Order reduction in stability computations using the Magnus method

Jitse Niesen
in collaboration with Simon Malham

Heriot-Watt University, Edinburgh, UK

SciCADE, 23 May 2005
Overview

- Background: Stability of travelling waves
- The model equation
- The fourth-order Magnus method
- The oscillatory regime
- The stiff regime
- Conclusions
Background: Stability for travelling waves

Consider a reaction–diffusion equation of the form

\[u_t = u_{xx} + f(u), \quad u(x, t) \in \mathbb{R}^n, \ x \in \mathbb{R}. \tag{\star} \]

Assume that the PDE supports a travelling wave solution

\[u(t, x) = u_*(\xi) \quad \text{where} \ \xi = x - ct. \]

We are interested in the stability of this travelling wave.

\[^{1}\text{Sandstede, in: Fiedler (ed.), } \textit{Handbook of Dynamical Systems II}, 2002. \]
Background: Stability for travelling waves

Consider a reaction–diffusion equation of the form

\[u_t = u_{xx} + f(u), \quad u(x, t) \in \mathbb{R}^n, \; x \in \mathbb{R}. \]

(*)&

Assume that the PDE supports a travelling wave solution

\[u(t, x) = u_*(\xi) \quad \text{where} \quad \xi = x - ct. \]

We are interested in the stability of this travelling wave. Let \(u = u_* + \hat{u} \) be a perturbation.

PDE (*)& in travelling frame:

\[u_t = u_{\xi\xi} + cu_\xi + f(u) \]

Travelling wave equation:

\[0 = u''_* + cu'_* + f(u_*) \]

Subtracting:

\[\hat{u}_t = \hat{u}_{\xi\xi} + c\hat{u}_\xi + f(u_* + \hat{u}) - f(u_*) \]

Linearized stability analysis:

\[\hat{u}_t = \hat{u}_{\xi\xi} + c\hat{u}_\xi + f'(u_*) \hat{u} \]

Set \(\hat{u}(\xi, t) = e^{\lambda t} \bar{u}(\xi) \) to get:

\[\lambda \bar{u} = \bar{u}_{\xi\xi} + c\bar{u}_\xi + f'(u_*) \bar{u} \]

(*)&

Wave is unstable if (*)& has any solution with \(\text{Re} \, \lambda > 0. \)

Background: A simple shooting method

We want to solve the boundary value problem

$$\ddot{\bar{u}} + c\dot{\bar{u}} + f'(u_*(x)) \bar{u} = \lambda \bar{u}, \quad \bar{u}(x) \to 0 \text{ as } x \to \pm\infty.$$

Convert this problem to first-order form:

$$y' = \begin{bmatrix} 0 & 1 \\ \lambda - f'(u_*(x)) & c \end{bmatrix} y, \quad y(x) \to 0 \text{ as } x \to \pm\infty.$$

Shooting method: Solve this equation on $(-\infty, 0]$ and $[0, +\infty)$ and see whether the solutions match at $x = 0$. Subtract multiple of identity matrix to counter exponential growth.

Here, we concentrate on the regime where $|\lambda|$ is large.

For simplicity, assume that u is scalar (and hence, $y \in \mathbb{C}^2$). In this case, the above simple method is usually not the best,

The model equation

As an example, consider the PDE \(u_t = \frac{1}{6} (u_{xx} + 2u^3 - u) \). \(^3\)

This equation supports the stationary pulse

\[
\begin{align*}
u_*(x, t) = \text{sech } x = \frac{2}{e^x + e^{-x}}.
\end{align*}
\]

The resulting boundary value problem is

\[
y' = \begin{bmatrix} 0 & 1 \\ \lambda + \frac{1}{6} - \text{sech}^2 x & 1 \end{bmatrix} y, \quad y(x) \to 0 \text{ as } x \to \pm\infty.
\]

This problem is particularly simple to analyse because

- \(u_* \) is a pulse: the limits \(x \to -\infty \) and \(x \to +\infty \) coincide;
- \(u_* \) is stationary: the speed \(c \) vanishes;
- \(u_* \) has an analytic expression.

The oscillatory and stiff regimes

\[y' = A(x; \lambda) y, \quad \text{where} \quad A(x; \lambda) = \begin{bmatrix} 0 & 1 \\ \lambda + \frac{1}{6} - \text{sech}^2 x & 0 \end{bmatrix} \]

We suppose that \(|\lambda|\) is large.

In the limit \(x \to \pm \infty\), the eigenvalues of \(A\) are

\[\pm \mu \quad \text{with} \quad \mu = \sqrt{\lambda + \frac{1}{6}}, \]

so we can distinguish two regimes:

- If \(\lambda\) is negative, \(A\) has purely imaginary eigenvalues, so the equation is oscillatory.

- If \(\text{arg} \lambda \in (-\pi + \varepsilon, \pi - \varepsilon)\), one eigenvalue has positive real part and one has negative real part. We need to cancel out the former, so replace \(A\) with \(A - \mu I\). Now, the equation is stiff.
The Magnus method

Numerical methods based on the Magnus expansion perform well on Sturm–Liouville problems.4 Furthermore, they preserve some geometrical structure in the case where \(u \) is a vector.

The standard fourth-order Magnus method for

\[y' = A(x)y \]

is given by the following formula5,6

\[
y_1 = \exp\left(\frac{1}{2} h (A(x_-) + A(x_+)) - \frac{\sqrt{3}}{12} h^2 [A(x_-), A(x_+)]\right) y_0.
\]

where \(x_- = x_0 + \left(\frac{1}{2} - \frac{1}{6} \sqrt{3}\right) h \), \(x_+ = x_0 + \left(\frac{1}{2} + \frac{1}{6} \sqrt{3}\right) h \).

