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Lectures:

• You should read through and understand your notes before the next lecture . . . otherwise
you will get hopelessly lost.

• Please, do not hesitate to interrupt me whenever you have questions or if I am inaudible,
illegible, unclear or just plain wrong. (I shall also stay at the front for a few minutes
after lectures in order to answer questions.)

• If you feel that the module is too difficult, or that you are spending too much time on
it, please come and talk to me.

• Please, do not wait until the end of term to give a feedback if you are unhappy with
some aspects of the module.

Printed Notes:

• Detailed printed notes will be handed out for the module, so that you can listen to me
and make the most of the lectures, rather than having to write down every sentence on
paper. However, the notes provided should only be used as a supplement, not as an
alternative to your personal notes.

• These printed notes are an adjunct to lectures and are not meant to be used indepen-
dently.

• With a few exceptions, worked examples are deliberately omitted from the printed notes.
The aim being that going through the examples at least once will help you to learn the
material. (It might also help you to stay awake if you have to write something down
from time to time.)

• Please email me (J.Niesen@leeds.ac.uk) corrections to the notes, examples sheets and
model solutions.

Example Sheets & Homework:

• Five example sheets in total to be handed out every fortnight.

• Examples will help you to understand the material taught in the lectures and will give
you practice on the types of questions that will be set in the examination. It is very
important that you try them before the example classes.

• There will be only two, yet quite demanding, pieces of coursework. The deadlines are
1 November and 6 December. Your work will be marked and returned to you with
a grade from 1–100.

• Model solutions will be distributed once the homework is handed in.
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Introduction and mathematical
preliminaries
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1.1 Motivation

Most of the problems that you have encountered so far are unusual in that they can be
solved analytically (e.g. integrals, differential equations). However, this is somewhat contrived
as, in real-life, analytic solutions are rather rare, and therefore we must devise a way of
approximating the solutions.

For example, while the integral
∫ 2

1
exdx has a well known analytic solution,

∫ 2

1
ex

2
dx can

only be solved in terms of special functions and
∫ 2

1
ex

3
dx has no analytic solution. These

integrals however exist as the area under the curves y = exp(x2) and y = exp(x3); so, we can
obtain a numerical approximation by estimating this area, e.g. by dividing it into strips and
using the trapezium rule.

1 2

Numerical analysis is a part of mathematics concerned with (i) devising methods, called nu-
merical algorithms, for obtaining numerical approximate solutions to mathematical problems
and, importantly, (ii) being able to estimate the error involved. Traditionally, numerical
algorithms are built upon the most simple arithmetic operations (+,−,× and ÷).

1



2 1.2 Finite-digit arithmetic

Interestingly, digital computers can only do these very basic operations (although very so-
phisticated programmes like Maple exist). However, they are very fast and, hence, have led
to major advances in applied mathematics in the last 60 years.

1.2 Finite-digit arithmetic

1.2.1 Computer arithmetic

Floating point numbers. Computers can store integers exactly but not real numbers in
general. Instead, they approximate them as floating point numbers.

A decimal floating point (or machine number) is a number of the form

± 0. d1 d2 . . . dk︸ ︷︷ ︸
m

×10n, 0 ≤ di ≤ 9, d1 6= 0,

where the significand or mantissa m (i.e. the fractional part) and the exponent n are fixed-
length integers. (m cannot start with a zero.)

In fact, computers use binary numbers (base 2) rather than decimal numbers (base 10) but
the same principle applies (see appendix A).

Machine ε. Consider a simple computer wherem is 3 digits long and n is one digit long. The
smallest positive number this computer can store is 0.1× 10−9 and the largest is 0.999× 109.

Thus, the length of the exponent determines the range of numbers that can be stored. How-
ever, not all values in the range can be distinguished: numbers can only be recorded to a
certain relative accuracy ε.

For example, on our simple computer, the next floating point number after 1 = 0.1 × 101 is
0.101×101 = 1.01. The quantity εmachine = 0.01 (machine ε) is the worst relative uncertainty
in the floating point representation of a number.

1.2.2 Chopping and rounding

There are two ways of terminating the mantissa of the k-digit decimal machine number ap-
proximating 0.d1 d2 . . . dk dk+1 dk+2 . . .× 10n, 0 ≤ di ≤ 9, d1 6= 0,

i. chopping: chop off the digits dk+1, dk+2, . . . to get 0.d1 d2 . . . dk × 10n.

ii. rounding: add 5 × 10n−(k+1) and chop off the k + 1, k + 2, . . . digits. (If dk+1 ≥ 5 we
add 1 to dk before chopping.) Rounding is more accurate than chopping.

Example 1.1
The five-digit floating-point form of π = 3.14159265359 . . . is 0.31415×10 using chopping and
0.31416× 10 using rounding.
Similarly, the five-digit floating-point form of 2/3 = 0.6666666 . . . is 0.66666 using chopping
and 0.66667 using rounding but that of 1/3 = 0.3333333 . . . is 0.33333 using either chopping
or rounding.

1.3 Errors in numerical calculations

Much of numerical analysis is concerned with controlling the size of errors in calculations.
These errors, quantified in two different ways, arise from two distinct sources.
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1.3.1 Measure of the error

Let p? be the result of a numerical calculation and p the exact answer (i.e. p? is an approxi-
mation to p). We define two measures of the error,

i. absolute error: E = |p− p?|
ii. relative error: Er = |p− p?|/|p| (provided p 6= 0) which takes into consideration the size

of the value.

Example 1.2
If p = 2 and p? = 2.1, the absolute error E = 10−1; if p = 2 × 10−3 and p? = 2.1 × 10−3,
E = 10−4 is smaller; and if p = 2× 103 and p? = 2.1× 103, E = 102 is larger but in all three
cases the relative error remains the same, Er = 5× 10−2.

1.3.2 Round-off errors

Caused by the imprecision of using finite-digit arithmetic in practical calculations (e.g. floating
point numbers).

Example 1.3
The 4-digit representation of x =

√
2 = 1.4142136 . . . is x? = 1.414 = 0.1414 × 10. Using

4-digit arithmetic, we can evaluate x2
? = 1.999 6= 2, due to round-off errors.

Significant digits. The number p? approximates p to k significant digits if k if the largest
non negative integer such that

|p− p?|
|p| ≤ 5× 10−k.

This is the bound on the relative error when using k-digit rounding arithmetic.

For example, the number p? approximates p = 100 to 4 significant digits if

99.95 < p? < 100.05.

Magnification of the error. Computers store numbers to a relative accuracy ε. Thus, the
true value of a floating point number x? could be anywhere between x?(1− ε) and x?(1 + ε).
Now, if we add two numbers together, x? + y?, the true value lies in the interval

(x? + y? − ε(|x?|+ |y?|), x? + y? + ε(|x?|+ |y?|)) .
Thus, the absolute error is the sum of the errors in x and y, E = ε(|x?|+ |y?|) but the relative
error of the answer is

Er = ε
|x?|+ |y?|
|x? + y?| .

If x? and y? both have the same sign the relative accuracy remains equal to ε, but if the have
opposite signs the relative error will be larger.
This magnification becomes particularly significant when two very close numbers are sub-
tracted.

Example 1.4
Recall: the exact solutions of the quadratic equation ax2 + bx+ c = 0 are

x1 =
−b−√b2 − 4ac

2a
, x2 =

−b+
√
b2 − 4ac

2a
.



4 1.3 Errors in numerical calculations

Using 4-digit rounding arithmetic, solve the quadratic equation x2 + 62x+ 1 = 0, with roots
x1 ' −61.9838670 and x2 ' −0.016133230.
The discriminant

√
b2 − 4ac =

√
3840 = 61.97 is close to b = 62. Thus, x1? = (−62 −

61.97)/2 = −124.0/2 = −62, with a relative error Er = 2.6 × 10−4, but x2? = (−62 +
61.97)/2 = −0.0150, with a much larger relative error Er = 7.0× 10−2.

Similarly, division by small numbers (or equivalently, multiplication by large numbers) mag-
nifies the absolute error, leaving the relative error unchanged.

Round-off errors can be minimised by reducing the number of arithmetic operations, partic-
ularly those that magnify errors (e.g. using nested form of polynomials).

1.3.3 Truncation errors

Caused by the approximations in the computational algorithm itself. (An algorithm only
gives an approximate solution to a mathematical problem, even if the arithmetic is exact.)

Example 1.5
Calculate the derivative of a function f(x) at the point x0.
Recall the definition of the derivative

df
dx

(x0) = lim
h→0

f(x0 + h)− f(x0)
h

.

However, on a computer we cannot take h→ 0 (there exists a smallest positive floating point
number), so h must take a finite value.
Using Taylor’s theorem, f(x0 + h) = f(x0) + hf ′(x0) + h2/2 f ′′(ξ), where x0 < ξ < x0 + h.
Therefore,

f(x0 + h)− f(x0)
h

=
hf ′(x0) + h2/2 f ′′(ξ)

h
= f ′(x0) +

h

2
f ′′(ξ) ' f ′(x0) +

h

2
f ′′(x0). (1.1)

Consequently, using a finite value of h leads to a truncation error of size ' h/2 |f ′′(x0)|. (It
is called a first order error since it is proportional to h.)

Clearly, small values of h make the truncation error smaller. However, because of round-off
errors, f(x0) is only known to a relative accuracy of ε.
The absolute round-off error in f(x0 + h) − f(x0) is 2ε|f(x0)| and that in the derivative
(f(x0 + h) − f(x0))/h is 2ε/h |f(x0)| (assuming h is exact). Note that this error increases
with decreasing h.
The relative accuracy of the calculation of f ′(x0) (i.e. the sum of the relative truncation and
round-off errors) is

Er =
h

2
|f ′′|
|f ′| +

2ε
h

|f |
|f ′| ,

which has a minimum, min(Er) = 2
√
ε
√|ff ′′|/|f ′|, for hm = 2

√
ε
√|f/f ′′|.

hm

∝ h

∝ 1

h
Er

h
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To improve the computation of the derivative we can use the central difference approximation
(Taylor’s theorem)

f(x0 − h)− f(x0 + h)
2h

= f ′(x0) +
h2

6
f ′′′(ξ), x0 − h < ξ < x0 + h. (1.2)

Its truncation error scales with h2; therefore this second order method is more accurate than
(1.1) for small values of h.

1.4 Goals for a good algorithm

1.4.1 Accuracy

All numerical solutions involve some error. An important goal for any algorithm is that the
error should be small. However, it is equally important to have bounds on any error so that
we have confidence in any answers. How accurate an answer needs to be depends upon the
application. For example, an error of 0.1% may be more than enough in many cases but might
be hopelessly inaccurate for landing a probe on a planet.

1.4.2 Efficiency

An efficient algorithm is one that minimises the amount of computation time, which usually
means the number of arithmetic calculations. Whether this is important depends on the size
of the calculation. If a calculation only takes a few seconds of minutes, it isn’t worth spending
a lot of time making it more efficient. However, a very large calculation can take weeks to
run, so efficiency becomes important, especially if it needs to be run many times.

1.4.3 Stability and robustness

As we have seen, all calculations involve round-off errors. Although the error in each calcu-
lation is small, it is possible for the errors to multiply exponentially with each calculation so
that the error becomes as large as the answer. When this happens, the methods is described
as being unstable.
A robust algorithm is one that is stable for a wide range of problems.
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Chapter 2

Solving nonlinear equations in one
variable
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In this section we shall be concerned with finding a root of the equation

f(x) = 0, (2.1)

where f is a nonlinear function of x — if it is linear (ax + b = 0) we can solve trivially. We
shall only be concerned with finding real roots of (2.1) though, of course, there is no guarantee
that all, or indeed any, of the roots have to be real.

For example, we might wish to solve equations of the form

x− 2−x = 0,

ex − x2 + 3x− 2 = 0,

x cosx+ 2x2 + 3x− 2 = 0.

None of these equations have solutions that can be written in a nice closed form, and so
numerical approach is the only way.

In this section, we shall describe iterative methods, i.e. methods that generate successive
approximations to the exact solution, by applying a numerical algorithm to the previous
approximation.

2.1 Bisection method

Suppose f(x) is a continuous function on some interval [a, b] with f(a) and f(b) of opposite
sign1. Then, by the intermediate value theorem (IVT), ∃p ∈ (a, b) with f(p) = 0. (For

1The product of two non-zero numbers f(a)f(b) < 0 if f(a) and f(b) are of opposite signs; f(a)f(b) > 0 if
f(a) has the same sign as f(b).

7



8 2.2 Fixed point iteration

simplicity, let’s assume there exists only one root in (a, b).)

a
b

p1
p2p

f(p2)

f(a) f(p1)

f(b)

Bisection gives a simple and robust method for bracketing the root p. The algorithm works
as follows:

Take the midpoint p1 = (a + b)/2 as a first guess and calculate f(p1). If f(p1) and f(b) are
of opposite sign then the root lies in the interval [p1, b]. (Conversely, if f(p1) has the opposite
sign to f(a) then the root lies in the interval [a, p1].)

This procedure can be repeated iteratively, e.g. taking a second guess p2 = (p1 + b)/2 from
the example above.

At each iteration we halve the size of the interval [an, bn] that contains the root p and after n
iterations of the procedure we have reduced the uncertainty in p down to,

En = |p− pn| ≤ b− a
2n

. (2.2)

Example 2.1
Material covered in class. Please, see your lecture notes.

Advantages of the method :

i. provided the function is continuous on an interval [a, b], with f(a)f(b) < 0, bisection is
guaranteed to work (up to round-off error);

ii. the number of iterations needed to achieve a specific accuracy is known in advance.

Disadvantage of the method :

i. the method is slow to converge. (Reducing the error interval to 10−4 requires 16 itera-
tions in the example 2.1);

ii. the errors in pn and in f(pn) do not necessarily decrease between iterations. Note that,
in the example 2.1, p2 = 1.5 is closer to p (and f(pn) closer to 0) than the next 3 iterates.
Also, no advantage is taken of intermediate good approximations.

