inflow, curvature and Coriolis force non crucial
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Simplified Problem 6

Cartesian Linear Shearing Flow

o

o
z

y x

B

U (z)

Incompressible, non dissipative basic state:

ρ0 = 1

U0 = z ex, z ∈ [−z0,+z0]

B0 = B0 ey
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Cartesian Linear Shearing Flow

o

o
z

y x

B

U (z)

Incompressible, non dissipative basic state:

ρ0 = 1

U0 = z ex, z ∈ [−z0,+z0]

B0 = B0 ey

2nd order system of linear ODEs:

χH ux = −U ′0H uz − ikx π
χH uy = −iky π
χH uz = −π′

0 = ikx ux + iky uy + u′z

where,
K(x, t) = κ(z) exp(σt+ ikx x+ iky y)

ωa = kB0

χ = σ + ikxU0

H =
(
1 + ω2

a/χ
2
)
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Simplified Problem 7

Cartesian Wall Modes: HD Limit

Hydrodynamic limit: ωa = 0 and H = 1

HD modes are solutions of χ

[
u′′z −

(
k2 +

χ′′

χ

)
uz

]
= 0

Linear shear ⇒ χ′′ = 0 and uz = c− exp(−kz) + c+ exp(kz)
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Cartesian Wall Modes: HD Limit

Hydrodynamic limit: ωa = 0 and H = 1

HD modes are solutions of χ

[
u′′z −

(
k2 +

χ′′

χ

)
uz

]
= 0

Linear shear ⇒ χ′′ = 0 and uz = c− exp(−kz) + c+ exp(kz)

• No discrete mode with the BCs
uz = 0, only a continuum of stable
modes

• Neutral wall modes solutions with
BCs ux = 0

LMS Durham Symposium: Astrophysical Fluid Mechanics 29th July-8th August 2002



Simplified Problem 8

Cartesian Wall Modes in MHD

Magnetic field destabilizes the wall modes
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Simplified Problem 8

Cartesian Wall Modes in MHD

Magnetic field destabilizes the wall modes

u′′z − 2
ω2
a

χ2 + ω2
a

χ′

χ
u′z −

[
k2 +

χ′′

χ
− 2

ω2
a

χ2 + ω2
a

(
χ′

χ

)2
]
uz = 0

Singularity when γ = 0 and ω = −kxU0 ± ωa
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Simplified Problem 9

Origin of the Instability

Analyse on the boundaries:

γ2 =
(S2U ′0)2

(S2U ′0)2 + ω2
a k

2 k2
x

[
(U ′0)2 K2

k2
x

+ ω2
a k

2L2 − ω2
a

]
where S2 = |π′′|/|π|, K = |π|′/|π|, L2 = |π| |π|′′/|π′′|2 and kx = ky

B0 and U ′0 both non zero at either of the boundaries ⇒ wall modes unstable

Mechanism:

uz
ky B0−−−→ bz

U ′0−→ bx
ky B0−−−→ Tx = kyB0 bx

In the vicinity of the boundary ux ∼ 0⇒ energy from the outside required to
balance Tx
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Conclusion 10

Conclusion about Accretion Discs

• Wall modes are solutions of incompressible shearing flows when rigid BCs are
relaxed

• B0 makes them linearly unstable if uϕ = 0 on the boundaries

Forcing the differential rotation of the boundaries impossible unless Ω′0 or B0

locally zero
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Conclusion 10

Conclusion about Accretion Discs

• Wall modes are solutions of incompressible shearing flows when rigid BCs are
relaxed

• B0 makes them linearly unstable if uϕ = 0 on the boundaries

Forcing the differential rotation of the boundaries impossible unless Ω′0 or B0

locally zero

or

BCs on the pressure to keep it low in agreement with quasi-keplerian accretion
discs...
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