Global Properties of MagnetoRotational Instabilities in Accretion Discs

Evy Kersalé

Dept. of Appl. Maths — University of Leeds

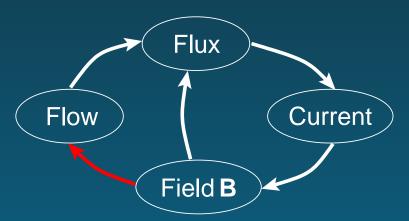
Collaboration:

D. Hughes & S. Tobias (Appl. Maths, Leeds)

N. Weiss & G. Ogilvie (DAMTP, Cambridge)

MagnetoRotational Instability & Dynamo in Accretion Discs

MagnetoRotational Instability:

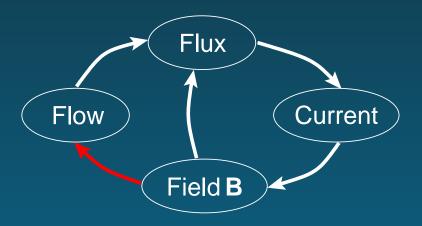

- Weakly magnetized $(\beta\gg 1)$ and differential rotating flows unstable if ${\rm d}\Omega/{\rm d}r<0$
- Free energy \equiv differential rotation \Rightarrow MRI extremely powerful $\gamma \sim r |\mathrm{d}\Omega/\mathrm{d}r|$

MagnetoRotational Instability & Dynamo in Accretion Discs

MagnetoRotational Instability:

- Weakly magnetized $(\beta\gg 1)$ and differential rotating flows unstable if ${\rm d}\Omega/{\rm d}r<0$
- Free energy \equiv differential rotation \Rightarrow MRI extremely powerful $\gamma \sim r |\mathrm{d}\Omega/\mathrm{d}r|$

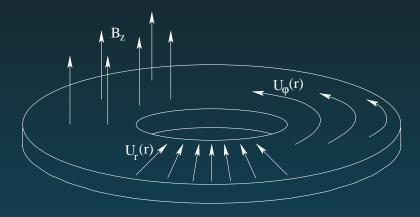
Nonlinear dynamo:

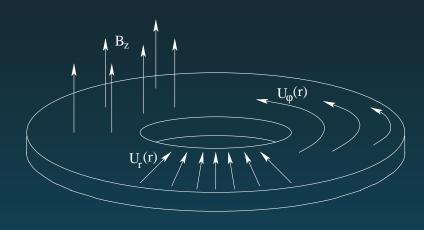


MagnetoRotational Instability & Dynamo in Accretion Discs

MagnetoRotational Instability:

- Weakly magnetized $(\beta\gg 1)$ and differential rotating flows unstable if ${\rm d}\Omega/{\rm d}r<0$
- Free energy \equiv differential rotation \Rightarrow MRI extremely powerful $\gamma \sim r |\mathrm{d}\Omega/\mathrm{d}r|$

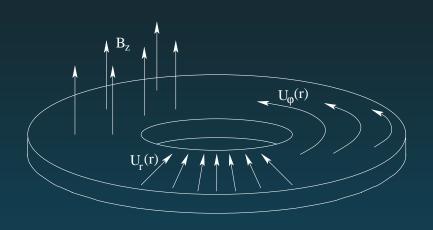

Nonlinear dynamo:


Main studies:

- Local radially (shearing sheet): vorticity gradient not taken into account
- Global: no accretion of material in the basic state
- Rely on numerical dissipation
- No strong conclusion about (B)

Global Dissipative Study

Global Dissipative Study


NL evolution equations:

$$(\partial_t + \mathbf{U} \cdot \nabla) \mathbf{U} = -\nabla \Phi - \nabla \Pi + \mathbf{B} \cdot \nabla \mathbf{B} + \nu \Delta \mathbf{U}$$

$$(\partial_t + \mathbf{U} \cdot \nabla) \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{U} + \eta \Delta \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = \nabla \cdot \mathbf{U} = 0$$