2.2 Fixed point iteration

A fixed point of a function g(x) is a value p such that g(p) = p.
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Fixed point iteration procedure. Let g be a continuous function. If the sequence pn =
g(pn−1) converges to p as n→∞ then g(p) = p. So, p is a stable fixed point of g.

Thus, provided p0 is sufficiently close to p, we can use the simple iteration

pn = g(pn−1) (2.3)

to find stable fixed points.

Root finding. A root finding problem, f(x) = 0, can be easily converted to a fixed point
iteration by choosing, e.g., g(x) = x− f(x), g(x) = x+ 3f(x), or g(x) =

√
x2 + f(x), etc.

It is important to note that there exists an infinite number of such functions g but the precise
form of the g we choose will prove crucial for the convergence of the fixed point iteration.

Example 2.2
Material covered in class. Please, see your lecture notes.

Example 2.3
Material covered in class. Please, see your lecture notes.

Consider an iterate close to p, pn = p+ε, say. Then, pn+1 = g(pn) = g(p+ε) = g(p)+εg′(p)+
O(ε2) = p+εg′(p)+O(ε2) (using Taylor series). Thus |p−pn| = |ε| and |p−pn+1| ∼ |ε||g′(p)|,
so if |g′(p)| > 1 then pn+1 is further away from p than pn; there is no convergence.

Theorem 2.1 (Fixed point theorem)
If g ∈ C[a, b] (i.e. is a continuous function on the interval [a, b]) and, ∀x ∈ [a, b], g(x) ∈ [a, b]
then g has a fixed point in [a, b] (existence).

If, in addition, g′(x) exits on (a, b) and there exists a positive constant K < 1 such that,
∀x ∈ (a, b), |g′(x)| ≤ K then

i. the fixed point is unique (uniqueness),

ii. for any p0 ∈ [a, b] the sequence pn = g(pn−1) converges to this unique fixed point
p ∈ [a, b] (stability).

Proof. The proof is in three parts. First, we prove that a fixed point exists. Second we
prove that it is unique and third that the sequence must converge.

Existence. If g(a) = a or g(b) = b then a or b, respectively, is a fixed points. If not, then
g(a) > a and g(b) < b.

Define h(x) = g(x) − x. Then h ∈ C[a, b] with h(a) = g(a) − a > 0 and h(b) = g(b) − b <
0. Therefore, the intermediate value theorem implies that there exists p ∈ (a, b) such that
h(p) = 0 i.e. g(p) = p, so p is a fixed point.

Uniqueness. Suppose that p and q are two distinct fixed points, i.e. h(p) = h(q) = 0, with
p < q. Then by Rolle’s theorem, ∃c ∈ (p, q) such that h′(c) = 0.

But h′(x) = g′(x) − 1 ≤ K − 1 < 0 since g′(x) ≤ K < 1. This is a contradiction. Since the
only assumption we have made is that p 6= q, then it follows that this assumption must be
wrong. Thus, p = q i.e. the fixed point is unique.

Stability. |pn − p| = |g(pn−1) − g(p)|. But the mean value theorem implies that ∃ξ in the
interval between pn−1 and p, subset of (a, b), such that |g(pn−1)− g(p)| = |g′(ξ)||(pn−1−p)| ≤
K|(pn−1 − p)|.
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Therefore, |pn − p| ≤ K|(pn−1 − p)| ≤ K2|(pn−2 − p)| . . . ≤ Kn|(p0 − p)|, with K < 1. Hence,
|pn−p| ≤ Kn|(p0−p)| → 0 when n→∞ and the sequence (pn) converges to the unique fixed
point p.

It is important to note that this theorem gives sufficient conditions for convergence, but they
are not necessary.

In the example 2.2, when g(x) = x−x2/2+1, g′(x) = 1−x. So, ∀x ∈ [1, 1.5], |g′(x)| ≤ 0.5 and
g(x) ∈ [1.375, 1.5] ⊂ [1, 1.5] (subset). Hence, all the conditions for the fixed point theorem are
satisfied and the iteration converges.

However, if g(x) = x + 3x2/2 − 3 then g′(x) = 1 + 3x > 1 when x > 0. So, the fixed point
x =
√

2 is unstable.

2.3 Newton-Raphson method

There are various ways of deriving this iterative procedure for solving nonlinear equations
f(x) = 0 (see appendix C), but the graphical method is particularly instructive.

pp0

p1

p2

y

x

y = f(x)

p3

Suppose we have an initial guess po where f and f ′ are known. Then, p1, the intersection of
the x-axis with the tangent to f in p0, is an improved estimate of the root.

f ′(p0) =
f(p0)
p0 − p1

⇒ p1 = p0 − f(p0)
f ′(p0)

.

Repeating this procedure leads to the general iterative scheme:

pn = pn−1 − f(pn−1)
f ′(pn−1)

, n ≥ 1. (2.4)

Obviously it is vital to have f ′(pn−1) 6= 0.

Relation with fixed point iteration. The Newton-Raphson method is a particular case
of the fixed point iteration algorithm, with the iterative map pn = g(pn−1), where the mapping
function g(x) = x− f(x)/f ′(x).

Example 2.4
Material covered in class. Please, see your lecture notes.

Advantages of Newton’s method.

i. It is fast. (We shall quantify this later.)

ii. It can be extended to multidimensional problem of finding, e.g. f1(x, y) = f2(x, y) = 0
for which bisection method cannot be used.
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Disadvantages of Newton’s method.

i. It requires evaluating the derivative, f ′(x), at each iteration.

ii. It can fail if the initial guess is not sufficiently close to the solution, particularly if
f ′(x) = 0.

For instance, in the example 2.4 convergence is guaranteed. (Iterations converge to +
√

2
if p0 > 0 and to −√2 if p0 < 0.) However if f has the form

y = f(x)

p0

p1 p2

a b

y

x

even though the initial guess p0 is closest to the root x = a, (pn) will converge to x = b.

Even more troublesome, a function of the form

p0 p1

y

x

y = f(x)

p

has a root at x = p but with the initial guess p0 as shown, the iterations get caught in
an endless loop, never converging.

2.4 Secant method

A solution to avoid the calculation of the derivative for Newton-Raphson method is to use
the last two iterates to evaluate f ′(x).

By definition,

f ′(pn−1) = lim
x→pn−1

f(x)− f(pn−1)
x− pn−1

,

but letting x = pn−2 leads to the approximation

f ′(pn−1) ≈ f(pn−2)− f(pn−1)
pn−2 − pn−1

.

Rather than (2.4), the iteration scheme for the secant method is

pn = pn−1 − f(pn−1)
pn−1 − pn−2

f(pn−1)− f(pn−2)
. (2.5)

Unlike Newton-Raphson, this method is a two-point method. (Iteration pn uses both, pn−1

and pn−2.) So, initially, two guesses are needed, p0 and p1.

Example 2.5
Material covered in class. Please, see your lecture notes.

Secant method is slightly slower than Newton’s method, but it does not require the evaluation
of a derivative. It does need two initial points but these do not have to straddle the root.
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2.5 Rates of convergence

We mentioned, that the bisection method converges slowly, whilst, when the Newton-Raphson
algorithm converges, it is fast. In this section we shall quantify the convergence rate of iteration
schemes.

Suppose a numerical method producing a sequence of iterations (pn) that converges to p. The
method has order of convergence α if |pn+1 − p| ∼ K|pn − p|α (i.e. |pn+1 − p| is asymptotic
to K|pn − p|α), for some K > 0. Or equivalently if

lim
n→∞

|pn+1 − p|
|pn − p|α = K.

When α = 1 the convergence is linear, and when α = 2 it is quadratic. If the error of
an iterative algorithm is O(ε) at iteration n then, for a linear methods, it remains O(ε) at
iteration n + 1, but for a quadratic method the error becomes O(ε2). Thus, higher order
methods generally converge more rapidly than lower order ones.

2.5.1 Fixed point iteration

Let us consider a fixed point iteration pn+1 = g(pn) producing a sequence of iterations (pn)→
p as n→∞, such that p = g(p) (since g is continuous).

Expand g(pn) as a Taylor series in powers of (pn − p). For some ξn in the interval between p
and pn,

g(pn) = g(p) + (pn − p)g′(ξn)⇒ pn+1 = p+ (pn − p)g′(ξn).

Thus, |pn+1 − p| = |g′(ξn)||pn − p|, and

lim
n→∞

|pn+1 − p|
|pn − p| = |g′(p)| ⇔ |pn+1 − p| ∼ |g′(p)||pn − p|. (2.6)

So, for 0 < |g′(p)| < 1 fixed point iteration is linearly convergent.

2.5.2 Newton-Raphson

Equation (2.6) shows that the convergence of fixed point iterations is best when g′(p) is as
small as possible, and preferably zero. Newton-Raphson, which is a fixed point iteration
method with the mapping function g(x) = x− f(x)/f ′(x), achieves this.

g′(x) = 1− f ′(x)2 − f(x)f ′′(x)
f ′(x)2

=
f(x)f ′′(x)
f ′(x)2

.

Thus, provided f ′(p) 6= 0 (i.e. p is a simple root, i.e. of multiplicity one), g′(p) = 0 since, by
definition, f(p) = 0.

Expand g(pn) as a Taylor series in powers of (pn− p), up to second order. For some ξn in the
interval between p and pn,

g(pn) = g(p) + (pn − p)g′(p) +
(pn − p)2

2
g′′(ξn)⇒ pn+1 = p+

(pn − p)2
2

g′′(ξn),

since pn+1 = g(pn), g(p) = p and g′(p) = 0. Thus,

|pn+1 − p| = |g
′′(ξn)|

2
|pn − p|2
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implies

lim
n→∞

|pn+1 − p|
|pn − p|2 =

|g′′(p)|
2

⇔ |pn+1 − p| ∼ |g
′′(p)|
2
|pn − p|2, (2.7)

so the convergence of Newton’s method is quadratic. (Note that g′′(p) = f ′′(p)/f ′(p).)

However, in the case when g′(p) 6= 0 (i.e. if f ′(p) = 0: p is a double root),

g(pn) = g(p) + (pn − p)g′(ξn)⇔ pn+1 − p = (pn − p)g′(ξn).

Thus,

lim
n→∞

|pn+1 − p|
|pn − p| = |g′(p)|,

So, if g′(p) 6= 0 the convergence of Newton’s methods is not quadratic but linear (i.e. the
same as the general form of fixed point iteration).

2.5.3 Other methods

Bisection. At each step, the size of the interval that contains the root is halved, so max(En) =
max(En−1)/2, but the error does not necessarily decrease monotonically. However, if we re-
gard the upper bounds of the errors as an estimate of the error, then bisection is linearly
convergent.

Secant. This method requires two steps and is harder to analyse. However, it can be shown
in a strict mathematical sens (see appendix D) that |pn+1 − p| = K|pn − p||pn−1 − p|, giving
an order of convergence of (1 +

√
5)/2 ≈ 1.62 (golden ratio). The convergence is super-linear,

i.e. better than linear but poorer than quadratic.

2.6 Evaluation of the error

Generally, the exact value of the root of a function (or the exact value of a fixed point) is
unknown. So, it is impossible the evaluate the error of iterative methods, En = |p− pn|, but
we can find an upper bound on the error using the difference between two iterates.

A sequence (pn) is called contractive if there exists a positive constant K < 1 such that

|pn+2 − pn+1| ≤ K|pn+1 − pn|, ∀n ∈ N.

Theorem 2.2
If (pn) is contractive with constant K then,

i. (pn) is convergent,
lim
n→∞ pn = p. (2.8)

ii. |p− pn| is bounded above,

|p− pn| ≤ K

1−K |pn − pn−1|. (2.9)

Hence, when K < 1/2, |pn − pn−1| provides an the upper bound on En = |p − pn|, the error
at iteration n.
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Suppose we have some table of discrete data, the population of a country at ten yearly
intervals, say, and we need to evaluate the population at a date where no data are available.
The estimation of the unknown data, using some or all of the available data, is a process
known as interpolation.

Similarly, interpolation allows us to approximate a complicated or unknown function, f , with
a simple function that agrees with f at a finite number of points, xk.

i. If f is very computationally expensive to calculate, approximating f in some calculations
by a simpler interpolating function reduces this cost. This was a common practice before
calculators and computers became widely available.

ii. Exact calculations (e.g. derivation, quadrature) may become possible if the interpolat-
ing function is used instead of the complicated or unknown function f . This is a build-
ing block for advanced numerical methods (e.g. finite element and spectral-collocation
methods).

In this section we shall consider the approximation of a function by polynomials or piecewise
polynomial functions (splines) only.

3.1 Global polynomial interpolation

Fit a polynomial of degree n− 1,

P (x) = an−1x
n−1 + an−2x

n−2 + . . .+ a1x+ a0

through n known points (xk, fk), k = 1, . . . , n. Hence, the interpolating polynomial satisfies
P (xk) = fk. (The coordinates xk are not necessarily equally spaced.)

15
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3.1.1 Lagrange polynomials

A practical way to construct the polynomial P (x) is to use the basis formed by Lagrange
polynomials.

Let us define the Lagrange polynomials of degree n− 1, Lk(x) (k = 1, . . . , n), such that

Lk(x) =
{

1 at x = xk,
0 at x = xi for i 6= k,

i.e. Lk(xi) = δik (Kronecker delta).

In other words, Lk(x) is equal to 1 at the point xk and 0 at all the other given points.

For n = 2, (i.e. {x1, x2} given), the two Lagrange polynomials L1(x) and L2(x) satisfy

L1(x1) = 1, L2(x1) = 0,
L1(x2) = 0, L2(x2) = 1,

from which we obtain the linear functions (i.e. polynomials of degree 1),

L1(x) =
x− x2

x1 − x2
, L2(x) =

x− x1

x2 − x1
.

