Department of Applied Mathematics
UNIVERSITY  OF  LEEDS

Publications by Professor Frank Nijhoff

Applied Maths Home

People


Research


Publications


Seminars

 

Publications in refereed journals:
  1. R. Hunik, F.W. Nijhoff and W.J. Huiskamp, Indirect Nuclear Exchange Interactions in PrIn3, Physica 101B (1980), 71--81.
  2. F.W. Nijhoff and H.W. Capel, Separable Interactions and Liquid 3He, Physica 106A (1981), 369-397.
  3. F.W. Nijhoff and H.W. Capel, Separable Interactions and Liquid 3He. II. Extrema of Landau Expansion and Phase Diagram in the Weak-Coupling Limit, Physica 111 (1982),  371-403.
  4. F.W. Nijhoff, J. van der Linden, G.R.W. Quispel and H.W. Capel, Linearization of the Nonlinear Schrödinger Equation and the Isotropic Heisenberg Spin Chain, Physics Letters 89A (1982), 106-108.
  5. F.W. Nijhoff, J. van der Linden, G.R.W. Quispel, H.W. Capel and J. Velthuizen, Linearization of the Nonlinear Schrödinger Equation and the Isotropic Heisenberg Spin Chain, Physica 116A (1982), 1-33.
  6. G.R.W. Quispel, F.W. Nijhoff and H.W. Capel, Linearization of the Boussinesq Equation and the Modified Boussinesq Equation, Physics Letters 91A, 143-145, 1982.
  7. F.W. Nijhoff and H.W. Capel, Bäcklund Transformations and the Linearization of the Anisotropic Heisenberg Spin Chain, Physics Letters 91A (1982), 431-434.
  8. F.W. Nijhoff, G.R.W. Quispel, J. van der Linden and H.W. Capel, On Some Linear Integral Equations Generating Solutions of Nonlinear Partial Differential Equations, Physica 119A (1983), 101-142.
  9. F.W. Nijhoff, H.W. Capel, G.R.W. Quispel and J. van der Linden, The Derivative Nonlinear Schrödinger Equation and the Massive Thirring Model, Physics Letters 93A (1983), 455-458.
  10. F.W. Nijhoff, G.R.W. Quispel and H.W. Capel, Linearization of Nonlinear Differential-Difference Equations, Physics Letters 95A (1983), 273--276.
  11. F.W. Nijhoff, G.R.W. Quispel and H.W. Capel, Direct Linearization of Nonlinear Difference-Difference Equations, Physics Letters 97A(1983), 125--128.
  12. F.W. Nijhoff, H.W. Capel and G.R.W. Quispel, Integrable Lattice Version of the Massive Thirring Model and its Linearization, Physics Letters 98A (1983), 83-86.
  13. J.H.H. Perk, H.W. Capel, G.R.W. Quispel and F.W. Nijhoff, Finite Temperature Correlations for the Ising Chain in a Transverse Field, Physica 123A (1984), 1--49.
  14. G.R.W. Quispel, F.W. Nijhoff, H.W. Capel and J. van der Linden, Bäcklund Transformations and Singular Integral Equations, Physica 123A (1984), 319-359.
  15. G.R.W. Quispel, F.W. Nijhoff, H.W. Capel and J. van der Linden, Linear Integral Equations and Nonlinear Difference-Difference Equations, Physica 125A (1984), 344--380.
  16. F.W. Nijhoff, H.W. Capel, G.L. Wiersma and G.R.W. Quispel, Linearizing Integral Transform and Partial Difference Equations, Physics Letters 103A (1984), 293--297.
  17. F.W. Nijhoff, H.W. Capel, G.L. Wiersma and G.R.W. Quispel, Bäcklund Transformations and Three-Dimensional Lattice Equations, Physics Letters 105A (1984), 267--272.
  18. F.W. Nijhoff, H.W. Capel and A. den Breems, Separable Interactions and Liquid 3He. III. Landau Expansion in the Presence of a Hubbard Interaction, Physica 130A,(1985), 375--411.
  19. F.W. Nijhoff, Theory of Integrable Three-Dimensional Lattice Equations, Letters in Mathematical Physics 9 (1985), 235--241.
  20. F.W. Nijhoff, The Direct Linearizing Transform for the tau-function in Integrable Three-Dimensional Lattice Equations, Physics Letters 110A (1985), 10--14.