Global Dissipative Study

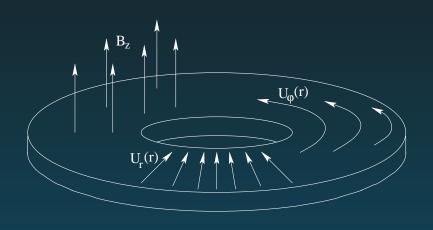
NL evolution equations:

$$(\partial_t + \mathbf{U} \cdot \nabla) \mathbf{U} = -\nabla \Phi - \nabla \Pi + \mathbf{B} \cdot \nabla \mathbf{B} + \nu \Delta \mathbf{U}$$

$$(\partial_t + \mathbf{U} \cdot \nabla) \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{U} + \eta \Delta \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = \nabla \cdot \mathbf{U} = 0$$

Axisymmetric basic state:


$$\Phi = -GM_{\star}/r \Rightarrow U_{\varphi} = \sqrt{GM_{\star}/r}$$

$$U_r = -3\nu/2r \Rightarrow P = C - 9\nu/8r^2$$

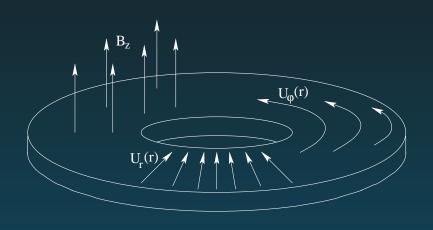
$$U_z = 0$$

$$\mathbf{B} = B_o \mathbf{e}_z$$
 or $\mathbf{B} = B_o/r \mathbf{e}_{\varphi}$

Global Dissipative Study

NL evolution equations:

$$(\partial_t + \mathbf{U} \cdot \nabla) \mathbf{U} = -\nabla \Phi - \nabla \Pi + \mathbf{B} \cdot \nabla \mathbf{B} + \nu \Delta \mathbf{U}$$
$$(\partial_t + \mathbf{U} \cdot \nabla) \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{U} + \eta \Delta \mathbf{B}$$
$$\nabla \cdot \mathbf{B} = \nabla \cdot \mathbf{U} = 0$$


BCs:
$$U_{arphi}=\sqrt{GM_{\star}/r_{\{1,2\}}}$$
, ...

Axisymmetric basic state:

$$\Phi = -GM_{\star}/r \Rightarrow U_{\varphi} = \sqrt{GM_{\star}/r}$$
 $U_r = -3\nu/2r \Rightarrow P = C - 9\nu/8r^2$
 $U_z = 0$
 $\mathbf{B} = B_o \, \mathbf{e}_z \quad \text{or} \quad \mathbf{B} = B_o/r \, \mathbf{e}_{\varphi}$

The boundaries drive the shearing flow

Global Dissipative Study

NL evolution equations:

$$(\partial_t + \mathbf{U} \cdot \nabla) \mathbf{U} = -\nabla \Phi - \nabla \Pi + \mathbf{B} \cdot \nabla \mathbf{B} + \nu \Delta \mathbf{U}$$
$$(\partial_t + \mathbf{U} \cdot \nabla) \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{U} + \eta \Delta \mathbf{B}$$
$$\nabla \cdot \mathbf{B} = \nabla \cdot \mathbf{U} = 0$$

BCs:
$$U_{arphi} = \sqrt{GM_{\star}/r_{\{1,2\}}}$$
, ..

Axisymmetric basic state:

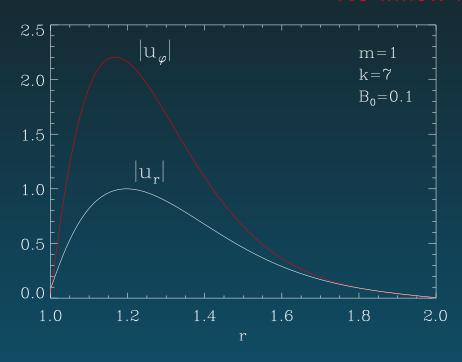
$$\Phi = -GM_{\star}/r \Rightarrow U_{\varphi} = \sqrt{GM_{\star}/r}$$
 $U_r = -3\nu/2r \Rightarrow P = C - 9\nu/8r^2$
 $U_z = 0$
 $\mathbf{B} = B_o \, \mathbf{e}_z \quad \text{or} \quad \mathbf{B} = B_o/r \, \mathbf{e}_{\varphi}$