For n > 2, L1(x1) = 1 and L1(xk) = 0 for k = 2, . . . , n. From above we see that

x− x2

x1 − x2
=
{

1 at x = x1,
0 at x = x2,

while
x− x3

x1 − x3
=
{

1 at x = x1,
0 at x = x3,

etc.

Thus, by multiplying n−1 such factors together, we obtain the Lagrange polynomial of degree
n− 1,

L1(x) =
(
x− x2

x1 − x2

)
×
(
x− x3

x1 − x3

)
× . . .×

(
x− xn
x1 − xn

)
,

written in compact form as

L1(x) =
n∏
i=2

(
x− xi
x1 − xi

)
.

Similarly,

Lk(x) =
n∏
i=1
i 6=k

(
x− xi
xk − xi

)
, k = 1, . . . , n. (3.1)

The n Lagrange polynomials Lk(x) of degree n− 1 form a complete set of independent poly-
nomials, so {L1(x), L2(x), . . . , Ln(x)} forms a basis of polynomials of degree n− 1.

3.1.2 Lagrange form of the interpolating polynomial

Having obtained Lk(x), we can write the Lagrange form of the polynomial interpolating the
set of points {(xk, fk) | k = 1, . . . , n},

P (x) =
n∑
k=1

fkLk(x) =
n∑
k=1

fk

n∏
i=1
i 6=k

(
x− xi
xk − xi

)
. (3.2)

(It is the Lagrange interpolating polynomial of degree n− 1 satisfying P (xk) = fk.)
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For n = 2,

P (x) = f1L1(x) + f2L2(x),

= f1

(
x− x2

x1 − x2

)
+ f2

(
x− x1

x2 − x1

)
which rearranges to

P (x) =
f1(x2 − x1) + (f2 − f1)(x− x1)

x2 − x1

= f1 +
(
f2 − f1

x2 − x1

)
(x− x1). (3.3)

This is the equation of a straight line between the two points (x1, f1) and (x2, f2) (linear
interpolation).

Example 3.1
Material covered in class. Please, see your lecture notes.

3.2 Properties of global polynomial interpolation

3.2.1 Uniqueness

The interpolating polynomial is unique in that there is only one polynomial of degree at most
n− 1, P , that satisfies P (xk) = fk for n distinct points (xk, fk).

(This seems intuitively true, since we have n equations,

P (xk) =
n−1∑
i=0

aix
i
k = fk, k = 1, . . . , n,

with n unknowns, ai, the coefficients of the polynomial P .)

Proof.
Material covered in class. Please, see your lecture notes.

3.2.2 The error term in global polynomial interpolation

In the section, interpolation is used to approximate a known function (not to interpolate
tabulated data — in which case error cannot be evaluated).

If f ∈ Cn[a, b] (i.e. f is a function n times differentiable in [a, b] with continuous derivatives)
then, ∀x ∈ [a, b], there exists ξ ∈ (a, b), that depends on x, such that

f(x)− P (x) =
f (n)(ξ)
n!

n∏
k=1

(x− xk). (3.4)
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Proof. This result is trivially true for x = xi since both sides are zero.

For x 6= xi, let us define

c(x) =
f(x)− P (x)∏n
k=1(x− xk) ,

so that

f(x) = P (x) + c(x)
n∏
k=1

(x− xk).

Let us now define the function

w(t) = f(t)− P (t)− c(x)
n∏
k=1

(t− xk),

which satisfies w(t) = 0 for t = x and t = x1, . . . , xn. So w(t) has n+ 1 distinct roots in [a, b].

By Rolle’s theorem, there must be at least one root of w(t)′ between two successive roots of
w(t). So, w′(t) has at least n distinct roots in (a, b).

Apply Rolle’s theorem to derivatives of increasing order successively, to show that w(n)(t)
must have at least one root in (a, b). Let us call this point ξ: w(n)(ξ) = 0.

The nth derivative of w(t) is

w(n)(t) = f (n)(t)− P (n)(t)− c(x)n!

but P is a polynomial of degree n− 1, so P (n) ≡ 0. Let t = ξ,

f (n)(ξ)− c(x)n! = 0 ⇒ c(x) =
f (n)(ξ)
n!

.

So,

f(x)− P (x) =
f (n)(ξ)
n!

n∏
k=1

(x− xk).

3.2.3 Accuracy of global polynomial interpolation

Using Equation (3.4) we can obtain bounds on the accuracy of Lagrange interpolation, pro-
vided we can bound the nth derivative, f (n).

Since the error term involves f (n), Lagrange interpolation is exact for polynomial of degree
n-1 at most.

In the example of sin(3x) (see appendix E.1), |f (n)| ≤ 3n while, e.g., for the five points
{x1 = 1, x2 = 1.3, x3 = 1.6, x4 = 1.9, x5 = 2.2} and x = 1.5,∣∣∣∣∣

n∏
i=1

(x− xi)
∣∣∣∣∣ = 0.5× 0.2× 0.1× 0.4× 0.7 =

7
2500

= 2.8× 10−3.
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So, the error in the approximation to f(1.5) is

|f(1.5)− P (1.5)| ≤ 35

5!
× 7

2500
=

567
105

= 5.67× 10−3.

The actual error is |f(1.5)− P (1.5)| ≈ 2× 10−4.

However, the function f(x) = 1/(1 + x2) cannot be approximated accurately by an interpola-
tion polynomial, using equidistant points on the interval [−5, 5] (see appendix E.2).

Although, f is differentiable, its derivatives grow with n!. (|f (n)(0)| = n!, for n even.) So,
|f (n)(ξ)/n!| does not converge to 0 while

∏n
i=1(x− xi) increases (since interval width > 1).

3.3 Splines

Alternatively, to interpolate through n points (xk, fk) we can use piecewise polynomial func-
tions called splines, i.e. S(x) =

⋃
Sk(x) where the low degree polynomials Sk(x) are defined

on the intervals [xk, xk+1], k = 1, . . . , n− 1.

3.3.1 Piecewise linear interpolation

The simplest spline is composed of linear functions of the form Sk(x) = akx + bk, for x ∈
[xk, xk+1] (i.e. a straight line between the two successive points xk and xk+1).

SkS1

Sn−1

x1 x2 xnxn−1xk+1xk

The coefficients ak and bk are determined by the conditions (i) Sk(xk) = fk and (ii) Sk(xk+1) =
fk+1, k = 1, . . . , n− 1. Thus,

Sk(x) = fk + (x− xk) fk+1 − fk
xk+1 − xk , x ∈ [xk, xk+1], k = 1, . . . , n− 1. (3.5)

The interpolating function is continuous but it is not differentiable, i.e. not smooth, at the
interior points (S′k(xk+1) 6= S′k+1(xk+1)).

To retain the smoothness of Lagrange interpolation without producing large oscillations,
higher order splines are needed.

3.3.2 Quadratic splines

Consider the spline composed of n − 1 quadratic polynomials of the form Sk(x) = akx
2 +

bkx+ ck, for x ∈ [xk, xk+1], k = 1, . . . , n− 1.

We need 3(n− 1) equations to determine the 3(n− 1) coefficients {ak, bk, ck}. The conditions
Sk(xk) = fk and Sk(xx+1) = fk+1 provide 2(n − 1) equations while the continuity of the
derivative at the interior points, S′k(xk+1) = S′k+1(xk+1), k = 1, . . . , n − 2, provides n − 2
extra equations.
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In total we have 3(n−1) unknowns and 3(n−1)−1 equations. So, only one degree of freedom
is left, which is unsatisfactory if one needs to impose conditions on the derivatives of the
interpolating function at both ends.

3.3.3 Cubic splines

In practical applications, cubic splines are preferred. Consider the spline composed of n − 1
cubic polynomials of the form

Sk(x) = ak(x− xk)3 + bk(x− xk)2 + ck(x− xk) + dk, (3.6)

so that, S′k(x) = 3ak(x− xk)2 + 2bk(x− xk) + ck, (3.7)
S′′k (x) = 6ak(x− xk) + 2bk. (3.8)

for x ∈ [xk, xk+1], k = 1, . . . , n− 1.

Properties. The interpolating function must pass through all the data points, be contin-
uous, and have continuous derivative at the interior points. Furthermore, there are enough
degrees of freedom to impose continuous curvature as well (continuity of second derivative).

Sk(xk) = fk, k = 1, . . . , n− 1, (3.9)
Sk(xk+1) = fk+1, k = 1, . . . , n− 1, (3.10)
S′k(xk+1) = S′k+1(xk+1), k = 1, . . . , n− 2, (3.11)
S′′k (xk+1) = S′′k+1(xk+1), k = 1, . . . , n− 2. (3.12)

We have 4(n− 1) unknowns and 4(n− 1)− 2 equations (i.e. conditions). Hence, we have the
freedom to impose two extra conditions.

Let us define, hk = xk+1 − xk, the width of the kth interval, and Ck = S′′k (xk) the curvature
in xk (Cn = S′′n−1(xn)).

Next, we shall write all the equations in terms of hk, fk (given) and Ck (unknown) only.
From equation (3.8):

Ck = 2bk ⇔ bk =
Ck
2
, k = 1, . . . , n− 1. (3.13)

From equations (3.8) and (3.12):

6akhk + Ck = Ck+1 ⇔ ak =
1
6
Ck+1 − Ck

hk
, k = 1, . . . , n− 1. (3.14)

From equations (3.6) and (3.9):

dk = fk, k = 1, . . . , n− 1. (3.15)

From equations (3.6) and (3.10):

akh
3
k + bkh

2
k + ckhk + dk = fk+1

1
6
Ck+1 − Ck

hk
h3
k +

Ck
2
h2
k + ckhk + fk = fk+1

ck =
fk+1 − fk

hk
− 1

6
hk(Ck+1 + 2Ck), k = 1, . . . , n− 1. (3.16)
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So far we have obtained expressions for the coefficients ak, bk, ck and dk in terms of hk, Ck
and fk. All that remains is to match the slopes at the interior points.
From equations (3.7) and (3.11):

3akh2
k + 2bkhk + ck = ck+1, k = 1, . . . , n− 2,

1
2
Ck+1 − Ck

hk
h2
k + Ckhk +

fk+1 − fk
hk

− 1
6
hk(Ck+1 + 2Ck) =

fk+2 − fk+1

hk+1
− 1

6
hk+1(Ck+2 + 2Ck+1).

After some simple algebra, we obtain a system of n−2 equations to solve for Ck, k = 1, . . . , n−2

hkCk + 2(hk + hk+1)Ck+1 + hk+1Ck+2 = 6
(
fk+2 − fk+1

hk+1
− fk+1 − fk

hk

)
. (3.17)

So, the problem as been reduced from finding 4(n− 1) coefficients ak, bk, ck and dk to finding
n values of the curvature Ck.

We only have n−2 equations for Ck but we can obtain two additional equations by specifying
end conditions on the curvature, i.e. conditions involving C1 and Cn.

i. Natural or free boundaries: take C1 = Cn = 0, i.e. the end cubic splines have no
curvature at the end points.

ii. Clamped boundaries: fix the slopes at each end to specified values. (Note that, the
slope at x1, say, involves c1 and thus relates to C1 and C2 through (3.16).)

iii. Periodic boundaries: take C1 = Cn.

Equation (3.17) can be written in matrix form,

MC = F. (3.18)

In the case of natural splines (i.e. for C1 = Cn = 0), the matrix is non-singular and has a
tri-diagonal structure. So, the solution for Ck is unique and can easily be obtained using rapid
tri-diagonal matrix solvers.

M =



2(h1 + h2) h2 0 0 . . . 0 0
h2 2(h2 + h3) h3 0 . . . 0 0
0 0
0 . . . hk 2(hk + hk+1) hk+1 . . . 0
0 0
0 0 . . . 0 hn−3 2(hn−3 + hn−2) hn−2

0 0 . . . 0 0 hn−2 2(hn−2 + hn−1)


,

C =


C2

C3
...

Cn−2

Cn−1

 and F = 6



f3−f2
h2
− f2−f1

h1
...

fk+2−fk+1

hk+1
− fk+1−fk

hk

...
fn−fn−1

hn−1
− fn−1−fn−2

hn−2


.

So, equation (3.18) can be solved for Ck and the coefficients of the splines can be recovered
from equations (3.13), (3.14), (3.15), (3.16).

Example 3.2
Material covered in class. Please, see your lecture notes.



22 3.3 Splines



Chapter 4

Numerical integration

Contents

4.1 Definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Closed Newton-Cotes formulae . . . . . . . . . . . . . . . . . . . . . 24

4.3 Open Newton-Cotes formulae . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Gauss quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Composite methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Definite integrals

The definite integral of a function f on the interval [a, b] is written as∫ b

a
f(x) dx (4.1)

and can be defined as the limit of the Riemann series∫ b

a
f(x) dx = lim

h→0

(b−a)/h∑
i=1

hf(a+ (i− 1)h),

i.e. as the area under the curve (x, y = f(x)).

f(x)

a bh
x

Hence, numerical integration is often called quadrature (i.e. computation of an area under a
curve).

23



24 4.2 Closed Newton-Cotes formulae

The definite integral of a function exists even if there is no analytic antiderivative function
F (x) such that

d
dx
F (x) = f(x).

4.2 Closed Newton-Cotes formulae

The definite integral (4.1) can be approximated using the polynomial interpolating f(x)
through n equispaced points (xk), leading to∫ b

a
f(x) dx ≈

n∑
k=1

wkf(xk) with xk = a+ (k − 1)
b− a
n− 1

.