  21. F.W. Nijhoff, H.W. Capel and A. den Breems, Separable Interactions and Liquid 3He. IV. Extrema of Landau Expansion, Physica 135A (1986), 295--327.
  22. H.W. Capel, F.W. Nijhoff and A. den Breems, Separable Interactions and Liquid 3He. V. Phase Diagram in the Presence of a Hubbard interaction, Physica 139A (1986), 256--305.
  23. J. van der Linden, F.W. Nijhoff, H.W. Capel and G.R.W. Quispel, Linear Integral Equations and Multicomponent Integrable Systems, Physica 137A (1986), 44--80.
  24. G.L. Wiersma, H.W. Capel and F.W. Nijhoff, Linearizing Integral Transforms for the Multicomponent KP, Physica 138A (1986), 76--99.
  25. F.W. Nijhoff, Linear Integral Transformations and Hierarchies of Nonlinear Evolution Equations, Physica D31 (1988), 339--388.
  26. J. Avan, J.M. Maillet and F.W. Nijhoff, Spinorial Linear System for the Self-dual Yang-Mills Equations, Physics Letters 211B (1988), 329--334.
  27. S. Boukraa, F.W. Nijhoff and J.M. Maillet, On a Generalization of BRS and Gauge Transformations, Nuclear Physics B322 (1989), 605--627.
  28. J.M. Maillet and F.W. Nijhoff, The Tetrahedron Equation and the Four-Simplex Equations, Physics Letters 134A (1989), 221--228.
  29. J. van der Linden, H.W. Capel and F.W. Nijhoff, Linear Integral Equations and Multicomponent Integrable Systems. II, Physica 160A (1989), 235--273.
  30. J.M. Maillet and F.W. Nijhoff, Integrability for Multidimensional Lattice Models, Physics Letters 224B (1989), 389--396.
  31. F.W. Nijhoff and V. Papageorgiou, Lattice Equations associated with the Landau-Lifschitz Equations, Physics Letters 141A (1989), 269--274.
  32. J.M. Maillet and F.W. Nijhoff, Gauging the Quantum Groups, Physics Letters 229B (1989), 71--78.
  33. F.W. Nijhoff and H.W. Capel, The Direct Linearization Approach to Hierarchies of Integrable PDE's in 2+1 Dimensions. I. Lattice Equations and the Differential- Difference Hierarchies. Inverse Problems 6 (1990), 567--590.
  34. V.G. Papageorgiou, F.W. Nijhoff and H.W. Capel, Integrable Mappings and Nonlinear Integrable Lattice Equations, Physics Letters 147A (1990), 106--114.
  35. F.W. Nijhoff and V.G. Papageorgiou, Similarity Reductions of Integrable Lattices and Discrete Analogues of Painlevé II Equation, Physics Letters 153A, 337--344, 1991.
  36. H.W. Capel, F.W. Nijhoff and V.G. Papageorgiou, Complete Integrability of Lagrangian Mappings and Lattices of KDV Type, Physics Letters 155A (1991), 377--387.
  37. G.R.W. Quispel, H.W. Capel, V.G. Papageorgiou and F.W. Nijhoff, Integrable Mappings derived from Soliton Equations, Physica 173A (1991), 243--266.
  38. I.Ya. Dorfman and F.W. Nijhoff, On a 2+1-Dimensional Version of the Krichever-Novikov Equation, Physics Letters 157A (1991), 107--112.
  39. F.W. Nijhoff, H.W. Capel and V.G. Papageorgiou, Integrable Quantum Mappings, Physical Review A46 (1992), 2155--2158.
  40. F.W. Nijhoff, V.G. Papageorgiou, H.W. Capel and G.R.W. Quispel, The Lattice Gel'fand-Dikii Hierarchy, Inverse Problems 8 (1992), 597--621.
  41. F.W. Nijhoff and H.W. Capel, Integrable Quantum Mappings and Non-ultralocal Yang-Baxter Structures, Physics Letters 163A (1992), 49--56.
  42. G.R.W. Quispel and F.W. Nijhoff, Integrable 2-Dimensional Quantum Mappings, Physics Letters 161A (1992), 419--422.
  43. V.G. Papageorgiou,F.W. Nijhoff, B. Grammaticos and A. Ramani, Isomonodromic Deformation Problems for Discrete Analogues of Painlevé Equations, Physics Letters 164A (1992), 57--64.