Linear evolution equations:

Normal modes:

$$\underline{\mathcal{K}}(\mathbf{r},t) = \underline{\kappa}(r) \exp(\sigma t + im \varphi + ik z)$$

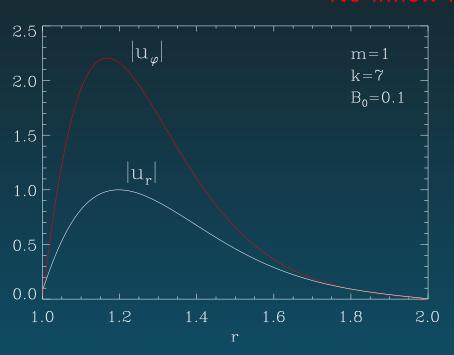
• 10th order linear system:

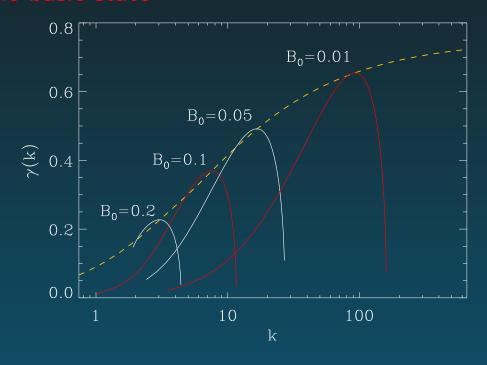

$$\sigma \underline{\underline{\mathcal{I}}}(r) \underline{\kappa}(r) = \underline{\underline{\mathcal{L}}}(r) \underline{\kappa}(r)$$

• BCs: $u_{\varphi} = 0$, ...