4.2.1 Trapezium rule

This is the simplest numerical method for evaluating a definite integral. It calculates the area
of the trapezium formed by approximating f(x) using linear interpolation.

f(x)

a b x
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

f(a)

f(b)

P (x)

∫ b

a
f(x) dx ≈ b− a

2
(f(a) + f(b)) . (4.2)

Thus, the trapezium rule can be obtained by integrating the linear interpolation function

P (x) = f(a)
x− b
a− b + f(b)

x− a
b− a over the interval [a, b].

(Check that
∫ b

a
f(x) dx ≈

∫ b

a
P (x) dx leads to (4.2).)

Measure of the error: From Equation (3.4), we know the error in the linear interpolation,

f(x) = P (x) +
1
2
f ′′(ξ(x))(x− a)(x− b), ξ(x) ∈ [a, b].

Therefore, ∫ b

a
f(x) dx =

∫ b

a
P (x) dx+

∫ b

a

1
2
f ′′(ξ(x))(x− a)(x− b) dx.

So, the error in the trapezium rule is equal to

E =
1
2

∫ b

a
f ′′(ξ(x))(x− a)(x− b) dx.

To evaluate this integral, we shall make use of the following theorem (generalisation of the
Mean Value Theorem).
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Theorem 4.1 (Weighted Mean Value for Integrals)
If h ∈ C[a, b], if the integral of g(x) exists on [a, b], and if g(x) does not change sign on [a, b],
then there exists c ∈ [a, b] such that∫ b

a
h(x)g(x) dx = h(c)

∫ b

a
g(x) dx.

Hence,
1
2

∫ b

a
f ′′(ξ(x))(x− a)(x− b) dx =

f ′′(c)
2

∫ b

a
(x− a)(x− b) dx

since (x− a)(x− b) ≤ 0 on the interval [a, b].

E =
1
2
f ′′(c)

∫ b−a

0
u(u− (b− a)) du with u = x− a,

=
1
2
f ′′(c)

[
u3

3
− u2

2
(b− a)

]b−a
0

= −f ′′(c)(b− a)3

12
.

Thus, the error in the trapezium method scales with the cube of the size on the interval.
(Note that this method is exact for linear functions.)

We can generate other integration rules by using higher order Lagrange polynomials.∫ b

a
f(x) dx ≈

∫ b

a
P (x) dx =

∫ b

a

n∑
k=1

f(xk)Lk(x) dx

=
n∑
k=1

f(xk)
∫ b

a
Lk(x) dx =

n∑
k=1

wkf(xk),

where wk =
∫ b

a
Lk(x) dx are called weights.

The error is given by
∫ b

a

f (n)(ξ(x))
n!

n∏
k=1

(x− xk) dx.

This method provides a means of finding the weights and error terms. However, their eval-
uation becomes more and more complex with increasing n. (Theorem 4.1 cannot be used to

evaluate the error since
n∏
k=1

(x− xk) changes sign for n ≥ 3.)

4.2.2 Method of undetermined coefficients

Alternative way of evaluating Newton-Cotes integration formulae. To illustrate this method,
let us derive the trapezium rule again.

Trapezium rule

We wish to find an approximation of the form∫ b

a
f(x) dx ≈ w1f(a) + w2f(b).

Since, we have two unknown parameters, w1 and w2, we can make this formulae exact for
linear functions (i.e. functions are of the form αx + β). So, the error term must be of the
form Kf ′′(ξ) for some ξ ∈ (a, b).
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Hence, we seek a quadrature rule of the form∫ b

a
f(x) dx = w1f(a) + w2f(b) +Kf ′′(ξ), ξ ∈ (a, b).

To find w1 and w2 we need to ensure that the formula is exact for all linear functions. However,
using the principle of superposition, it is sufficient to make this work for any two independent
linear polynomials (i.e. polynomials of degree one at most).
E.g. choose the two independent polynomials f ≡ 1 and f ≡ x.

For f ≡ 1 :
∫ b

a
dx = w1 + w2 = b− a;

for f ≡ x :
∫ b

a
x dx = aw1 + bw2 =

b2 − a2

2
.

Solving these simultaneous equations gives

w1 = w2 =
b− a

2
.

To find the value of K, we can use any quadratic function so that f ′′(ξ) is a non-zero constant,
independent of the unknown ξ. E.g. take f ≡ x2,∫ b

a
x2 dx =

b3 − a3

3
=
b− a

2
(
a2 + b2

)
+ 2K (f ′′ = 2),

⇒ 2K =
b3 − a3

3
− b− a

2
(
a2 + b2

)
,

= (b− a)
[

1
3
(
a2 + ab+ b2

)− 1
2
(
a2 + b2

)]
,

= (b− a)
[
−1

6
(
a2 − 2ab+ b2

)]
= −(b− a)3

6
,

⇒ K = −(b− a)3

12
.

Hence, ∫ b

a
f(x) dx =

b− a
2

(f(a) + f(b))− (b− a)3

12
f ′′(ξ), ξ ∈ (a, b), (4.3)

in agreement with § 4.2.1 (but easier to derive).

Simpson’s rule

Three points integration rule derived using the method of undetermined coefficients.
Suppose that we add a quadrature point at the middle of the interval [a, b],∫ b

a
f(x) dx ≈ w1f(a) + w2f

(
a+ b

2

)
+ w3f(b).

To avoid algebra, substitute x =
a+ b

2
+ u and define h =

b− a
2

so that the integral becomes

∫ h

−h
F (u) du ≈ w1F (−h) + w2F (0) + w3F (h), with F (u) = f(x).
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Since we have three unknowns, we can make this formula exact for all quadratic functions;
so, let us use, e.g., F ≡ 1, F ≡ u and F ≡ u2.

F ≡ 1⇒
∫ h

−h
du = 2h = w1 + w2 + w3;

F ≡ u⇒
∫ h

−h
udu = 0 = −hw1 + hw3 ⇒ w1 = w3;

F ≡ u2 ⇒
∫ h

−h
u2 du =

2
3
h3 = h2w1 + h2w3 ⇒ w1 = w3 =

h

3
;

w2 = 2h− w1 − w3 = 2h− 2
3
h =

4
3
h.

Hence we obtain the approximation∫ h

−h
F (u) du ≈ h

3
F (−h) +

4h
3
F (0) +

h

3
F (h),

which translates into ∫ b

a
f(x) dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

This is called Simpson’s rule.

As this formula is exact for all quadratic functions, we expect the error to be of the form
KF ′′′(ξ).

However, if we examine F ≡ u3, the integral
∫ h

−h
u3 du = 0 and Simpson’s rule gives

h

3
[
(−h)3 + 4× 0 + h3

]
= 0⇒ K ≡ 0.

Therefore Simpson’s rule is exact for cubic functions as well. Consequently, we try an error
term of the form KF (iv)(ξ), ξ ∈ (−h, h).

To find the value of K use, e.g., F (u) ≡ x4 (with F (iv)(ξ) = 4!, independent of ξ).∫ h

−h
u4du =

2h5

5
=
h

3
[
(−h)4 + h4

]
+ 4!K ⇒ 4!K = 2h5

[
1
5
− 1

3

]
= −4h5

15
,

⇒ K = −h
5

90
.

Simpson’s rule is fifth-order accurate: the error varies as the fifth power of the width of the
interval.

Simpson’s rule is given by∫ b

a
f(x) dx =

b− a
6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− (b− a)5

2880
f (iv)(ξ), ξ ∈ (a, b). (4.4)

Example 4.1
Material covered in class. Please, see your lecture notes.

Closed Newton-Cotes formula of higher order can be derived using more equispaced interme-
diate points (n = 2: trapezium; n = 3: Simpson).
As observed for Simpson’s rule, the error for n odd is of order (b−a)n+2 rather than (b−a)n+1,
due to symmetry.
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4.3 Open Newton-Cotes formulae

Closed Newton-Cotes formulae such as (4.3) and (4.4) include the value of the function at the
endpoints.
By contrast, open Newton-Cotes formulae are based on the interior points only.

Midpoint rule. For example, consider the open Newton-Cotes formula∫ b

a
f(x) dx ≈ w1f

(
a+ b

2

)
.

Again, we can substitute u = x− a+ b

2
and h =

b− a
2

;

∫ h

−h
F (u) du ≈ w1F (0).

This formula must hold for constant functions. So, taking, e.g. F ≡ 1⇒ 2h = w1. However,

since for F (u) ≡ u,
∫ h

−h
F (u) du = 0, the quadrature rule is exact for linear functions as well.

So, we look for an error of the form KF ′′(ξ), ξ ∈ (−h, h);∫ h

−h
F (u) du = 2hF (0) +KF ′′(ξ), ξ ∈ (−h, h).

Substitute F (u) = u2,
2
3
h3 = 0 + 2K ⇒ K =

h3

3
.∫ b

a
f(x) dx = (b− a)f

(
a+ b

2

)
+

(b− a)3

24
f ′′(ξ), ξ ∈ (a, b). (4.5)

Same order as trapezium and coefficient of the error smaller (halved).

Example 4.2
Material covered in class. Please, see your lecture notes.

4.4 Gauss quadrature

There is no necessity to use equispaced points. By choosing the quadrature points xk ap-
propriately we can derive n-points methods of order 2n+ 1 (i.e. error varies as (b− a)2n+1),
exact for polynomials of degree (2n− 1).

These are called Gauss formulae and can give stunning accuracy. However, for n ≥ 2, the
values of xk (roots of Legendre polynomials) and the weights wk are non rational.

4.5 Composite methods

Disadvantage of higher order methods: Since higher order methods are based on Lagrange
interpolation, they also suffer the same weaknesses.
While very accurate for functions with well-behaved higher order derivatives, they becomes
inaccurate for functions with unbounded higher derivatives.
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Therefore, it is often safer to use low order methods, such as trapezium and Simpson’s rules.
While these quadrature rules are not very accurate on large intervals (error varying as (b−a)3

and as (b− a)5), accurate approximations can be obtained by breaking the interval [a, b] into
n subintervals of equal width h.

4.5.1 Composite trapezium rule

Split the interval [a, b] into n intervals of width h =
b− a
n

, i.e. consider n + 1 equispaced

points xj = a+ jh, j = 0, . . . , n. The subinterval j is [xj , xj+1], j = 0, . . . , n− 1.

x

f(x)

x1x0 x2 xj

a b
xn

h

xj+1

∫ b

a
f(x) dx =

n−1∑
j=0

∫ xj+1

xj

f(x) dx =
n−1∑
j=0

{
h

2
[f(xj) + f(xj+1)]− h3

12
f ′′(ξj)

}
ξj ∈ (xj , xj+1),

∫ b

a
f(x) dx =

h

2
[f(a) + f(x1)] +

h

2
[f(x1) + f(x2)] + . . .

+
h

2
[f(xn−2) + f(xn−1)] +

h

2
[f(xn−1) + f(b)]

− h3

12
[
f ′′(ξ0) + f ′′(ξ1) + . . .+ f ′′(ξn−1)

]
.

Error: since

min
[a,b]

(f ′′(x)) ≤ min
j

(f ′′(ξj)) ≤ K =
1
n

n−1∑
j=0

f ′′(ξj) ≤ max
j

(f ′′(ξj)) ≤ max
[a,b]

(f ′′(x)),

and f ′′ is continuous, there exits ξ ∈ (a, b) with f ′′(ξ) = K (analogous to the intermediate
value theorem). Hence, the total error is of the form

E = −nh
3

12
f ′′(ξ) = −b− a

12
h2f ′′(ξ) since b− a = nh.

We can rewrite the composite trapezium rule as∫ b

a
f(x) dx =

h

2

f(a) + 2
n−1∑
j=1

f(xj) + f(b)

− b− a
12

h2f ′′(ξ), ξ ∈ (a, b). (4.6)

Composite trapezium rule has error of order h2, compared to h3 for each individual interval.
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4.5.2 Composite Simpson’s rule

Consider n/2 intervals [x2j , x2j+2], j = 0, . . . , n/2 − 1, of width 2h =
b− a
n/2

with equispaced

quadrature points xj = a+ jh, j = 0, . . . , n.

x

f(x)

x1x0 x2

a b
xnx3 x4 x2j+2x2j+1x2j

2h

∫ b

a
f(x) dx =

n/2−1∑
j=0

x2j+2∫
x2j

f(x) dx,

=
n/2−1∑
j=0

{
h

3
[f(x2j) + 4f(x2j+1) + f(x2j+2)]− h5

90
f (iv)(ξj)

}
ξj ∈ [x2j , x2j+2],

∫ b

a
f(x) dx =

h

3
[f(a) + 4f(x1) + f(x2)] +

h

3
[f(x2) + 4f(x3) + f(x4)] + . . .

+
h

3
[f(xn−2) + 4f(xn−1) + f(b)]− h5

90

[
f (iv)(ξ0) + f (iv)(ξ1) + . . .+ f (iv)(ξn/2−1)

]
.

As for the composite trapezium rule, there exists ξ ∈ (a, b) such that

n

2
f (iv)(ξ) =

n/2−1∑
j=0

f (iv)(ξj).

Using also h =
b− a
n

, we can rewrite the composite Simpson’s rule as

∫ b

a
f(x) dx =

h

3

f(a) + 2
n/2−1∑
j=1

f(x2j) + 4
n/2−1∑
j=0

f(x2j+1) + f(b)


− b− a

180
h4f (iv)(ξ), ξ ∈ (a, b). (4.7)

So, the composite Simpson’s rule is 4th order accurate.
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In this section we shall use the following notations: Y (t) is the exact solution of an ODE and
yn is an approximation to the solution at time t = tn = nh. We may also use fn ≡ f(tn, yn)
for the right-hand side of the ODE.

5.1 Initial value problem

In this section, we shall consider numerical solution of first order IVPs (initial value problems)
of the form

dY
dt

= f(t, Y ) for t0 < t < tmax with initial condition Y (t0) = α. (5.1)

Provided that f ∈ C[t0, tmax] and that
∣∣∣∣ ∂f∂Y

∣∣∣∣ is bounded for all Y , this problem has a unique

solution.