  44. B. Grammaticos, A. Ramani, V.G. Papageorgiou and F.W. Nijhoff, Quantization and Integrability of Discrete Systems, Journal of Physics A25  (1992), 6419--6427.
  45. F.W. Nijhoff and H.W. Capel, Integrability and Fusion Algebra for Quantum Mappings, Journal of Physics A26 (1993), 6385--6407.
  46. B. Grammaticos, F.W. Nijhoff, V.G. Papageorgiou, A. Ramani and J. Satsuma, Linearization and Solutions of the Discrete Painlevé III Equation, Physics Letters 185A (1994), 446--452. ArXiv-link
  47. F.W. Nijhoff, A q-deformation of the discrete Painlevé I equations and q-orthogonal polynomials, Letters in Mathematical Physics 30 (1994), 327--336.
  48. F.W. Nijhoff and G.D. Pang, A time-discretized version of the Calogero-Moser model, Physics Letters 191A (1994), 101--107, ArXiv-link
  49. F.W. Nijhoff and H.W. Capel, The Discrete Korteweg-de Vries Equation, eds. H.W. Capel, M. De Jager and M. Hazewinkel, in: KdV'95, Special Issue of Acta Applicandae Mathematicae, 39 (1995), pp. 133--158.
  50. F.W. Nijhoff, O. Ragnisco and V. Kuznetsov, Integrable Time-Discretisation of the Ruijsenaars-Schneider Model, Commun. Math. Phys. 176 (1996) 681--700.
  51. V.G. Papageorgiou and F.W. Nijhoff, On some Integrable Discrete-Time Systems associated with the Bogoyavlensky Lattices, Physica 228A (1996), pp. 172--188.
  52. F.W. Nijhoff, J. Satsuma, K. Kajiwara, B. Grammaticos and A. Ramani, A Study of the Alternate Discrete Painlevé Equation, Inverse Problems 12 (1996) 697--716.
  53. F.W. Nijhoff, V.B. Kuznetsov, E.K. Sklyanin and O. Ragnisco, Dynamical R-Matrix for the Elliptic Ruijsenaars-Schneider Model, J. Phys. A: Math. Gen. 29 (1996) L333--L340. ArXiv-link
  54. J. Hietarinta and F.W. Nijhoff, The eight tetrahedron equations, Journ. Math. Phys. 38  #7 (1997) 3603--3615.
  55. V.B. Kuznetsov, F.W. Nijhoff and E.K. Sklyanin, Separation of Variables for the Ruijsenaars System, Commun. Math. Phys. 189 (1997) 855--877. ArXiv-link
  56. O. Chalykh and F.W. Nijhoff, Bispectral Rings of Difference Operators, appeared (in Russian) in the Communications of the Moscow Math. Soc., Usp. Mat. Nauk, vol. 54:3 (1999) 173--174.
  57. F.W. Nijhoff, A. Ramani, B. Grammaticos and Y. Ohta, On Discrete Painlevé Equations associated with the Lattice KdV Systems and the Painlevé VI Equation, Studies in Applied Mathematics 106 (2001) 261--314. ArXiv-link
  58. F.W. Nijhoff and A.J. Walker, The discrete and continuous Painlevé VI hierarchy and the Garnier systems, Glasgow Math. J. 43A (2001), 109--123. ArXiv-link
  59. F.W. Nijhoff, N. Joshi and A. Hone, On the discrete and continuous Miura Chain associated with the Painlevé VI equation, Physics Letters A264 (2000), 396--406. ArXiv-link
  60. F.W. Nijhoff, A. Hone and N. Joshi, On a Schwarzian PDE associated with the KdV hierarchy, Physics Letters A267 (2000), 147--156. ArXiv-link
  61.  F.W. Nijhoff, Lax pair for the Adler (lattice Krichever-Novikov) system, Physics Letters A297 (2002) 49--58. ArXiv-link
  62. F.W. Nijhoff and S.E. Puttock, On a two-parameter extension of the lattice KdV system associated with elliptic curves, J. Nonl. Math. Phys. 10 Suppl. 1 (2003), 107--123. ArXiv-link