6Hairer, Lubich & Wanner, Geometric Numerical Integration, 2004.
The oscillatory regime

The equation that we want to solve is

\[y' = \begin{bmatrix} 0 & 1 \\ \mu^2 - \text{sech}^2 x & 0 \end{bmatrix} y, \quad \text{where } \mu \in i\mathbb{R}, |\mu| \gg 1. \]

The matrix on the right has large, purely imaginary eigenvalues. Hence, the solution will oscillate very fast.

Magnus performs well on this kind of problems.\(^7,8,9\)

Analysis goes as follows:

- Approximate exact solution with WKB;
- Approximate numerical solution by diagonalizing \(\Omega \);
- Subtract to get the local error;
- Combine local errors to get the global error.

\(^7\)Iserles, On the global error . . ., *BIT* 42(3), 2002.
Global error versus μ

We vary μ and solve the equation on $[-10, -0.5]$.

Blue: Gauss–Legendre; red: Magnus (both 4th order).

Solid: stepsize $h = 0.01$; dashed: $h = 0.005$
The stiff regime

The equation that we want to solve is

\[y' = \begin{bmatrix} -\mu & 1 \\ \mu^2 - \text{sech}^2 x & -\mu \end{bmatrix} y, \quad \text{where } \text{Re} \mu > 0, \ |\mu| \gg 1. \]

The eigenvalues of the matrix on the right-hand side are:

\[\lambda_1 = -\mu + \sqrt{\mu^2 - \text{sech}^2 x} \approx 0 \quad \text{with } v_1 = \begin{bmatrix} 1 \\ \sqrt{-} \end{bmatrix} \approx \begin{bmatrix} 1 \\ \mu \end{bmatrix}, \]

\[\lambda_2 = -\mu - \sqrt{\mu^2 - \text{sech}^2 x} \approx -2\mu \quad \text{with } v_2 = \begin{bmatrix} 1 \\ -\sqrt{-} \end{bmatrix} \approx \begin{bmatrix} 1 \\ -\mu \end{bmatrix}. \]

So there is one neutral and one very negative eigenvalue, and the solution will approximately follow \(v_1 \).

We will take the initial condition \(y(x) = v_1 \) as \(x \to -\infty \).
The exact solution

Define new coordinates by \(y = \begin{bmatrix} 1 & 1 \\ \mu & -\mu \end{bmatrix} \bar{y} \), then

\[
\bar{y}' = \begin{bmatrix}
-\frac{1}{2} \mu^{-1} \text{sech}^2 t & -\frac{1}{2} \mu^{-1} \text{sech}^2 t \\
\frac{1}{2} \mu^{-1} \text{sech}^2 t & -2\mu + \frac{1}{2} \mu^{-1} \text{sech}^2 t
\end{bmatrix} \bar{y}, \quad \bar{y}(t_0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
\]

Rationale: The matrix on the left-hand side is almost diagonal.

The exact solution is

\[
\bar{y}(t) = \left[1 - \frac{1}{2} \mu^{-1} \int_{t_0}^{t} \text{sech}^2 \tau \, d\tau + \mu^{-2} \int \ldots \int \right] + \mathcal{O}(\mu^{-3}).
\]

To find this, substitute the ansatz

\[
\bar{y}(t) = \bar{y}_0(t) + \mu^{-1} \bar{y}_1(t) + \mu^{-2} \bar{y}_2(t) + \cdots
\]

in the equation and equate powers of \(\mu \).
The error committed by the Magnus method

The local error in the limit $h \to 0$, $\mu h \to \infty$ is

$$\bar{L}_k = \mu^{-1} \left[\frac{1}{12} h^2 \text{sech}' t_{k+1/2} + O(h^4, \mu^{-1}) \right].$$

So, we have order reduction in the stiff (second) component: The local error is not h^5 but h^2.

The error in the stiff (second) component does not propagate, so the global error is

$$\bar{G}_k = \mu^{-1} \left[\frac{1}{12} h^2 \text{sech}' t_{k+1/2} + O(h^4, \mu^{-1}) \right].$$

In the original coordinates, this becomes

$$G_k = \left[\frac{1}{12} \mu^{-1} h^2 \text{sech}' t_{k+1/2} + O(h^4, \mu^{-2}) \right].$$

Hence, the method is second order when $\mu \gg h$.
Global error versus step size

We fix $\mu = 30$, vary h, and solve the equation on $[-10, -0.5]$.

Blue: Gauss–Legendre; red: Magnus (both 4th order).
Conclusions and other remarks

- As reported before, Magnus method outperforms Runge–Kutta methods for oscillatory linear systems.
- Magnus methods perform not so well in the “classical stiff” case, where one eigenvalue is negative and large in modulus. In our example, the error of Magnus-4 is a factor $|\text{eval}|^{1/2}$ larger than that of Gauss–Legendre.
- The standard fourth-order Magnus method is not B-stable. (B-stability = preservation of contractivity)
- The computation sketched in this talk has been generalized to arbitrary wave profiles u_* and speeds c, under the assumption that the limits $\lim_{x \to \pm \infty} u_*(x)$ exist.

$$y' = \begin{bmatrix} -\mu \\ \mu^2 - f'(u_*(x)) \\ c - \mu \end{bmatrix} y, \quad y(x) \to 0 \text{ as } x \to \pm \infty.$$

- The case where u is a vector has not been tackled.