The methods that we shall discuss can be easily extended to systems of 1st order ODEs of
the form 

dY1

dt
= f1(t, Y1, . . . , Yn), Y1 = α1 at t = t0,

...
dYn
dt

= fn(t, Y1, . . . , Yn), Yn = αn at t = t0.

Note that higher order IVPs can always be reduced to 1st order systems. E.g.

d2Y

dt2
+ q(t)

dY
dt

+ r(t)Y = s(t)

31



32 5.2 Forward Euler’s method

can be rewritten as the system of 1st order ODEs
dY
dt

= Z,

dZ
dt

= −q(t)Z − r(t)Y + s(t).

Integral form of the solution: Integrate both sides of IVP (5.1) on [t0, t]∫ t

t0

dY
dτ

dτ =
∫ Y (t)

Y (t0)
dY =

∫ t

t0

f(τ, Y (τ)) dτ,

⇒ Y (t) = Y (t0) +
∫ t

t0

f(τ, Y (τ)) dτ = α+
∫ t

t0

f(τ, Y (τ)) dτ.

Similarly, integrating on [t, t+ h]:

Y (t+ h) = Y (t) +
∫ t+h

t
f(τ, Y (τ)) dτ. (5.2)

5.2 Forward Euler’s method

The simplest scheme for solving (5.1) is Euler’s method.

5.2.1 Approximation

Discrete t: tn = t0 + nh where h is the step-size.

Equation (5.2)⇒ Y (tn+1) = Y (tn) +
∫ tn+1

tn

f(t, Y (t)) dt.

The Euler method consists in approximating f(t, Y (t)) by the constant f(tn, Y (tn)) in the
integral (i.e. on the interval [tn, tn+1]).

��������
��������
��������
��������

��������
��������
��������
��������

tn tn+1 t

h

f(t, Y (t))

f(tn, Y (tn))

So,
Y (tn+1) ≈ Y (tn) + hf(tn, Y (tn)). (5.3)

Hence, the Euler scheme
yn+1 = yn + hf(tn, yn). (5.4)

It provides an approximation to Y (tn+1), using the approximation at the previous step.

Thus, the differential equation is replaced by a difference equation.
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Example 5.1

dY
dt

= 1− Y with Y (0) = 0.

Analytic solution: Y (t) = 1− e−t.

Euler’s method: yn+1 = yn + h(1− yn), y0 = 0. (5.5)

The solution of the homogeneous difference equation yn+1 = (1− h)yn is yn = (1− h)ny0. In
addition, yn+1 = yn = 1 is a particular solution of (5.5). So, the general solution of (5.5) is
yn = 1 +A(1− h)n.
Use the initial condition to determine A: y0 = 1 + A = 0⇒ A = −1. Hence, Euler’s method
gives the approximate solution

yn = 1− (1− h)n.

Stability: The error in the solution is

|Y (tn)− yn| =
∣∣1− e−tn − (1− (1− h)n)

∣∣ ,
=
∣∣(1− h)n − e−tn

∣∣ .
Provided h < 2, (1 − h)n → 0 as n → ∞; and since e−tn = e−nh → 0 as n → ∞, the error
|Y (tn)− yn| → 0 as n→∞,

⇒ lim
n→∞ yn = lim

n→∞Y (tn) = lim
n→∞(1− e−tn) = 1.

The Euler solution will tend to 1, the exact solution, as n→∞.

However, for h > 2, (1− h)n diverges implying that yn diverges as n→∞.
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For this problem, the Euler scheme is stable for h < 2, but how accurate is it?
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5.2.2 Error analysis

yn

Y (t)
En+1

tt1 t2 tn tn+10

All numerical methods for solving IVPs use the results from previous steps in calculating the
approximation to the solution for next steps.

Consequently the global error at tn+1 includes both the error made at step (n + 1) — local
truncation error — and the error in yn propagating from the previous steps.

Local truncation error

The local truncation error measures the error generated by replacing

Y (tn+1) = Y (tn) +
∫ tn+1

tn

f(t, Y (t)) dt

with
Y (tn+1) ≈ Y (tn) + hf(tn, Y (tn)).

From Taylor’s series we have

Y (tn+1) = Y (tn) + hY ′(tn) +
h2

2
Y ′′(ξn+1), for some ξn+1 ∈ [tn, tn+1],

= Y (tn) + hf(tn, Y (tn)) +
h2

2
Y ′′(ξn+1). (5.6)

This shows that when approximating Y (tn+1) using forward Euler, the local truncation error
is of the form

τn+1 =
h2

2
Y ′′(ξn+1), for some ξn+1 ∈ (tn, tn+1). (5.7)

tn tn+1 t

Y (t)

τn+1

(Alternative derivation of the local truncation error:∫ t+h

t
g(τ) dτ = hg(t) +Kg′(ξ) (exact for constant functions).

Let g ≡ τ ⇒ (t+ h)2/2− t2/2 = ht+K ⇒ K = h2/2.)
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Global error

The global error includes both the local truncation error and the flow transported error.

Subtract Euler’s scheme (5.4) from the Taylor expansion (5.6),

Y (tn+1)− yn+1 = Y (tn)− yn + h [f(tn, Y (tn))− f(tn, yn)] + τn+1.

Since f is a continuous and differentiable function, the mean value theorem implies that there
exists Zn between yn and Y (tn) such that

f(tn, Y (tn))− f(tn, yn) = [Y (tn)− yn]
∂

∂Z
f(tn, Zn).

Hence,

Y (tn+1)− yn+1 = Y (tn)− yn + h [Y (tn)− yn]
∂

∂Z
f(tn, Zn) + τn+1,

⇒ En+1 = En

[
1 + h

∂

∂Z
f(tn, Zn)

]
+ τn+1, (5.8)

where En = Y (tn)− yn is the global error at the nth step.

Example 5.2
Consider the IVP

dY
dt

= 1− Y with Y (0) = 0.

Analytic solution: Y (t) = 1 − e−t ⇒ Y ′′(t) = −e−t and
∂

∂Y
f(t, Y ) =

df(Y )
dY

= −1. Hence,

from Equation (5.8), En = En−1(1− h)− h2

2
e−ξn with ξn ∈ (tn−1, tn).

We want to bound En:

|En| ≤ |En−1||1− h|+ h2

2
e−ξn ≤ |En−1||1− h|+ h2

2
(since ξn > 0).

Let q = |1− h|;

|En| ≤ |En−1|q +
h2

2
≤
(
|En−2|q +

h2

2

)
q +

h2

2
≤
[(
|En−3|q +

h2

2

)
q +

h2

2

]
q +

h2

2
,

so that

|En| ≤ qn|E0|+ h2

2
(
1 + q + q2 + . . .+ qn−1

)
.

However, E0 = Y (0)− y0 = 0, so |En| ≤ h2

2

n−1∑
j=0

qj (∗).

We look for bounds on error when Euler’s scheme is stable, i.e. when h < 2⇒ q = |h−1| < 1,

⇒ |En| ≤ h2

2

n−1∑
j=0

1 = n
h2

2
=
h

2
tn since n =

tn
h
.

This result shows that the global error is proportional to the step-size h. Thus, Euler’s method
is described as being first order accurate.

Note: from (∗), |En| ≤ h2

2
1− qn
1− q ≤

h2

2
1

1− q if q < 1 (stable case). If h < 1 then q = 1 − h

and |En| ≤ h2

2
1
h

=
h

2
∀n.
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While in principle more accuracy can be achieved by using smaller step-size, the accuracy is
limited by round-off errors. So, Euler’s method rarely used in practice.

Note: the local error is due to truncation and round-off,

τn =
h2

2
Y ′′(ξn) + εY (tn).

So, in the example 5.2, |En| ≤ n

(
h2

2
+ ε

)
= tn

(
h

2
+
ε

h

)
which reaches its minimum value

min
[
tn

(
h

2
+
ε

h

)]
=
√

2ε at h =
√

2ε.

5.3 Runge-Kutta methods

5.3.1 Modified Euler method

Integral form of the solution to the initial value problem:

Y (t+ h) = Y (t) +
∫ t+h

t
f(τ, Y (τ)) dτ.

The local truncation error can be reduced by using a more accurate quadrature method for
the integral than Euler’s scheme.

E.g., the trapezium rule∫ t+h

t
f(τ, Y (τ)) dτ =

h

2
[f(t, Y (t)) + f(t+ h, Y (t+ h))]− h3

12
Y ′′′(ξ)

gives an order h3 local truncation error. However, it cannot be used directly as we do not
know Y (t+ h). (This is what we are trying to calculate.)

The solution is to use the forward Euler method to estimate Y (t+ h) as Y (t) + hf(t, Y (t)) in
the trapezium rule. So that,

Y (t+ h) ≈ Y (t) +
h

2
[f(t, Y (t)) + f(t+ h, Y (t) + hf(t, Y (t)))] ,

leading to the new scheme

yn+1 = yn +
h

2
[f(tn, yn) + f(tn + h, yn + hf(tn, yn))] ,

or equivalently

K1 = hf(tn, yn)

K2 = hf(tn + h, yn +K1)

yn+1 = yn +
1
2

(K1 +K2)

 modified Euler method. (5.9)
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Local truncation error

Let us check the local truncation error of this scheme, using the Taylor series expansion

Y (tn + h) = Y (tn) + hY ′(tn) +
h2

2
Y ′′(tn) +

h3

6
Y ′′′(ξ), ξ ∈ (tn, tn + h).

Substituting Y ′(tn) = f(tn, Y (tn)) and

Y ′′(tn) =
d
dt
f(t, Y (t))

∣∣∣∣
tn

=
∂

∂t
f(tn, Y (tn)) +

d
dt
Y (tn)

∂

∂Y
f(tn, Y (tn)) (chain rule),

=
∂

∂t
f(tn, Y (tn)) + f(tn, Y (tn))

∂

∂Y
f(tn, Y (tn)),

Y (tn + h) = Y (tn) + hf(tn, Y (tn))

+
h2

2

[
∂

∂t
f(tn, Y (tn)) + f(tn, Y (tn))

∂

∂Y
f(tn, Y (tn))

]
+O

(
h3
)
. (5.10)

Modified Euler: Let K1 = hf(tn, Y (tn)) and K2 = hf(tn + h, Y (tn) +K1).

Using Taylor series for two variables,

K2 = h

[
f(tn, Y (tn)) + h

∂

∂t
f(tn, Y (tn)) +K1

∂

∂Y
f(tn, Y (tn)) +O

(
h2,K2

1

)]
,

⇒ K2 = hf(tn, Y (tn)) + h2

[
∂

∂t
f(tn, Y (tn)) + f(tn, Y (tn))

∂

∂Y
f(tn, Y (tn))

]
+O

(
h3
)
,

(Note K1 = O(h).)

⇒ 1
2

(K1 +K2) = hf(tn, Y (tn))

+
h2

2

[
∂

∂t
f(tn, Y (tn)) + f(tn, Y (tn))

∂

∂Y
f(tn, Y (tn))

]
+O

(
h3
)
,

Eq. (5.10)⇒ Y (tn + h) = Y (tn) +
1
2

(K1 +K2) + O
(
h3
)︸ ︷︷ ︸

local truncation error

.

Hence, the local truncation error is indeed τn = O
(
h3
)
, so that the modified Euler method

is second order accurate. (A method is conventionally called pth order if the local truncation
error is of order p+ 1.)

5.3.2 Second order Runge-Kutta scheme

Modified Euler is an example of 2nd order R-K method.

The general 2nd order R-K scheme takes the form

K1 = hf(tn, yn)

K2 = hf(tn + αh, yn + βK1)

yn+1 = yn + a1K1 + a2K2

 . (5.11)

Repeating the earlier analysis, we see that

K2 = hf(tn, Y (tn)) + h2

[
α
∂

∂t
f(tn, Y (tn)) + βf(tn, Y (tn))

∂

∂Y
f(tn, Y (tn))

]
+O(h3).
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So,

Y (tn+1) = Y (tn) + a1K1 + a2K2 ⇒ Y (tn+1) = Y (tn) + h(a1 + a2)f(tn, Y (tn))

+ a2h
2

[
α
∂

∂t
f(tn, Y (tn)) + βf(tn, Y (tn))

∂

∂Y
f(tn, Y (tn))

]
+O(h3).

Comparing this expression with (5.10) (Taylor series) one gets

a1 + a2 = 1

αa2 = βa2 =
1
2

 . (5.12)

Since we have 3 equations and 4 unknowns, there are infinitely many solutions.

The most popular are,

• Modified Euler: a1 = a2 =
1
2

;α = β = 1;

• Midpoint method: a1 = 0; a2 = 1;α = β =
1
2

,

⇒
K1 = hf(tn, yn)

K2 = hf(tn + h/2, yn +K1/2)

yn+1 = yn +K2

 ;

• Heun’s method: a1 = 1/4; a2 = 3/4;α = β =
2
3

,

⇒
K1 = hf(tn, yn)

K2 = hf(tn + 2h/3, yn + 2K1/3)

yn+1 = yn +
1
4

(K1 + 3K2)

 .

5.3.3 Higher order Runge-Kutta methods

Schemes of the form (5.11) can be extended to higher order methods. The most widely used
R-K scheme is the 4th order scheme RK4 based on Simpson’s rule.

yn+1 = yn +
1
6

(K1 + 2K2 + 2K3 +K4),

where K1 = hf(tn, yn),

K2 = hf

(
tn +

h

2
, yn +

K1

2

)
, (5.13)

K3 = hf

(
tn +

h

2
, yn +

K2

2

)
,

K4 = hf(tn + h, yn +K3).