  63. C.M. Field and F.W. Nijhoff, A note on modified Hamiltonians for numerical integrations admitting an exact invariant, Nonlinearity 16 #5 (2003), 1673--1683. Journal-link
  64. C.M Field and F.W. Nijhoff, Quantum discrete Dubrovin Equations, Journ. Phys. A: Math. Gen. 37 (2004) 8065--8087. ArXiv-link
  65. N. Joshi, F.W. Nijhoff and C. Ormerod, Lax pairs for ultra-discrete Painlevé cellular automata, J. Phys. A: Math. Gen. 37 #44 (2004) L559--L565. Journal-link
  66. A.S. Tongas and F.W. Nijhoff, Generalized hyperbolic Ernst equations for an Einstein-Maxwell-Weyl field, J.Phys. A: Math. Gen. 38 #4  (2005) 895--906. ArXiv-link
  67. A.S. Tongas and F.W. Nijhoff, The Boussinesq integrable system. Compatible lattice and continuum structures, Glasgow Math. J. 47A  (2005) 205--219.  ArXiv-link
  68. C.M. Field, F.W. Nijhoff and H.W. Capel, Exact solutions of quantum mappings from the lattice KdV as multi-dimensional operator difference equations, J. Phys. A: Math. Gen. 38 # 43 (2005) 9503--9527. Journal-link
  69. A.S. Tongas and F.W. Nijhoff, Discrete Garnier type system from symmetry reduction on the lattice, J. Phys. A: Math. Gen. 39 #39 (2006) 12191--12202. Journal-link
  70. C.M. Field and F.W. Nijhoff, Time-sliced path integrals with stationary states, J.Phys A: Math. Gen. 39 #20 (2006) L309--L314.  ArXiv-link , Journal-link
  71. J. Atkinson, J. Hietarinta and F.W. Nijhoff, Seed and soliton solutions for Adler's lattice equation, J. Phys. A: Math. Theor. 40 #1 (2007) F1--F8. Journal-link
  72. M. Hay, J. Hietarinta, N. Joshi and F.W. Nijhoff, A lax pair for a lattice modfied KdV equation, reductions to q-Painlevé equations and associated Lax pairs, J. Phys. A: Math. Theor. 40 #2 (2007) F61--F73. Journal-link
  73. J. Atkinson and F.W. Nijhoff, Solutions of Adler's lattice equation associated with 2-cycles of the Bäcklund transformation, J. of Nonl. Math. Phys. 15 Suppl # 3 (2008) 34-42. ArXiv-link
  74. J. Atkinson, J. Hietarinta and F.W. Nijhoff, Soliton solutions for Q3, J. Phys. A:Math Theor. 41 #14 (2008) 142001 (11pp), ArXiv:0801.0806
  75. C.M. Field, N. Joshi and F.W. Nijhoff, q-Difference equations of KdV type and Chazy-type second-degree difference equations, J. Phys. A: Math Theor. 41 #33 (2008) 332005 (13pp), ArXiv:0805.2905
  76. F.W. Nijhoff, J. Atkinson and J. Hietarinta, Soliton Solutions for ABS Lattice Equations: I Cauchy Matrix Approach, J. Phys. A:Math Theor. 42 #40 (2009) 404005 (34pp), ArXiv:0902.4873
  77. P.E. Spicer and F.W. Nijhoff, Semi-classical Laguerre polynomials and a generalized discrete Painlevé type equation, J. Phys. A:Math. Theor. 42 #45 (2009) 454019 (9pp). 
  78. S. Lobb and F.W. Nijhoff, Lagrangian multiforms and multidimensional consistency, J. Phys. A:Math Theor. 42 #45 (2009) 454013 (18pp),  ArXiv:0903.4086
  79. S.B. Lobb, F.W. Nijhoff and G.R.W. Quispel, Lagrangian multiform structure for the lattice KP system, J. Phys. A 42  #47 (2009) 472002 (11pp), ArXiv:0906.5282.
  80. S. Lobb and F.W. Nijhoff, Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy, J. Phys. A:Math. Theor. 43 (2010) 072003 (11pp), ArXiv:0911.1234.
  81. F.W. Nijhoff and J. Atkinson, Elliptic N-soliton solutions of ABS lattice equations, Int. Math. Res. Notices Vol. 2010, No. 20, 3837--3895. ArXiv:0911.0461.
