Fourier Integrals and Transforms

The connection between the momentum and position representation relies on the notions of Fourier integrals and Fourier transforms, (for a more extensive coverage, see the module MATH3214).

Fourier Theorem: If the complex function \(g \in L^2(\mathbb{R}) \) (i.e. \(g \) square-integrable), then the function given by the Fourier integral,

\[
f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(k) e^{ikx} \, dk
\]

exists (i.e. the integral converges uniformly for all \(x \in \mathbb{R} \)) and \(f \in L^2(\mathbb{R}) \) (so \(f \) is square integrable as well). Furthermore, we have the equality

\[
\int_{-\infty}^{\infty} |f(x)|^2 \, dx = \int_{-\infty}^{\infty} |g(k)|^2 \, dk , \quad \text{Parseval’s formula}
\]

The function \(g(k) \) is called the Fourier transform of \(f(x) \) and it can be recovered from the following inverse Fourier integral

\[
g(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} \, dx
\]

Example: To see the Fourier theorem “in action”, let us take the simple example of a “block function” \(g(k) \) of the form

\[
g(k) = \begin{cases}
\frac{1}{\sqrt{a}}, & k_0 - \frac{a}{2} \leq k \leq k_0 + \frac{a}{2} \\
0, & \text{otherwise}
\end{cases}
\]

Calculating the Fourier integral is simple:

\[
f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(k) e^{ikx} \, dk = \frac{1}{\sqrt{2\pi}} \int_{k_0-a/2}^{k_0+a/2} \frac{1}{\sqrt{a}} e^{ikx} \, dk = \frac{e^{ik_0x}}{\sqrt{2\pi a}} \left[e^{ikx} \right]_{-a/2}^{a/2} = \frac{2e^{ik_0x} \sin(ax/2)}{\sqrt{2\pi a} x}
\]

The main behaviour of this function is given by \(\sin(ax/2)/x \) whose graph is given by;
Using the well-known integrals:

\[
\int_{-\infty}^{\infty} \frac{\sin^2(x)}{x^2} \, dx = \pi, \quad \int_{-\infty}^{\infty} \frac{\sin(\alpha x)}{x} \, dx = \begin{cases}
\pi & , \quad \alpha > 0 \\
-\pi & , \quad \alpha < 0 \n\end{cases}
\]

it is easy to establish

\[
\int_{-\infty}^{\infty} |f(x)|^2 \, dx = \int_{-\infty}^{\infty} \frac{2 \sin^2(ax/2)}{x^2} \, dx = \int_{-\infty}^{\infty} |g(k)|^2 \, dk = \int_{k_0-a/2}^{k_0+a/2} \frac{1}{a} \, dk = 1
\]

in accordance with Parseval’s formula. Furthermore from the inverse Fourier integral

\[
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{2 \sin(ax/2)}{x} e^{i(k_0-k)x} \, dx
\]

\[
= \frac{1}{\pi \sqrt{a}} \int_{-\infty}^{\infty} \cos((k-k_0)x) \frac{\sin(ax/2)}{x} \, dx
\]

\[
= \frac{1}{\pi \sqrt{a}} \int_{-\infty}^{\infty} \frac{1}{2x} \left[\sin(k-k_0+\frac{a}{2})x - \sin(k-k_0-\frac{a}{2})x \right] \, dx = g(k)
\]

In fact, in the second step we used the fact that if we do a change of integration variables \(x \to -x \) the exponent picks up a minus sign, so that we can replace the exponent by
a cosine (taking half the integral in its original form and half the integral after change of variables). In the third step we used a simple trigonometric formula \[\cos a \sin b = \frac{1}{2} \sin(a + b) - \frac{1}{2} \sin(a - b) \] after which we used the integral given above noting that if either \(k > k_0 + a/2 \) or \(k < k_0 - a/2 \) the contributions from both terms in the integrand cancel, whereas they add up when \(k \) is in the interval \(k_0 - a/2 < k < k_0 + a/2 \). Thus, we recover the function \(g(k) \) from the inverse Fourier integral.

Dirac \(\delta \)-function

If we were to substitute the inverse Fourier integral into the Fourier integral we would get

\[
 f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \, e^{ikx} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dy \, e^{-iky} f(y) \right)
\]

and if we were to interchange bluntly the order of the integrations we would obtain:

\[
 f(x) = \int_{-\infty}^{\infty} dy \, f(y) \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, e^{ik(x-y)} \right)
\]

This procedure is strictly not allowed as can be concluded from the fact that the integral between the brackets on the right-hand side

\[
 \delta(x - y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, e^{ik(x-y)}
\]

is an ill-defined object: it does not converge if \(x = y \) and if \(x \neq y \) the integrand becomes ever more rapidly oscillating as \(k \to \pm \infty \) indicating that the integral would vanish.

If we would follow the backsubstitution of the Fourier integral a bit more closely, we could see what is going on. Let us investigate the finite inverse Fourier integral, i.e. for large but finite \(L \) we consider:

\[
 \frac{1}{\sqrt{2\pi}} \int_{-L}^{L} dx \, e^{-ik'x} f(x) = \frac{1}{\sqrt{2\pi}} \int_{-L}^{L} dx \, e^{-ik'x} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \, e^{ikx} g(k) \right)
\]

\[
 = \int_{-\infty}^{\infty} dk \, g(k) \left(\frac{1}{2\pi} \int_{-L}^{L} dx \, e^{i(k-k')x} \right) = \int_{-\infty}^{\infty} dk \, g(k) \frac{\sin(k-k')L}{\pi(k-k')}
\]

where we have assumed that the finite and the infinite integral can be interchanged. The function