This scheme has local truncation error of order h5, which can be checked in the same way as
the second order scheme, but involves rather messy algebra.
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5.4 Multistep methods

The Euler and R-K methods are described as being one-step methods in that they only use
the values at tn to compute yn+1.

However (as with Lagrange interpolation), we can get higher order estimates for yn+1 if we
make use of more of our previous solutions: yn−1, yn−2, . . .. (Clearly such schemes cannot be
used for the first few steps.)

Such schemes are known as multistep methods.

5.4.1 Adams-Bashforth methods

Returning to the integral form of the solution,

Y (tn+1) = Y (tn) +
∫ tn+1

tn

f(t, Y (t)) dt.

Let us seek a quadrature rule based on the values of f at tn and tn−1,∫ tn+h

tn

g(t) dt = w1g(tn − h) + w2g(tn) + E.

Using the method of undetermined coefficients, we can find w1 and w2 such that the quadrature
rule holds for all linear functions;

• take g(t) = 1⇒ h = w1 + w2,

• take g(t) = t− tn ⇒ h2

2
= −hw1 ⇒ w1 = −h

2
and w2 =

3h
2

.

• Error: E = Kg′′(ξ), so let g(t) ≡ (t− tn)2,

⇒ h3

3
= w1h

2 + 2K ⇒ 2K =
h3

3
+
h3

2
=

5
6
h3 ⇒ K =

5
12
h3.

Hence, ∫ tn+h

tn

g(t) dt = −h
2
g(tn − h) +

3h
2
g(tn) +

5
12
h3 g′′(ξ).

This gives us the two-step Adams-Bashforth method

yn+1 = yn +
h

2
[3f(tn, yn)− f(tn−1, yn−1)], (5.14)

with local truncation error
5
12
h3 Y ′′′(ξ). This is a second order method.

Higher order A-B methods can be derived using yn, yn−1, yn−2, . . .. A method using N steps
has a local truncation error of order hn+1.

Advantages (over R-K): A-B methods only require one function evaluation per step (com-
pared with 4 evaluations for RK4).
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5.4.2 Milne’s methods

Family of methods that extend the interval of integration so that the quadrature points lie
within the range of integration.

The two-step Milne method is obtained as follow: in the expression

Y (tn+1) = Y (tn−1) +
∫ tn+1

tn−1

f(t, Y (t)) dt,

evaluate the integral using the open Newton-Cotes method:∫ tn+h

tn−h
f(t, Y (t)) dt = 2hf(tn, Y (tn)) +

h3

3
Y ′′′(ξ),

giving the scheme
yn+1 = yn−1 + 2hf(tn, yn). (5.15)

This is sometimes called the “leap-frog” method. Again, the local truncation error is of order
h3 (i.e. second order method).

In the same way, we may obtain the scheme

yn+1 = yn−3 +
4h
3

[2f(tn, yn)− f(tn−1, yn−1) + 2f(tn−2, yn−2)] , (5.16)

with l.t.e. O(h5).

Milne’s method (5.15) involves f(tn, yn) only. So, it seems more efficient than the A-B scheme
(5.14), which involves both f(tn, yn) and f(tn−1, yn−1) for the same accuracy. However, there
is a catch!

Stability

In certain cases, Milne’s method can suffer from an instability in which the error cannot be
eliminated by letting h→ 0.

Example 5.3
Using the two-step Milne method (5.15), solve

dY
dt

= 1− Y, Y (0) = 0.

⇒ yn+1 = yn−1 + 2h(1− yn)⇒ yn+1 + 2hyn − yn−1 = 2h.

To solve this difference equation,

i. consider the homogeneous problem zn+1 +2hzn−zn−1 = 0 and seek solution of the form
zn = λn,

λn−1
[
λ2 + 2hλ− 1

]
= 0⇒ λ = −h±

√
h2 + 1.

Thus the complementary function is zn = α
(
−h+

√
h2 + 1

)n
+ β

(
−h−√h2 + 1

)n
;

ii. we observe that yn = 1 is a particular solution of the difference equation:

1 + 2h× 1− 1 = 2h.
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The general solution is

yn = 1 + α
(
−h+

√
h2 + 1

)n
+ β

(
−h−

√
h2 + 1

)n
.

Since h > 0, h+
√
h2 + 1 > 1. We see that if β 6= 0, yn diverges as n→∞.

As h→ 0,
√
h2 + 1 = 1 +O(h2) and

−h+
√
h2 + 1 ∼ 1− h ∼ e−h,

−h−
√
h2 + 1 ∼ −(1 + h) ∼ −eh.

So, using tn = nh,
yn ∼ 1 + αe−tn + β(−1)n etn ,

⇒ The error grows exponentially!

Milne’s method introduces a parasitic term β(−1)n etn . Even if β = 0 initially, round-off
errors will give β 6= 0 after a few steps.

Thus, Milne’s method is unstable for all step sizes for this problem.

5.5 Implicit and predictor-corrector methods

5.5.1 Implicit methods

All the methods that we have discussed so far have been explicit in that the calculation of
yn+1 requires information from previous steps only.

Implicit methods are derived using yn+1 as an additional interpolation point in the integral∫ tn+h

tn

f(t, Y (t)) dt.

E.g. the Adams-Moulton three-step implicit method is derived from

Y (tn+1) = Y (tn) +
∫ tn+h

tn

f(t, Y (t)) dt,

where the integral is approximated using the quadrature rule∫ tn+h

tn

g(t) dt =
h

24
[g(tn−2)− 5g(tn−1) + 19g(tn) + 9g(tn+1)]− 19

720
h5 g(iv)(ξ),

giving the fourth order method

yn+1 = yn +
h

24
[9f(tn+1, yn+1) + 19f(tn, yn)− 5f(tn−1, yn−1) + f(tn−2, yn−2)] . (5.17)

Finding yn+1 requires now to solve a non-linear equation, so there appears to be little benefit
in such a scheme.

However, the local truncation error of (5.17) is − 19
720

h5Y (v)(ξ), whereas the explicit 4-step
Adams-Bashforth method,

yn+1 = yn +
h

24
[55f(tn, yn)− 59f(tn−1, yn−1) + 37f(tn−2, yn−2)− 9f(tn−3, yn−3)] , (5.18)

has a local truncation error −251
720

h5Y (v)(ξ).

Hence, although the two schemes are of the same order, the implicit scheme is over 13 times
more accurate.
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5.5.2 Predictor-corrector methods

Implicit schemes are often used together with an explicit scheme in a predictor-corrector
method.

An explicit scheme is used to “predict” yn+1 and this predicted value yP
n+1 is then used to

evaluate f(tn+1, yn+1) in an implicit scheme.

E.g., predictor step,

yP
n+1 = yn +

h

24
[55f(tn, yn)− 59f(tn−1, yn−1) + 37f(tn−2, yn−2)− 9f(tn−3, yn−3)] ,

using 4-step A-B explicit scheme, then corrector step,

yn+1 = yn +
h

24
[
9f(tn+1, y

P
n+1) + 19f(tn, yn)− 5f(tn−1, yn−1) + f(tn−2, yn−2)

]
.

At each step, a predictor-corrector scheme requires two function evaluations rather than just
one for a multistep method. However, the increased accuracy means that larger step size can
be used to achieve the same accuracy.

In addition,
∣∣yP
n+1 − yn

∣∣ provides an estimation of the local truncation error.
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Linear systems of equations
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Many applications (e.g. solution of PDEs) involve the solution of large sets of simultaneous
linear equations.
This is an ideal task for a computer since it only involves lots of additions and multiplications.

6.1 Solution of simultaneous equations

6.1.1 Gaussian elimination with back-substitution

Example 6.1

(E1) 3x1 + 5x2 = 9,
(E2) 6x1 + 7x2 = 4.

i. Add multiple of (E1) to (E2), such that coefficient of x1 is zero.

(E1) →(E1) 3x1 + 5x2 = 9,
(E2 − 2E1)→(E2) − 3x2 = −14.

(E2) gives x2 = 14/3.

ii. Back-substitute in (E1): 3x1 = 9− 5x2 = 9− 70/3 = −43/3⇒ x1 = −43/9.

Example 6.2

(E1) x1 − x2 + 3x3 = 13,
(E2) 4x1 − 2x2 + x3 = 15,
(E3) −3x1 − x2 + 4x3 = 8.

(E1) →(E1) x1 − x2 + 3x3 = 13,
(E2 − 4E1)→(E2) 2x2 − 11x3 = −37,
(E3 + 3E1)→(E3) −4x2 + 13x3 = 47.

(E1) →(E1) x1 − x2 + 3x3 = 13,
(E2) →(E2) 2x2 − 11x3 = −37,
(E3 + 2E2)→(E3) −9x3 = −27.

43
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(E3)⇒ x3 = 27/9 = 3; back-substitute in (E2),
(E2)⇒ 2x2 = −37 + 11x3 = −37 + 33 = −4⇒ x2 = −2; back-substitute in (E1),
(E1)⇒ x1 = 13 + x2 − 3x3 = 13− 2− 9 = 2.

{x1 = 2;x2 = −2;x3 = 3}

6.1.2 Matrix factorisation — LU decomposition

Matrix form of a general linear system of equations:
a11x1 + a12x2 + . . .+ a1nxn = b1,

... =
...,

an1x1 + an2x2 + . . .+ annxn = bn.

⇔ Ax = b (6.1)

with A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

, x =


x1

x2
...
xn

 and b =


b1
b2
...
bn

.

Do not calculate x = A−1b: inefficient and unstable.

We could write the method of Gaussian elimination in terms of matrices.

Example 6.3
(See example 6.1.) (

3 5
6 7

)(
x1

x2

)
=
(

9
4

)
Now replace row(2) by row(2) - 2 × row(1):

M(
1 0
−2 1

) A(
3 5
6 7

) x(
x1

x2

)
=

M(
1 0
−2 1

) b(
9
4

)
U(

3 5
0 −3

)(
x1

x2

)
=
(

9
−14

)
.

The matrix M =
(

1 0
m 1

)
performs the row operation of adding m × row(1) to row(2), and

is called Gaussian transformation.

This can be easily generalised to n-dimension systems (6.1).

The matrix M (1) =


1 0 0 . . . 0
m21 1 0 . . . 0
m31 0 1 . . . 0

...
...

. . .
mn1 0 0 . . . 1

 where mi1 = − ai1
a11

performs the operations (Ri +

mi1 × R1 → Ri), i = 2, . . . , n.
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Similarly the matrix

M (j) =



1 0 0 . . . 0 . . . 0
0 1 0 . . . 0 . . . 0

0 . . .
. . . . . . 0 . . . 0

0 . . . . . . 1 0 . . . 0
0 . . . . . . mj+1,j 1 . . . 0
...

...
. . .

...
0 . . . . . . mnj 0 . . . 1


where mij = −aij

ajj
(6.2)

performs the operations (Ri +mij × Rj → Ri), i = j + 1, . . . , n.

Example 6.4
(See example 6.2.)


r1 → r1

r2 − 4r1→ r2
r3 + 3r1→ r3

⇒

M(1) 1 0 0
−4 1 0
3 0 1


A 1 −1 3

4 −2 1
−3 −1 4


xx1

x2

x3

 =

M(1) 1 0 0
−4 1 0
3 0 1


b13
15
8




r1 → r1
r2 → r2

r3 + 2r2→ r3

⇒

M(2)1 0 0
0 1 0
0 2 1


M(1)A1 −1 3

0 2 −11
0 −4 13

x1

x2

x3

 =

M(2)1 0 0
0 1 0
0 2 1


M(1)b 13
−37
47


U=M(2)M(1)A1 −1 3
0 2 −11
0 0 −9

x1

x2

x3

 =

M(2)M(1)b 13
−37
−27

 .

So far, we have made use of (n− 1) Gaussian transformations M (j) to transform the matrix
A into

U = M (n−1)M (n−2) . . .M (2)M (1)A, (6.3)

where U is an upper triangular matrix, i.e. uij = 0, i > j (zero below the diagonal).

Recall that M (j) (see equation (6.2)) generates the row operations (Ri + mij × Rj → Ri),
i = j + 1, . . . , n.
So, the row operations (Ri − mij × Rj → Ri), i = j + 1, . . . , n reverse the effects of M (j).
Hence, L(j) = M (j)−1

, the inverse of M (j) is

L(j) =



1 0 0 . . . 0 . . . 0
0 1 0 . . . 0 . . . 0

0 . . .
. . . . . . 0 . . . 0

0 . . . . . . 1 0 . . . 0
0 . . . . . . −mj+1,j 1 . . . 0
...

...
. . .

...
0 . . . . . . −mnj 0 . . . 1


= M (j)−1

where −mij =
aij
ajj

(6.4)

Example 6.5
• n = 2 (example 6.3):

M =
(

1 0
−2 1

)
⇒ L = M−1 =

(
1 0
2 1

)
.
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• n = 3 (example 6.4):

M (1) =

 1 0 0
−4 1 0
3 0 1

⇒ L(1) = M (1)−1
=

 1 0 0
4 1 0
−3 0 1

 ,

M (2) =

1 0 0
0 1 0
0 2 1

⇒ L(2) = M (2)−1
=

1 0 0
0 1 0
0 −2 1

 .

Thus, equation (6.3) can be transformed into

A = L(1)L(2) . . . L(n−1)U, (6.5)

and it is easy to verify that

L(1)L(2) . . . L(n−1) =


1 0 0 . . . 0
−m21 1 0 . . . 0
−m31 −m32 1 . . . 0

...
...

. . .
...

−mn1 −mn2 . . . −mn,n−1 1

 ≡ L. (6.6)

L is a lower triangular matrix where Lij = 0, i < j and Lij = 1, i = j.

Example 6.6
From example 6.5

L(1)L(2) = L =

 1 0 0
4 1 0
−3 0 1

1 0 0
0 1 0
0 −2 1

 =

 1 0 0
4 1 0
−3 −2 1

 .