  82. J. Atkinson and F.W. Nijhoff, A constructive approach to the soliton solutions of integrable lattice equations, Commun. in Math. Phys. 299 #2 (2010) 283--304.   DOI: 10.1007/s00220-010-1076-x, ArXiv:0911.0458.
  83. P.E. Spicer, F.W. Nijhoff and P. H. van der Kamp, Higher Analogues of the Discrete-Time Toda Equation and the Quotient-Difference Algorithm, Nonlinearity 24 #8 (2011), 2229-2263, ArXiv:1005.0482
  84. P. Xenitidis, F. Nijhoff and S. Lobb, On the Lagrangian formulation of multidimensionally consistent systems, Proceedings of the Royal Society A467 #2135 (2011) 3295-3317,  ArXiv:1008.1952.
  85. S. Yoo-Kong, S. Lobb and F.W. Nijhoff, Discrete-time Calogero-Moser system and Lagrangian 1-form structure, J. Phys. A: Math. Theor. 44 (2011), 365203, ArXiv:1102.0663. 
  86. F.W. Nijhoff, A Higher Rank Version of the Q3 Equation,  to be submitted,  ArXiv:1104.1166.
  87. S. Yoo-Kong and F.W. Nijhoff, Elliptic (N,N')-soliton solutions of the lattice Kadomtsev-Petviashvili Equation, accepted for publication in  Journ. of Mathematical Physics, ArXiv:1111.5366.
  88. D.-J. Zhang, S.-L. Zhao and F.W. Nijhoff, Direct Linearization of Extended Lattice BSQ Systems, Studies in Applied Mathematics  129 #2 (2012) pp 220248, ArXiv:1112.0520.
  89. S. Yoo-Kong and F.W. Nijhoff, Discrete-time Ruijsenaars-Schneider system and Lagrangian 1-form structure, submitted to Journ. of Nonlinear Mathematical Physics, ArXiv:1112.4576.
  90. P. Xenitidis and F.W. Nijhoff, Symmetries and conservation laws of lattice Boussinesq equations, Physics Letters A367 (2012)  #35 pp. 2394-2401,  ArXiv:1201.0028.  
  91. J. Atkinson, S.B. Lobb and F.W. Nijhoff, An integrable multicomponent quad equation and its Lagrangian formalism,  Theor. Math. Phys 173 (2012) #3 pp. 1644-1653 [Russian version: Teoret. Mat. Fiz. 173 (2012) #3 pp. 363374 (Mi tmf8350)], ArXiv:1204.5521.


Invited contributions to monographs:
  1. H.W. Capel and F.W. Nijhoff, Integrable Lattice Equations, eds. A.S. Fokas and V.E. Zakharov, in: Important Developments in Soliton Theory, pp. 38--57, New York/Berlin, Springer Verlag, 1993.
  2. F.P. Michielsen and F.W. Nijhoff, D-Algebras, D-Simplex Equations and Multi-Dimensional Integrability, eds. L. Kauffman and R. Baadhio, in: Quantum Topology, pp. 230--243, Signapore, World Scientific, 1993.
  3. F.W. Nijhoff, On some ``Schwarzian Equations'' and their Discrete Analogues, Eds. A.S. Fokas and I.M. Gel'fand, in: Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, (Birkhäuser Verlag, 1996), pp. 237--260.
  4. B. Grammaticos, F.W. Nijhoff and A. Ramani, Discrete Painlevé Equations, Ed. R. Conte, in: The Painlevé Property, One Century Later, CRM Series in Mathematical Physics, (Springer Verlag, 1999) pp 413--516.
  5. F.W. Nijhoff, Discrete Painlevé Equations and Symmetry Reduction on the Lattice, Eds. A.I. Bobenko and R. Seiler, in: Discrete Integrable Geometry and Physics, (Oxford Univ. Press, 1999), pp 209--234.
Conference Proceedings:
  1. F.W. Nijhoff, H.W. Capel and G.L. Wiersma, Integrable Lattice Systems in Two and Three Dimensions, Ed. R. Martini, in: Geometric Aspects of the Einstein Equations and Integrable Systems, Lecture Notes in Physics vol. 239, pp. 263--302, Berlin/New York, Springer Verlag, 1985.
  2. F.W. Nijhoff, The Direct Linearizing Transform for Three-Dimensional Lattice Equations, Proc. of the Int. Conf. on Solitons and Coherent Structures, Santa Barbara, January 1985, Physica 18D (1986), 380-381, 1986.