The boundaries drive the shearing flow

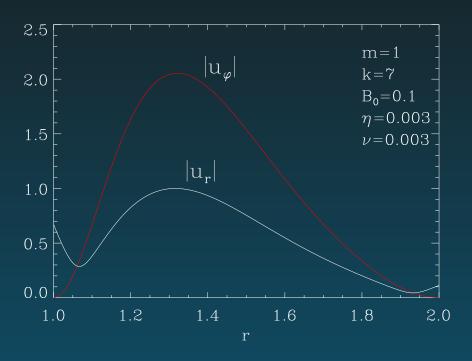
Ideal MRI Modes

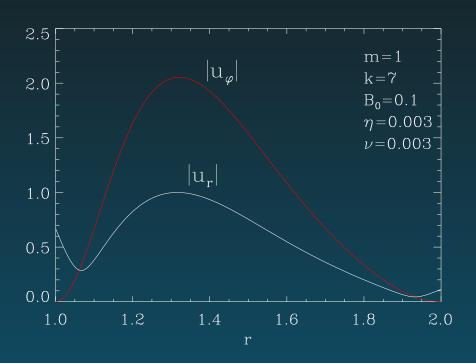

No inflow in the basic state

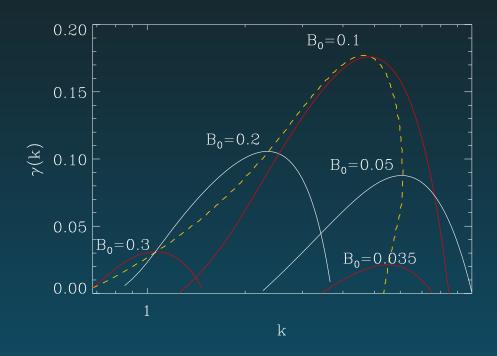


• Non axisymmetric m=1 modes globally unstable

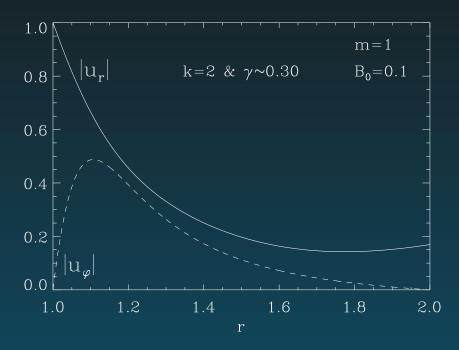
Ideal MRI Modes

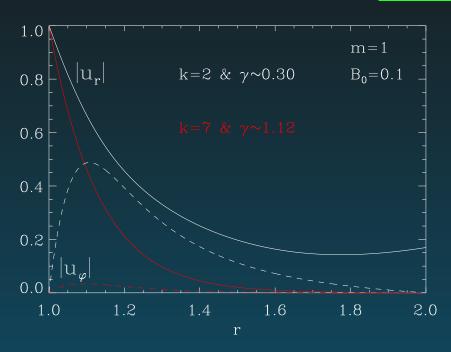

No inflow in the basic state


- ullet Non axisymmetric m=1 modes globally unstable
- Quenching by the magnetic tension
- Saturation: $\gamma_{\mathsf{max}} \to r_1/2 |\mathsf{d}\Omega/\mathsf{d}r|_{r_1}$

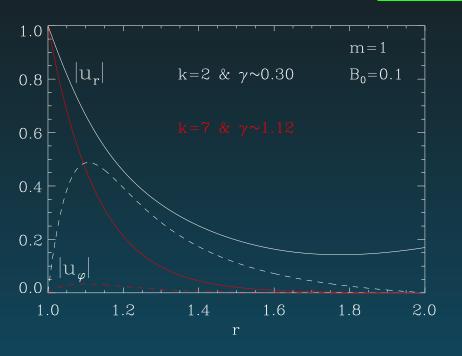

Dissipative MRI Modes

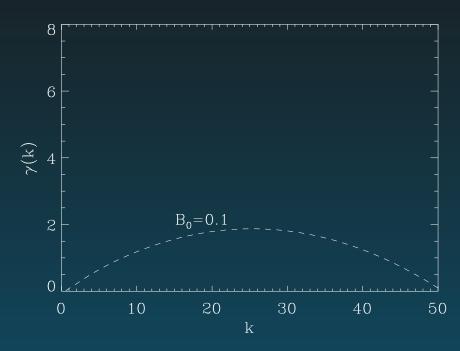
• Shape of the modes slightly modified by the inflow and the dissipation


Dissipative MRI Modes

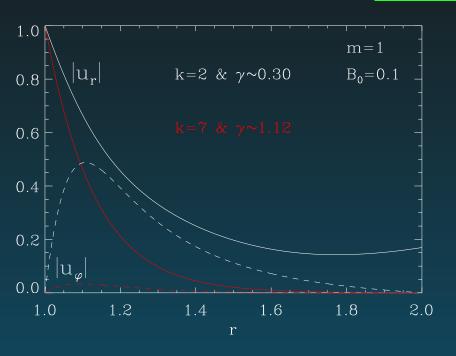


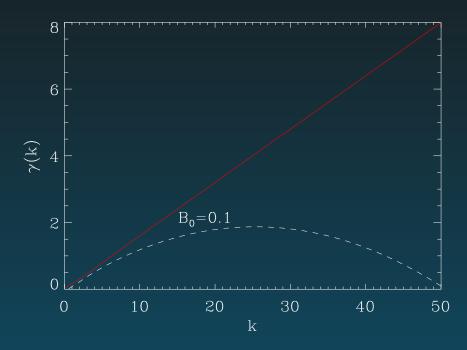
- Shape of the modes slightly modified by the inflow and the dissipation
- Growth rates globally reduced
- Damping of the small-scale modes