Matrix factorisation: The square matrix A can be factored into LU = A where L is a lower
triangular matrix (i.e. Lij = 0 for j > i and Lii = 1) and U is an upper triangular matrix
(i.e. Uij = 0 for j < i).
The decomposition of A into a product LU is not unique. The construction with 1’s on the
diagonal of L is called Doolittle’s method.

Example 6.7 (
3 5
6 7

)
=
(

1 0
2 1

)(
3 5
0 −3

)
. 1 −1 3

4 −2 1
−3 −1 4

 =

 1 0 0
4 1 0
−3 −2 1

1 −1 3
0 2 −11
0 0 −9

 .

6.1.3 Solution of linear systems using LU decomposition

We can make use of the LU factorisation of A to solve the linear system

Ax = LUx = b

in a two-step triangular process.
Let y = Ux, so that Ly = b. The solution is obtained by solving recursively the two systems

Ly = b and Ux = y.
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Example 6.8
i. (

3 5
6 7

)(
x1

x2

)
=
(

9
4

)
⇔
(

1 0
2 1

)(
3 5
0 −3

)(
x1

x2

)
=
(

9
4

)
.

First solve
(

1 0
2 1

)(
y1

y2

)
=
(

9
4

)
⇒
{
y1 = 9,
y2 = 4− 2y1 = −14.

Then solve
(

3 5
0 −3

)(
x1

x2

)
=
(
y1

y2

)
=
(

9
−14

)

⇒


x2 =

14
3
,

3x1 = 9− 5x2 = 9− 70
3

= −43
3
⇒ x1 = −43

9
.

Solution:
{
x1 = −43

9
;x2 =

14
3

}

ii.  1 −1 3
4 −2 1
−3 −1 4

x1

x2

x3

 =

13
15
8

⇔
 1 0 0

4 1 0
−3 −2 1

1 −1 3
0 2 −11
0 0 −9

x1

x2

x3

 =

13
15
8

 .

Let y = Ux and solve Ly = b, 1 0 0
4 1 0
−3 −2 1

y1

y2

y3

 =

13
15
8

 ,

⇒


y1 = 13,
y2 = 15− 4× 13 = −37,
y3 = 8− (−3)× 13− (−2)× (−37),

= 8 + 39− 74 = −27.

Then solve Ux = y 1 −1 3
0 2 −11
0 0 −9

x1

x2

x3

 =

 13
−37
−27

 ,

⇒


x3 = 3,
2x2 =−37− (−11)× 3 = −4⇒ x2 = −2,
x1 = 13− (−1)× (−2)− 3× 3 = 2.

Solution: {x1 = 2;x2 = −2;x3 = 3} .

Example 6.9
Solve the system 3 2 1

1 3 2
1 1 1

xy
z

 =

10
13
6


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i. Find the LU factorisation of the matrix.
r1 → r1

r2 − r1/3→ r2
r3 − r1/3→ r3

⇒
3 2 1

1 3 2
1 1 1

 =

 1 0 0
1/3 1 0
1/3 0 1

3 2 1
0 7/3 5/3
0 1/3 2/3




r1 → r1
r2 → r2

r3 − r2/7→ r3

⇒
3 2 1

1 3 2
1 1 1

 =

 1 0 0
1/3 1 0
1/3 1/7 1

3 2 1
0 7/3 5/3
0 0 3/7


(Note 2/3− 5/21 = (14− 5)/21 = 9/21 = 3/7.) So,

A3 2 1
1 3 2
1 1 1

 =

L 1 0 0
1/3 1 0
1/3 1/7 1


U3 2 1

0 7/3 5/3
0 0 3/7

.

ii. Solve the linear system by back-substitution and forward-substitution.

 1 0 0
1/3 1 0
1/3 1/7 1

uv
w

 =

10
13
6

⇒


u = 10,

v = 13− 10
3

=
29
3
,

w = 6− 10
3
− 29

21
=

9
7
.

3 2 1
0 7/3 5/3
0 0 3/7

xy
z

 =

 10
29/3
9/7

⇒


z = 3,

7
3
y =

29
3
− 3× 5

3
=

14
3
⇒ y = 2,

3x = 10− 2× 2− 3 = 3⇒ x = 1.

Solution: {x = 1; y = 2; z = 3}.

6.1.4 Compact variants of Gaussian elimination

Rather than constructing L and U by using Gaussian elimination steps, it is possible to solve
directly for these matrices.
Illustration of the direct computation of L and U , considering n = 3:
Write A = LU asa11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13

0 u22 u23

0 0 u33

 ,

=

 u11 u12 u13

l21u11 l21u12 + u22 l21u13 + u23

l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33

 .

First row: u11 = a11, u12 = a12, u13 = a13;

Second row: l21u11 = a21 ⇒ l21 =
a21

u11
, then u22 = a22 − l21u12 and u23 = a23 − l21u13;

Third row: l31u11 = a31 ⇒ l31 =
a31

u11
and l31u12 + l32u22 = a32 ⇒ l32 =

a32 − l31u12

u22
then

u33 = a33 − l31u13 − l32u23.
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Example 6.10
i. (

3 5
6 7

)
=
(

1 0
l21 1

)(
u11 u12

0 u22

)
=
(
u11 u12

l21u11 l21u12 + u22

)
,

⇒ u11 = 3, u12 = 5, l21 =
6
3

= 2 and u22 = 7− 2× 5 = −3.

So, L =
(

1 0
2 1

)
and U =

(
3 5
0 −3

)
.

ii.  1 −1 3
4 −2 1
−3 −1 4

 =

 u11 u12 u13

l21u11 l21u12 + u22 l21u13 + u23

l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33


First row: u11 = 1, u12 = −1 and u13 = 3;

Second row: l21 =
4
1

= 4, u22 = −2− 4× (−1) = 2, u23 = 1− 4× 3 = −11;

Third row: l31 = −3
1

= −3, l32 =
−1− (−3)× (−1)

2
= −2,

u33 = 4− (−3)× 3− (−2)× (−11) = −9.

So, L =

 1 0 0
4 1 0
−3 −2 1

 and U =

1 −1 3
0 2 −11
0 0 −9

.

6.1.5 The computational cost

It is crucial to minimise the number of multiplications and divisions when solving large linear
systems. (The computational time taken for multiplications and divisions is comparable and
much greater than that for additions and subtractions.)
The Gaussian elimination procedure requires O(n3) operations whereas the back-substitution
step requires only O(n2) operations.
Once the LU -factorisation of A has been obtained (O(n3) operations), solving Ax = b with
different b requires O(n2) operations only.

6.1.6 Calculation of the determinant

Since the determinant of a product of matrices det(LU) = det(L) det(U), we can calculate
det(A) = det(L) det(U).
For the diagonal matrices L and U ,

det(L) =
n∏
i=1

Lii = 1 and det(U) =
n∏
i=1

Uii.

So, det(A) = det(L) det(U) = det(U) =
n∏
i=1

Uii (if Lii = 1, i = 1, . . . , n).

Example 6.11 ∣∣∣∣∣∣
1 −1 3
4 −2 1
−3 −1 4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 −1 3
0 2 −11
0 0 −9

∣∣∣∣∣∣ = 1× 2× (−9) = −18.
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6.2 Pivoting

6.2.1 Failure of Gaussian elimination

Gaussian elimination will fail if the matrix is singular, i.e. if det(A) = 0.

However, LU -factorisation will also fail if at any stage in the row elimination procedure(
ri − aij

ajj
rj → ri

)
, the pivot element ajj = 0.

E.g. A =
(

0 1
1 1

)
is non-singular (det(A) = −1) but LU -decomposition will fail (a21 cannot

be removed since a11 = 0).

Similarly, 
r1 → r1

r2 − r1 → r2
r3 − 2r1→ r3

⇒
1 2 3

1 2 4
2 3 5

 =

1 0 0
1 1 0
2 0 1

1 2 3
0 0 1
0 −1 −1

 .

Again a32 cannot be removed since a22 = 0; so, LU -factorisation is impossible.

6.2.2 Large rounding errors

Even non-zero pivot elements ajj can cause trouble if they are small compared to the other
elements in the row.

E.g., solving(
0.001 1

1 1

)(
x1

x2

)
=
(

1.001
2

)
⇔
(

1 0
1000 1

)(
0.001 1

0 999

)(
x1

x2

)
=
(

1.001
2

)
.

Large factors appear, giving rise to large rounding errors. Thus, for very large matrices (e.g.
10, 0002), the error becomes large enough to swamp the solution. The method is unstable.

6.2.3 Permutation matrix

How to avoid zero pivot elements ajj?

The ordering of the equations in a linear system is arbitrary and we could write them in a
different order.

E.g., solving
(

1 1
0 1

)(
x1

x2

)
=
(

2
1

)
instead of

(
0 1
1 1

)(
x1

x2

)
=
(

1
2

)
.

We use a permutation matrix P , so that M = PA can be factored, i.e. PA = M = LU .

E.g., P =
(

0 1
1 0

)
swaps (r1) and (r2): this process is called pivoting.

PAx = Pb⇔
(

0 1
1 0

)(
0 1
1 1

)(
x1

x2

)
=
(

0 1
1 0

)(
1
2

)
.

Similarly, we could deal with the problem of small diagonal elements leading to large rounding
errors by swapping rows, keeping all the terms small. Again this is called pivoting.

P(
0 1
1 0

) A(
0.001 1

1 1

)
=

M(
1 1

0.001 1

)
=

L(
1 0

0.001 1

) U(
1 1
0 0.999

)
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Example 6.12
LU -factorisation.

r1 → r1
r2 + r1→ r2
r3 − r1→ r3

⇒ A =

 2 −1 1
−2 1 0
2 2 3

 =

 1 0 0
−1 1 0
1 0 1

2 −1 1
0 0 1
0 3 2

 .

A cannot be factored into the product LU since the pivot element a22 = 0. But we can
permute (r2) and (r3) using the permutation matrix

P =

1 0 0
0 0 1
0 1 0

 .

1 0 0
0 0 1
0 1 0

 2 −1 1
−2 1 0
2 2 3

 =

 2 −1 1
2 2 3
−2 1 0

 =

 1 0 0
1 1 0
−1 0 1

2 −1 1
0 3 2
0 0 1

 .

6.2.4 Practical applications

Partial pivoting

Pivoting techniques for Gaussian elimination in row j: if the pivot element ajj = 0, then
interchange row j with row i, where i is the smaller integer greater then j with aij 6= 0.
In practise we want the largest number in a column to be the pivot element before proceeding
to the Gaussian elimination.
For the column j, find the row i below row j, for which |aij | is the largest and swap the rows
i and j, so that

|ajj | ≥ |aij |, i > j.

Thus, LU = PA where P permutes rows.
With partial pivoting we obtain a matrix L such that |Lij | ≤ 1, which is almost always
sufficient to ensure that the LU -decomposition is stable.

Full pivoting

We can interchange the columns as well as the rows to make the pivot elements ajj as large
as possible (i.e. to make the element of L as small as possible).
Column 1: find the position of the element of A with the largest magnitude and swap rows
and columns to bring it to position (1, 1), so that |a11| ≥ |aij |, ∀i, j.
Column j (i.e. after j−1 Gaussian transformations): find the largest element in the remaining
submatrix 

a11 a12 . . . . . . a1n

0
. . . . . . . . . . . .

0 . . . ajj . . . ajn
...

...
. . .

...
0 . . . anj . . . ann


and bring it to position (j, j), so that |ajj | ≥ |aik|, ∀i > j, ∀k > j. So that, LU = PAQ where
P permutes rows and Q permutes columns.

Although full pivoting is in principle better than partial pivoting, it is not easy to implement
in programs.
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In general you must do pivoting to ensure stability. However, we normally only use partial
pivoting since it is usually sufficient to ensure stability.
Pivoting is not needed only when the matrix is diagonally dominant, i.e.

|aii| >
n∑
j=1
j 6=i

|aij |, i = 1, . . . , n.

This is often true for matrices from partial differential equations.



Appendix A

Example of computer arithmetic

A.1 A very primitive computer

Let us consider a computer that uses 20-bit floating point numbers of the form

(−1)s × 0.m× 2n−p,

with a 1-bit sign indicator, s, a 7-bit exponent, n, and a 12-bit mantissa, m, stored as binary
numbers. The most significant bit of the mantissa must be 1. p is a bias subtracted from n
to represent both positive and negative exponents.

Sign. s = 0 for positive numbers and s = 1 for negative numbers.

Exponent. The maximum value of the 7-bit exponent is n = 1111111 (binary) i.e. n =
26 + . . .+ 20 = 27 − 1 = 127 (decimal).
The length of the exponent controls the range of numbers that can be represented. To ensure
however that numbers with small magnitude can be represented as accurately as numbers
with large amplitude, we subtract the bias p = 26 − 1 = 63 from the exponent n. Thus, the
effective range of the exponent is not n ∈ {0, . . . , 127} but q = n− p ∈ {−63, . . . , 64}.

Mantissa. The minimum value of 0.m = 0.1 (binary) i.e. 0.m = 2−1 = 0.5 (decimal), and
its maximum value is 0.m = 0.111111111111 (binary) i.e. 0.m = 2−1 + 2−2 + . . . + 2−12 =
1− 2−12 / 1. Thus, 0.5 ≤ 0.m < 1.

Overflow and underflow. The absolute value of the largest floating point number that
can be stored in the computer is L = (1− 2−12)× 264 ≈ 1.8× 1019. Computations involving
larger numbers, e.g. L2, produce an overflow error.
Similarly, the absolute value of the smallest floating point stored in the computer is S =
0.5× 2−63 = 2−64 ≈ 5.4× 10−20. Computations involving smaller numbers, e.g. S2, produce
an underflow error.

Example of machine number. Consider the number represented by

sign exponent mantissa
0 1001001 110100010011

,

that is +0.110100010011× 21001001−0111111 = +0.110100010011× 20001010.