  3. F.W. Nijhoff, Integrable Hierarchies, Lagrangian Structures and Non-commuting Flows, Eds. M.J. Ablowitz, B. Fuchssteiner and M. Kruskal, in: Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, pp. 150--181, Signapore, World Scientific Publ. Co. , 1987.
  4. J.M. Maillet and F.W. Nijhoff, Algebraic Structure of Integrable Systems in D=2+1 and Routes Towards Multidimensional Integrability, Proc. of the VIth Int. Workshop on Nonlinear Evolution Equations and Dynamical Systems, ed. J. Léon, (World Sci. Publ., Singapore, 1987) p. 281--316.
  5. F.W. Nijhoff and J.M. Maillet, On the Algebraic Structure of Integrable Systems in Multidimensions, Eds. Y. Saint-Aubin and L. Vinet, in: Proc. of the XVIIth Int. Colloquiem on Group Theor. Methods in Physics, pp. 504--507, Signapore, World Scientific Publ. Co., 1989.
  6. S. Boukraa, F.W. Nijhoff and J.M. Maillet, New Topological Invariants for Non-Abelian Anti-Symmetric Tensor Fields from Extended BRS Algebra, Eds. Y. Saint-Aubin and L. Vinet, in: Proc. of the XVIIth Int. Colloquiem on Group Theor. Methods in Physics, pp. 177--180, Signapore, World Scientific Publ. Co., 1989.
  7. F.W. Nijhoff and J.M. Maillet, Multidimensional Integrable Lattices, Quantum Groups, and the D-Simplex Equations. Report # CERN.TH-5595/89, INS # 131 (1989), Seminars at the IVth Intl. Conf. on Nonlinear and Turbulent Processes in Physics, Kiev 1989, and Vth NEEDS Workshop, Crete, July 1989.
  8. V. Papageorgiou, F.W. Nijhoff and H.W. Capel, Lattice Equations and Integrable Mappings, Eds. S. Carillo and O. Ragnisco, in: Nonlinear Evolution Equations and Dynamical Systems, pp. 182--187, Berlin/New York, Springer Verlag, 1990.
  9. F.W. Nijhoff and J.M. Maillet, Multidimensional Latttice Integrability and the Simplex Equations, Eds. A. Degasperis, A.P. Fordy and M. Lakshmanan, in: Nonlinear Evolution Equations: Integrability and Spectral Methods, pp. 537--548, Manchester University Press, 1990.
  10. H.W. Capel, F.W. Nijhoff, V.G. Papageorgiou and G.R.W. Quispel, Integrable Mappings and Soliton Lattices, Eds. I. Antoniou and F. Lambert, in: Solitons and Chaos, pp. 232--239, Berlin/New York, Springer Verlag, 1991.
  11. F.W. Nijhoff, V.G. Papageorgiou and H.W. Capel, Integrable Time-Discrete Systems: Lattices and Mappings, Ed. P.P. Kulish, in: Quantum Groups, Lecture Notes in Mathematics vol. 1510, pp. 312--325, Berlin/New York, Springer Verlag, 1992.
  12. F.W. Nijhoff and H.W. Capel, Quantization of Integrable Mappings, Ed. G.F. Helminck, in: Geometric and Quantum Aspects of Integrable Systems, Lecture Notes in Physics vol. 424, pp. 187--211, Berlin/New York, Springer Verlag, 1993.
  13. F.W. Nijhoff, Integrable Quantum Mappings and Quantum Yang-Baxter Structures, Eds. J. Mateos-Guilarte, M.A. del Olmo and M. Santander, in: Proc. of the XIX Intl. Colloquiem on Group Theoretical Methods in Physics, Salamanca, June-July 1992, pp. 260--263, Madrid, Anales de Física Monografías, CIEMAT, 1993.
  14. F.W. Nijhoff and H.W. Capel, Integrable Quantum Mappings and Quantization Aspects of Discrete-time Integrable Systems, Ed. P. Clarkson, in: Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, NATO ASI Series C, vol. 413, pp. 163--182, Dordrecht, Kluwer Acad. Publ. Co. , 1993.
