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Introduction 1

MagnetoRotational Instability & Dynamo in Accretion Discs

MagnetoRotational Instability:

o (6 > 1) and differential rotating flows unstable if

e Free energy = differential rotation = MRI v ~ r|dQ/dr|
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Introduction 1

MagnetoRotational Instability & Dynamo in Accretion Discs

MagnetoRotational Instability:

o (6 > 1) and differential rotating flows unstable if

e Free energy = differential rotation = MRI v ~ r|dQ/dr|

Main studies:

Nonlinear dynamo:

e Local radially (shearing sheet):

4 e Global: no accretion of material in the
@ basic state

Field B o Ly e

e No strong conclusion about
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Introduction 2

Global Dissipative Study
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Introduction 2

Global Dissipative Study

NL evolution equations:
(8, +U-V)U = —V® — VIl + B-VB +
(8, + U-V)B = B-VU +
V-B=V-U=20
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Introduction

Global Dissipative Study

Axisymmetric basic state:

®=-GM,/r = U :\/GM*/T'
U, = —3v/2r = P =C — 9v/8r"
U,=0

B=B,e, or B=B,/re,

NL evolution equations:
(8, +U-V)U = —V® — VIl + B-VB +
(8, + U-V)B = B-VU +
V-B=V-U=20

Linear evolution equations:

e Normal modes:
K(r,t) = k(r) exp(ot +im ¢ + ik z)
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Cylindrical MRI Modes 3

ldeal MRI Modes
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e Non axisymmetric m = 1 modes globally unstable
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Cylindrical MRI Modes

ldeal MRI Modes
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e Non axisymmetric m = 1 modes globally unstable

e Quenching by the magnetic tension

100
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Cylindrical MRI Modes 4

Dissipative MRI Modes

e Shape of the modes slightly modified by the inflow and
the dissipation
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Cylindrical MRI Modes 4

Dissipative MRI Modes
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e Shape of the modes slightly modified by the inflow and
the dissipation

e Growth rates globally reduced
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Cylindrical Wall Modes

1.0

0.8

0.6

0.4

0.2

ON0)

1.0

Wall Modes

‘F‘L\\\‘

L S

k=2 & vy~0.30

5

By

I
= .

=0.1

1.2

e Wall modes solutions of the linear system too
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Cylindrical Wall Modes 5

Wall Modes

1.0

3

e | k=2 & y~0.30 B,=0.1
0.6

0.4

/

/

0.2

‘F‘L\\\‘
/
/

8
/

i

I

!

i

s
i 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1

0.0 P e e et S S g il
1.0 1.2 1.4 1.6 1.8

o
o

e Wall modes solutions of the linear system too
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Cylindrical Wall Modes

Wall Modes
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e Wall modes solutions of the linear system too

e ~ too large for the free energy available and
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Cylindrical Wall Modes 5

Wall Modes
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e Wall modes solutions of the linear system too
e ~ too large for the free energy available and large range of k£ unstable

e |deal case:
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Cylindrical Wall Modes 5

Wall Modes
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e Wall modes solutions of the linear system too
e ~ too large for the free energy available and large range of k£ unstable

e |deal case: v scales linearly with k& and
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Cylindrical Wall Modes
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e ~ too large for the free energy available and large range of k£ unstable

e |deal case: v scales linearly with k and increases rapidly with By
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Simplified Problem 6

Cartesian Linear Shearing Flow

> - c o - -
B Incompressible, non dissipative basic state:
® "
z e
e —_— ]_
s LB(Z) Po
L — _
e Uy = ze;, z€|—20,+20]
BO = BO €y
y X
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Simplified Problem 6

Cartesian Linear Shearing Flow

BO® Incompressible, non dissipative basic state:
z " B
U@ AT
P Uy = ze;, z€ |-z, +20]
= B, = Bge,
y X
2nd order system of linear ODEs: where
XHu, = —UHu, —iky7 K(x,t) = t(2) exp(ot + ik, @ + ik, y)
XHu, = —thkym we = kB
yHu, = -—n' X = o+1ikUg
2/ 2
0 = ikyuy+ ikyuy, + ul H o= (1+wi/x°)
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Simplified Problem 7

Cartesian Wall Modes: HD Limit

Hydrodynamic limit: w, =0 and H =1

X
Linear shear = x” =0 and u, = ¢_ exp(—kz) + c. exp(kz)

/!
HD modes are solutions of x [u;’ — (k2 + X—) uZ] =0
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Simplified Problem 7

Cartesian Wall Modes: HD Limit

Hydrodynamic limit: w, =0 and H =1

/!
HD modes are solutions of x [u;’ — (k2 + X—) uZ] =0
X

Linear shear = x” =0 and u, = ¢_ exp(—kz) + c. exp(kz)
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0.8 k,=4.5 b

e No discrete mode with the BCs 7
u, = 0, only a continuum of stable 0.6 0=0+3i :
modes y " ;
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Simplified Problem 8

Cartesian Wall Modes in MHD

08 — | S 2.0[ ]

- k=45 . I k=45 |
0‘67 N 15, ky:45 |
>~ 0.4 - 1.0j 8
0.2 - 0.5 i
0.0 7 0.0k ) ]

LMS Durham Symposium: Astrophysical Fluid Mechanics 29th July-8th August 2002



Simplified Problem 8

Cartesian Wall Modes in MHD
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Simplified Problem 9

Origin of the Instability

Analyse on the boundaries:

(82 Up)”
(SZUL)? + w2k 2

where §? = |7”'|/|x|, K = |x|'/|x|, L? = |x||x|"/|x"|? and k, = k,
Mechanism:

b, by —— =kyBob,
In the vicinity of the boundary =
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Conclusion 10

Conclusion about Accretion Discs

e Wall modes are solutions of incompressible shearing flows when rigid BCs are
relaxed

e By makes them linearly unstable if u, = 0 on the boundaries
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