The sign indicator is 0, i.e. the number is positive.

53
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The exponent is n = 1001001 (binary) i.e. n = 26 + 23 + 20 = 64 + 8 + 1 = 73 (decimal).
Thus, the effective exponent q = 73− 63 = 10 i.e. q = 1010 (binary).
The mantissa gives 0.m = 0.110100010011 (binary) i.e. 0.m = 2−1 + 2−2 + 2−4 + 2−8 + 2−11 +
2−12 = 3347/4096 (decimal).
So, the machine number represents +3347/409× 210 = 836.75.

The next floating point number that we can store in this machine is 0|1001001|110100010100,
where the sign and the exponent remain unchanged and we simply add 1 to the least significant
bit of the mantissa. The new number is 3348/4096 × 210 = 837. So, our primitive computer
would be unable to store exactly any number between 836.75 and 837, leading to a relative
uncertainty equal to 0.25/836.75 ≈ 3× 10−4

Machine ε. At worst, the relative uncertainty in the value of floating point numbers that
this primitive computer can store is equal to

εmachine =
(2−1 + 2−12)× 2− 2−1 × 2

2−1 × 2
= 2−11 ≈ 5× 10−4

.
and is called machine ε. (εmachine is the smallest number that, when added to the floating
point representation of 1, gives a number greater than 1.)

Rounding and chopping. Suppose that we perform a calculation to which the answer is
0.1101000100111101×21010 = 53565/65536×210 ≈ 836.95. There are two ways to approximate
this:

i. the most accurate is rounding to the nearest floating point number, 0.110100010100 ×
21010 = 3348/4096× 210 = 837;

ii. however, many computers simply chop-off the expression at the bit length of the mantissa
and ignore the extra digits, giving an answer of 0.110100010011 × 21010 = 3347/409 ×
210 = 836.75.

The relative error incurred by either approximation is at worst εmachine, and such errors are
called round-off errors.

A.2 Real computers (IEEE Standard 754)

Normalised numbers. Computers usually assume implicitly that the most significant bit
of the mantissa is 1 and hence increase the size of the mantissa. Thus, the normalised repre-
sentation of floating point numbers is

(−1)s × 1.m× 2n−p.

Single precision. Numbers stored using 4 bytes, i.e. 32 bits, with a 1-bit sign indicator, a
8-bit exponent, 0 < n < 255, and a 23-bit mantissa are called single precision floating point.
(Here, p = 27 − 1 = 127.)

The absolute value of the largest and smallest single precision floating point numbers are,
L = (2− 2−23)× 2127 ≈ 3.4× 1038 and S = 2−126 ≈ 1.2× 10−38, respectively.

The machine ε, εmachine = 2−23 ≈ 1.9 × 10−7. Hence calculations are correct to 7 decimal
places (i.e. numbers have 7 significant digits).

Note that, n = 0 and n = 255 are used to represent special values (zero, “Not a Number”,
infinity).
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Double precision. Numbers stored using 8 bytes, i.e. 64 bits, with a 1-bit sign indicator,
a 11-bit exponent, 0 < n < 2047, and a 52-bit mantissa, are called double precision floating
point. (Here, p = 210 − 1 = 1023.)

The absolute value of largest and smallest double precision floating point numbers are, L =
(2− 2−52)× 21023 ≈ 0.18× 10309 and S = 2−1022 ≈ 0.2× 10−307, respectively.

The machine ε, εmachine = 2−52 ≈ 2.2 × 10−16. Hence calculations are correct to 16 decimal
places (i.e. numbers have 16 significant digits).

Again, n = 0 and n = 2047 are used to represent special values.
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Appendix B

Useful theorems from analysis

Theorem B.1 (Taylor’s Theorem)
If f ∈ Cn[a, b] and f (n+1) exists on (a, b), then f(x) can be written as

f(x) = f(x0) +
f (1)(x0)

1!
(x− x0) +

f (2)(x0)
2!

(x− x0)2

+
f (3)(x0)

3!
(x− x0)3 + . . .+

f (n)(x0)
n!

(x− x0)n +Rn(x),

for all x ∈ [a, b], where the remainder term (Lagrange form) is

Rn(x) =
f (n+1)(ξ)
(n+ 1)!

(x− x0)n+1,

with ξ some number between x0 and x.

Theorem B.2 (Intermediate Value Theorem)
If f ∈ C[a, b] (i.e. f is a continuous function on [a, b]) then, ∀K such that f(a) ≤ K ≤ f(b),
∃c ∈ [a, b] with f(c) = K.

a c b

K

f(a)

f(b)

Theorem B.3 (Rolle’s Theorem)
Suppose f ∈ C[a, b] and f is differentiable on (a,b).

If f(a) = f(b) then ∃c ∈ [a, b] such that f ′(c) = 0.

a bc

57



58

Theorem B.4 (Mean Value Theorem)
If f ∈ C[a, b] and f is differentiable on (a, b) then ∃c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a .

a b

f(a)

f(b)

c

Theorem B.5 (Generalised Rolle’s theorem)
If f ∈ C[a, b] and f is n times differentiable on (a, b), then if f(x) is zero at n + 1 distinct
points in [a, b], ∃c ∈ (a, b) with f (n+1)(c) = 0.

Theorem B.6 (Weighted Mean Value Theorem for Integrals)
Suppose f is a continuous function on [a, b] and g is a differentiable function on [a, b] that
does not change sign on [a, b]. Then ∃c ∈ [a, b] with∫ b

a
f(x)g(x)dx = f(c)

∫ b

a
g(x)dx.

Theorem B.7 (Fixed Point Theorem)
If g ∈ C[a, b] (i.e. is a continuous function on the interval [a, b]) and, ∀x ∈ [a, b], g(x) ∈ [a, b]
then g has a fixed point in [a, b] (existence).

If, in addition, g′(x) exits on (a, b) and there exists a positive constant K < 1 such that,
∀x ∈ (a, b), |g′(x)| ≤ K then

i. the fixed point is unique (uniqueness),

ii. for any p0 ∈ [a, b] the sequence {pn = g(pn−1)} converges to this unique fixed point
p ∈ [a, b] (stability).

a bp

y = x

a

b

g(b)

g(a)
y = g(x)

It is important to note that this theorem gives sufficient conditions for convergence, but they
are not necessary.
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Definition We define
f(x) = O[g(x)], x→ x0,

and say “f(x) is — at most — of order g(x) as x → x0” or “f(x) is ’O’ of g(x) as x → x0”,
if f(x)/g(x) is bounded for x near x0; that is, if there exits M ∈ R?

+ and δ ∈ R?
+ such that

|f(x)| ≤M |g(x)| for |x− xo| < δ.
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Appendix C

Analytic derivation of the
Newton-Raphson method

Let p be a root of the function f ∈ C2[a, b] (i.e. f(p) = 0), and p0 be an approximation to p.

If p0 is sufficiently close to p, the expansion of f(p) as a Taylor series in powers of (p− p0) is

f(p) = f(p0) + (p− p0)f ′(p0) +O((p− p0)2).

To find an approximate to p, we keep the linear term only

f(p) = 0 ≈ f(p0) + (p− p0)f ′(p0).

Thus,

p− p0 ≈ − f(p0)
f ′(p0)

⇒ p ≈ p1 = p0 − f(p0)
f ′(p0)

.

Starting from the point p0, the amount of offset needed to get closer to the root p ≈ p1 = p0+h
is h = −f(p0)/f ′(p0).

Newton-Raphson uses this algorithm iteratively to generate the sequence {pn}, where

pn+1 = pn − f(pn)
f ′(pn)

.

Clearly, for all iterates f ′(pn) 6= 0 is required.
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Appendix D

Order of convergence of the secant
method

The iteration scheme for solving f(x) = 0 using the secant method is

pn+1 = pn − (pn − pn−1)
f(pn)

f(pn)− f(pn−1)
.

Expanding in Taylor series around the root x = p for pn and pn−1 gives,

f(pn−1) = f(p) + εn−1f
′(p) +

ε2n−1

2
f ′′(p) +O(ε3n−1),

f(pn) = f(p) + εnf
′(p) +

ε2n
2
f ′′(p) +O(ε3n),

where εn = pn − p. So,

εn+1 = εn − (εn − εn−1)
εnf

′(p) + ε2n/2 f
′′(p) +O(ε3n)

(εn − εn−1)f ′(p) + (ε2n − ε2n−1)/2 f ′′(p) +O(ε3n−1)
,

= εn − εnf
′(p) + ε2n/2 f

′′(p) +O(ε3n)
f ′(p) + (εn + εn−1)/2 f ′′(p) +O(ε3n−1)

,

= εn − εn + ε2nf
′′(p)/2f ′(p) +O(ε3n)

1 + (εn + εn−1)f ′′(p)/2f ′(p) +O(ε3n−1)
,

= εn − (εn + ε2n
f ′′(p)
2f ′(p)

+O(ε3n))(1− (εn + εn−1)
f ′′(p)
2f ′(p)

+O(ε3n−1)),

= εn − εn − ε2n
f ′′(p)
2f ′(p)

+ εn(εn + εn−1)
f ′′(p)
2f ′(p)

+O(ε3n),

= εnεn−1
f ′′(p)
2f ′(p)

+O(ε3n).

The error at iteration n+ 1, |εn+1|, depends on |εn| and |εn−1|, so we cannot directly use our
definition of the order convergence. However, εn+1 ∝ εnεn−1 suggests a power law relationship
of the form

εn = εαn−1

(
f ′′(p)
2f ′(p)

)β
.

Thus, we can substitute

εn−1 = ε1/αn

(
f ′′(p)
2f ′(p)

)−β/α
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in the expression for εn+1,

εn+1 = εnε
1/α
n

(
f ′′(p)
2f ′(p)

)−β/α f ′′(p)
2f ′(p)

= ε(1+α)/α
n

(
f ′′(p)
2f ′(p)

)1−β/α
,

which we equate with the power law relationship,

α =
1 + α

α
=

1 +
√

5
2

and β = 1− β

α
=

1
α
.

Thus,

lim
n→∞

|pn+1 − p|
|pn − p|α = lim

n→∞
|εn+1|
|εn|α =

∣∣∣∣ f ′′(p)2f ′(p)

∣∣∣∣1/α
shows that the secant method has order of convergence α ≈ 1.62.



Appendix E

More examples of Lagrange
interpolation

E.1 Lagrange polynomials

We wish to find the polynomial interpolating the points

x 1 1.3 1.6 1.9 2.2
f(x) 0.1411 −0.6878 −0.9962 −0.5507 0.3115

where f(x) = sin(3x), and estimate f(1.5).

First, we find Lagrange polynomials Lk(x), k = 1 . . . 5,

L1(x) =
(x− 1.3)(x− 1.6)(x− 1.9)(x− 2.2)
(1− 1.3)(1− 1.6)(1− 1.9)(1− 2.2)

, L2(x) =
(x− 1)(x− 1.6)(x− 1.9)(x− 2.2)

(1.3− 1)(1.3− 1.6)(1.3− 1.9)(1.3− 2.2)

L3(x) =
(x− 1)(x− 1.3)(x− 1.9)(x− 2.2)

(1.6− 1)(1.6− 1.3)(1.6− 1.9)(1.6− 2.2)
, L4(x) =

(x− 1)(x− 1.3)(x− 1.6)(x− 2.2)
(1.9− 1)(1.9− 1.3)(1.9− 1.6)(1.9− 2.2)

L5(x) =
(x− 1)(x− 1.3)(x− 1.6)(x− 1.9)

(2.2− 1)(2.2− 1.3)(2.2− 1.6)(2.2− 1.9))

with the following graphs,
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−0.5

0.0

0.5

1.0

1.5

L
2(
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66 E.2 Convergence of “Lagrange” interpolation

−1.0
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−0.2
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0.2

0.4

0.6

0.8

1.0

L
5(

x)

1.0 1.2 1.4 1.6 1.8 2.0 2.2

Clearly, Lk(xi) = δik. Next, the polynomial approximation can be assembled,

P (x) = 0.1411×L1(x)− 0.6878×L2(x)− 0.9962×L3(x)− 0.5507×L4(x) + 0.3115×L5(x).

−1.0

−0.5

0.0

0.5

1.0

P
(x

)

0 1 2 3

sin(3x)

The interpolating polynomial approximates accurately the function f(x) = sin(3x) in the
interval [1, 2.2], with five points only.

So, P (1.5) ≈ −0.9773 is an approximate to f(1.5) = sin(4.5) ≈ −0.9775 accurate within
E ≈ 2× 10−4.

E.2 Convergence of “Lagrange” interpolation

First, consider, P (x), the polynomial interpolating f(x) = cos(x) through a set of equidistant
points in the interval [−5, 5].
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−4 −2 0 2 4

−1.5
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1.0 cos(x)

P(x)

n=6
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1.0

n=11

Clearly, increasing the number of equidistant points from n = 6 (left panel) to n = 11 (right
panel) significantly improves the approximation of f(x) by the polynomial P . In the right
panel, the 10th order interpolating polynomial (solid line) matches perfectly with the function
cos(x).

However, Lagrange interpolation is not always accurate. For instance, consider the polynomial
interpolating the Lorentz function, f(x) = 1/(1 + x2), through a set of equidistant points in
the interval [−5, 5].

−4 −2 0 2 4
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n=6
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Increasing the number of equidistant points from n = 6 (left panel) to n = 11 (right panel)
improves the polynomial interpolation in the central part of f(x), but large oscillations are
present in the flat region.

−4 −2 0 2 4

−60

−40

−20

0

20

n=21

If the number of equidistant interpolation points is increased further, these oscillations get
even larger. The interpolating polynomial of degree n − 1, P (x), does not converge to the
function 1/(1 + x2) as n→∞.