  15. F.W. Nijhoff and G.D. Pang, Discrete-time Calogero-Moser Model and Lattice KP Equations, Eds. D. Levi, L. Vinet and P. Winternitz, in: Symmetries and Integrability of Difference Equations, Montréal, CRM Lecture Notes and Proceedings Series, vol. 9 (1996), pp. 253--264. ArXiv-link
  16. H.W. Capel and F.W. Nijhoff, Integrable Quantum Mappings, Eds. D. Levi, L. Vinet and P. Winternitz, in: Symmetries and Integrability of Difference Equations, Montréal, CRM Lecture Notes and Proceedings Series, vol. 9 (1996), pp. 37--49. ArXiv-link
  17. F.W. Nijhoff, Similarity Reduction on the Lattice and Discrete Painlevé Equations, Eds. P. Winternitz and L. Vinet, in: Nonlinear Special Functions: The Painlevé Transcendents, Proceedings of CRM Workshop 1996, (CRM Series in Theor. Phys., Springer Verlag, to appear).
  18. F.W. Nijhoff and V. Enolskii, Integrable Mappings of KdV Type and Hyperelliptic Addition Theorems, in: Symmetries and Integrability of Difference Equations, P.A. Clarkson and F.W. Nijhoff, eds., LMS Lect. Notes series 255 (1999) 64--78.
  19. F.W. Nijhoff, Discrete Dubrovin Equations and Separation of Variables for Discrete Systems, Proceedings of the 1997 meeting on Integrability and Chaos in Discrete Systems, in: Chaos, Solitons and Fractals 11 (2000), pp. 19--28, eds. I. Antoniou and F. Lambert, (Pergamon, Elsevier Science). ArXiv-link
  20. F.W. Nijhoff and S.E. Puttock, A two-parameter elliptic extension of the lattice KdV system, in: Bilinear Integrable Systems-From Classical to Quantum, Continuous to Discrete, in Proc. of the NATO-ARW in honour of R. Hirota, Elba, September 2002, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 201, L. Faddeev, P. Van Moerbeke, F. Lambert (Eds.) 2005.  
Edited Books and Special Issues:
  1. G.R.W. Quispel, F.W. Nijhoff and J.H.H. Perk, Editors, Statistical Mechanics, Soliton Theory and Nonlinear Dynamics: Festschrift in honour of H.W. Capel's 60th Birthday, Physica 228A (Special Issue), Amsterdam, Elsevier Science, 1996.
  2. P.A. Clarkson and F.W. Nijhoff, Editors, Symmetries and Integrability of Difference Equations, (Proceedings of the International Workshop, Canterbury, July 1--5, 1996), LMS Lecture Notes series vol. 255, Cambridge University Press, 1999. Publisher-link
  3. V.B. Kuznetsov and F.W. Nijhoff, Editors, Mathematical Methods of Regular Dynamics, Special Issue: papers based on the Kowalevski Workshop,
    Leeds April 2000, J. Phys. A: Math. Gen. 34 #11 (2001), pp. 2071--2524. Journal-link
  4. J. Hietarinta, F.W. Nijhoff and J. Satsuma, Editors, Special Issue: Symmetries and Integrability of Difference Equations (SIDE IV): papers based on the SIDE IV meeting, Tokyo Oct./Nov. 2000, J. Phys. A: Math. Gen. 34 #48 (2001), pp. 10337--10744. Journal-link
  5. F.W. Nijhoff, Yu. Suris and C.M. Viallet, Editors,  Symmetries and Integrability of Difference Equations (SIDE V), J. Nonl. Math. Phys. vol. 10 (2003) Suppl. #2. Journal-link
  6. P.A. Clarkson, N. Joshi, M. Mazzocco, F.W. Nijhoff and M. Noumi, One Hundred Years of PVI, the Fuchs-Painlevé Equation, special issue, J. Phys. A: Math. Gen. 39 #39 (2006).  Journal-link
Research Reports:
  1. V.Z. Enolskii, F.W. Nijhoff and E. Previato, Note on isomonodromic Garnier systems: Lagrangian structure and higher-genus analogues of the Painlevé VI equation, Mittag-Leffler Institute Report  No. 28, fall 2005/6, ISRN IML-R-28-05/06-SE+fall. ML Reports link

Thesis:

F.W. Nijhoff, Separable Interactions and Liquid He3, PhD-Thesis, University of Leiden, May 1984.



applied-webmaster @ maths.leeds.ac.uk