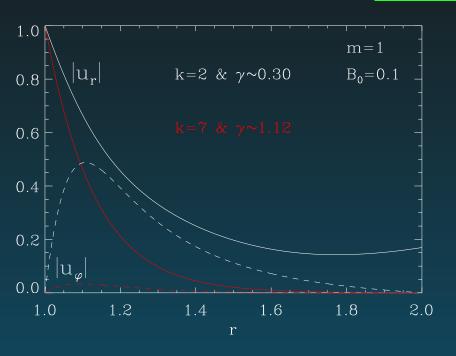

Wall Modes

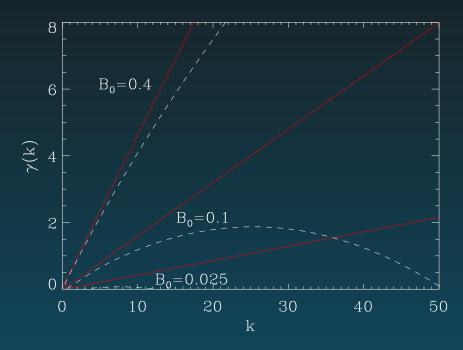


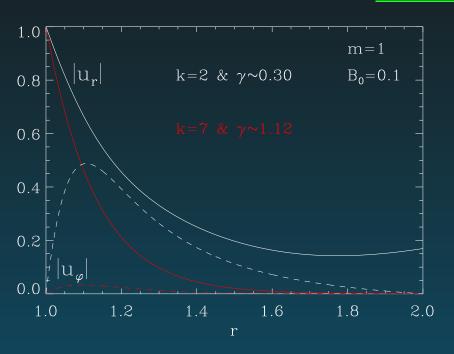
• Wall modes solutions of the linear system too

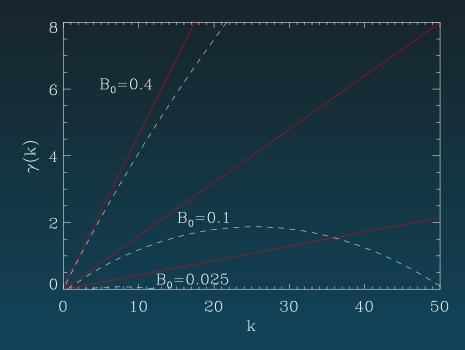


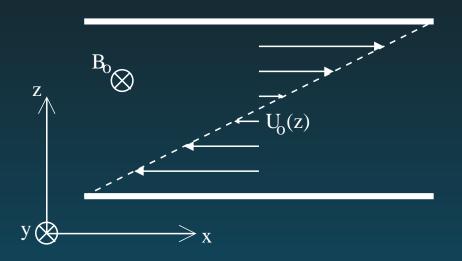

- Wall modes solutions of the linear system too
- \circ γ too large for the free energy available




- Wall modes solutions of the linear system too
- ullet γ too large for the free energy available and large range of k unstable

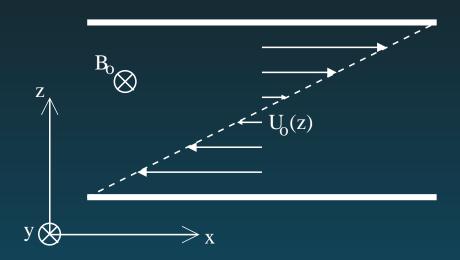



- Wall modes solutions of the linear system too
- ullet γ too large for the free energy available and large range of k unstable
- ullet Ideal case: γ scales linearly with k


- Wall modes solutions of the linear system too
- ullet γ too large for the free energy available and large range of k unstable
- ullet Ideal case: γ scales linearly with k and increases rapidly with B_0

- Wall modes solutions of the linear system too
- ullet γ too large for the free energy available and large range of k unstable
- ullet Ideal case: γ scales linearly with k and increases rapidly with B_0
- Significant flux of energy through the boundaries to feed these modes
- Inflow, curvature and Coriolis force non crucia

Cartesian Linear Shearing Flow


Incompressible, non dissipative basic state:

$$\rho_0 = 1$$

$$\mathbf{U}_0 = z \mathbf{e}_x, \ z \in [-z_0, +z_0]$$

$$\mathbf{B}_0 = B_0 \mathbf{e}_y$$

Cartesian Linear Shearing Flow

2nd order system of linear ODEs:

$$\chi \mathcal{H} u_x = -U_0' \mathcal{H} u_z - ik_x \pi$$

$$\chi \mathcal{H} u_y = -ik_y \pi$$

$$\chi \mathcal{H} u_z = -\pi'$$

$$0 = ik_x u_x + ik_y u_y + u_z'$$

Incompressible, non dissipative basic state:

$$\rho_0 = 1$$

$$\mathbf{U}_0 = z \mathbf{e}_x, \ z \in [-z_0, +z_0]$$

$$\mathbf{B}_0 = B_0 \mathbf{e}_y$$

where, $\underline{\mathcal{K}}(\mathbf{x},t) = \underline{\kappa}(z) \exp(\sigma t + ik_x x + ik_y y)$

$$\omega_a = kB_0$$

$$\chi = \sigma + ik_x U_0$$

$$\mathcal{H} = (1 + \omega_a^2/\chi^2)$$

Cartesian Wall Modes: HD Limit

Hydrodynamic limit: $\omega_a = 0$ and $\mathcal{H} = 1$

HD modes are solutions of
$$\chi \left[u_z'' - \left(k^2 + \frac{\chi''}{\chi} \right) \, u_z \right] = 0$$

Linear shear $\Rightarrow \chi'' = 0$ and $u_z = c_- \exp(-kz) + c_+ \exp(kz)$

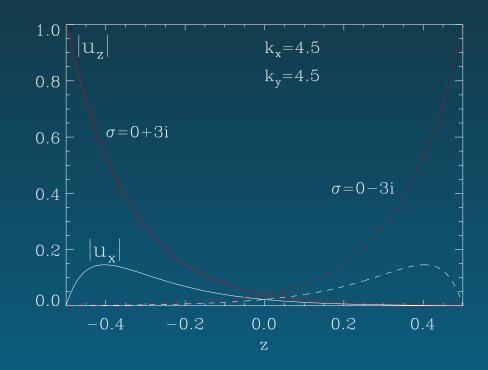
Cartesian Wall Modes: HD Limit

Hydrodynamic limit: $\omega_a = 0$ and $\mathcal{H} = 1$

HD modes are solutions of
$$\ \chi \left[u_z'' - \left(k^2 + \frac{\chi''}{\chi} \right) \, u_z \right] = 0$$

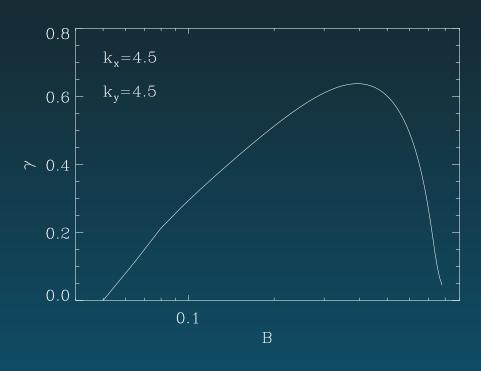
Linear shear $\Rightarrow \chi'' = 0$ and $u_z = c_- \exp(-kz) + c_+ \exp(kz)$

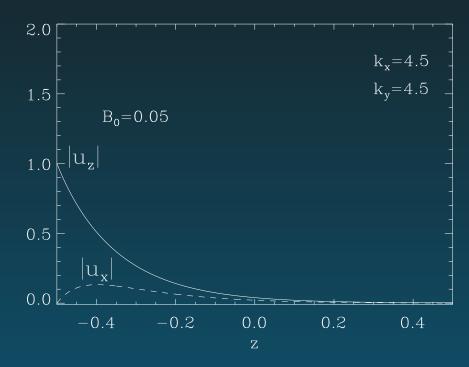
• No discrete mode with the BCs $u_z=0$, only a continuum of stable modes


Cartesian Wall Modes: HD Limit

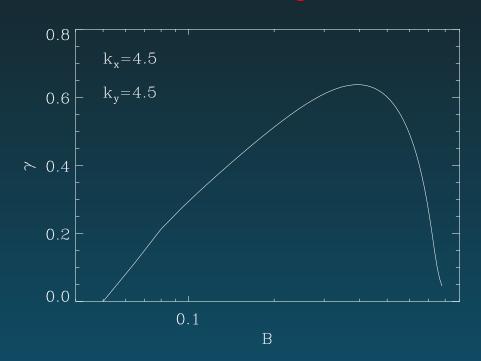
Hydrodynamic limit: $\omega_a = 0$ and $\mathcal{H} = 1$

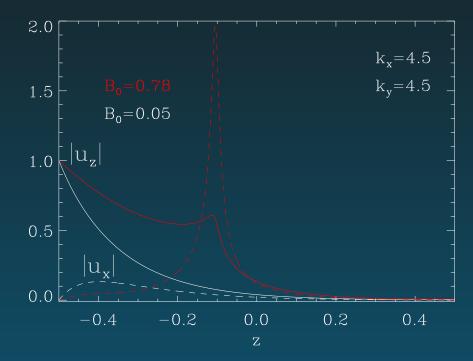
HD modes are solutions of
$$\chi \left[u_z'' - \left(k^2 + \frac{\chi''}{\chi} \right) \, u_z \right] = 0$$


Linear shear $\Rightarrow \chi'' = 0$ and $u_z = c_- \exp(-kz) + c_+ \exp(kz)$


- No discrete mode with the BCs $u_z=0$, only a continuum of stable modes
- Neutral wall modes solutions with BCs $u_r = 0$

Cartesian Wall Modes in MHD


Magnetic field destabilizes the wall modes



Cartesian Wall Modes in MHD

Magnetic field destabilizes the wall modes

$$u_z'' - 2\frac{\omega_a^2}{\chi^2 + \omega_a^2} \frac{\chi'}{\chi} u_z' - \left[k^2 + \frac{\chi''}{\chi} - 2\frac{\omega_a^2}{\chi^2 + \omega_a^2} \left(\frac{\chi'}{\chi} \right)^2 \right] u_z = 0$$

Singularity when $\gamma=0$ and $\omega=-k_xU_0\pm\omega_a$

Origin of the Instability

Analyse on the boundaries:

$$\gamma^{2} = \frac{(S^{2} U_{0}')^{2}}{(S^{2} U_{0}')^{2} + \omega_{a}^{2} k^{2} k_{x}^{2}} \left[(U_{0}')^{2} \frac{\mathcal{K}^{2}}{k_{x}^{2}} + \omega_{a}^{2} k^{2} \mathcal{L}^{2} - \omega_{a}^{2} \right]$$

where
$$\mathcal{S}^2=|\pi''|/|\pi|$$
, $\mathcal{K}=|\pi|'/|\pi|$, $\mathcal{L}^2=|\pi|\,|\pi|''/|\pi''|^2$ and $k_x=k_y$

 B_0 and U_0' both non zero at either of the boundaries \Rightarrow wall modes unstable

Mechanism:

$$u_z \xrightarrow{k_y B_0} b_z \xrightarrow{U'_0} b_x \xrightarrow{k_y B_0} T_x = k_y B_0 b_x$$

In the vicinity of the boundary $u_x \sim 0 \Rightarrow$ energy from the outside required to balance T_x

Conclusion 10

Conclusion about Accretion Discs

- Wall modes are solutions of incompressible shearing flows when rigid BCs are relaxed
- ullet B_0 makes them linearly unstable if $u_{arphi}=0$ on the boundaries

Forcing the differential rotation of the boundaries impossible unless Ω_0' or B_0 locally zero

Conclusion 10

Conclusion about Accretion Discs

 Wall modes are solutions of incompressible shearing flows when rigid BCs are relaxed

ullet B_0 makes them linearly unstable if $u_{arphi}=0$ on the boundaries

Forcing the differential rotation of the boundaries impossible unless Ω_0' or B_0 locally zero

or

BCs on the pressure to keep it low in agreement with quasi-keplerian accretion discs...