\[
 \frac{\sin(k-k')L}{\pi(k-k')}
\]

has the same shape as the function occurring in the graph of the example where the oscillations occur with period \(\sim 2\pi/L \) and the peak has height \(\sim L/\pi \). Thus, if \(L \) becomes large this function becomes increasingly rapidly oscillating whilst the peak value will become ever larger. Now performing the limit \(L \to \infty \) on the integral on the left-hand side in the above calculation would yield the required inverse Fourier integral

\[
 \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-ik'x} f(x) = \lim_{L \to \infty} \int_{-\infty}^{\infty} dk \, g(k) \frac{\sin(k-k')L}{\pi(k-k')}
\]
Unfortunately, we cannot pull the limit through the integral since this would give us the ill-defined object:

\[\delta(k - k') = \lim_{L \to \infty} \frac{\sin(k - k')L}{\pi(k - k')} . \]

The function within the limit on the r.h.s. of this formula becomes an increasingly rapidly oscillating function as \(L \to \infty \), whilst the maximum at \(k = k' \) grows linearly with \(L \). Thus, this limit really does not exist: it has only a symbolic meaning. The way in which we deal with such a generalised function\(^1\) is as follows: the \(\delta \)-function is defined as a functional (cf. Handout \# 6), and it can only be used in combination with an integral. Thus, if we apply the limit-like object given above on functions through an integral it is understood that the limit \(L \to \infty \) is taken after, and not before, the integral is performed. Thus by definition

\[\int_{-\infty}^{\infty} \delta(k - k')g(k) \, dk \equiv \lim_{L \to \infty} \int_{-\infty}^{\infty} dk \frac{\sin(k - k')L}{\pi(k - k')} g(k) \]

In order to give a simple (non-rigorous) argument on what the integral on the r.h.s. amounts to we observe that if \(L \) is sufficiently large the peak of the function in the integrand is very sharp and drops down sufficiently fast so that we can approximate the integral by

\[\int_{k' - \pi/L}^{k' + \pi/L} dk \frac{\sin(k - k')L}{\pi(k - k')} \simeq g(k') \int_{k' - \pi/L}^{k' + \pi/L} dk \frac{\sin(k - k')L}{\pi(k - k')} \simeq g(k') \int_{-\infty}^{\infty} dk \frac{\sin(k - k')L}{\pi(k - k')} = g(k') \]

since the latter integral is equal to unity. Thus, we obtain the result that \(g(k) \) is recovered from the inverse Fourier integral.

The \(\delta \)-function has many realisations, not only as the limit given above, but also in terms of alternative forms like:

\[\delta(x) = \lim_{\epsilon \to 0} \frac{1}{\sqrt{\pi \epsilon}} \exp \left(-\frac{x^2}{\epsilon} \right) \]

\[\delta(x) = \lim_{\epsilon \to 0} \frac{1}{\pi \frac{x^2}{\epsilon} + \epsilon^2} \]

Again, in these latter forms, it is understood that whenever we apply the \(\delta \)-function in an integral, the limit is supposed to be taken after the integral:

\[\int_{-\infty}^{\infty} \delta(x)f(x) \, dx \equiv \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{\pi \epsilon}} e^{-x^2/\epsilon} \, dx = f(0) \]

We will often simply write the formula:

\[\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \, dk , \]

but we have to remember that this formula should not be taken literally, as the integral for \(x = 0 \) diverges! The integral should be understood in the sense explained above: only

\(^1\)A proper theory was developed by the French mathematician L. Schwartz in the 1950’s, which is known as the theory of distributions. For an accessible introduction see A.H. Zemanian, *Distribution theory and transform analysis*, (Dover publications, 1987).
when we integrate $\delta(x)$ over x together with reasonable functions $f(x)$ do we get a sensible answer; the corresponding integral is then understood to be calculated as:

$$\int dx \, f(x)\delta(x-x') = \frac{1}{2\pi} \int dk \int dx \, f(x)e^{ik(x-x')}$$

i.e. we perform the integration over k first. By the result from Fourier’s theorem gives us back the function f evaluated at x'.

The main property of the δ-function is precisely the latter: it singles out the value $x = 0$ corresponding to its argument equal to zero. Thus, symbolically we can write this as:

$$\delta(x)f(x) = f(0)\delta(x)$$

but remembering that this makes only sense when performing an integral. Some other properties are:

$$\delta(x) = \delta(-x) \quad \delta(cx) = \frac{1}{|c|}\delta(x) \quad c \text{ real constant}$$

The “derivative” δ' of the δ function can be defined by its action through an integral by

$$\int_{-\infty}^{\infty} \delta'(x) f(x) \, dx = -\left[\frac{df(x)}{dx} \right]_{x=0}$$

which makes sense if we think of this as performing an integration by parts on the integral.

Finally we remark that in QM we often have to work with three-fold integrals over in the space of position or momentum. In those situations we can use a product of δ-functions corresponding to the three components of the position- resp. momentum vector. Thus, these act as e.g.

$$\int dr \, \delta(r-r') \, f(r) = f(r') \quad \text{with} \quad \delta(r-r') = \delta(x-x')\delta(y-y')\delta(z-z')$$

The three-dimensional δ-function can be represented in the form:

$$\delta(r-r') = \frac{1}{(2\pi)^3} \int dk \, e^{ik\cdot(r-r')}$$

where the same remark as above applies: the integral formula is only symbolic and stands for a procedure where, whenever we integrate a function $f(r)$ with $\delta(r-r')$ over r then we should perform the integration over r after we have performed the integration over k.

Connection with Fourier Series

Fourier series are treated in the module MATH2430. We recall that a periodic function f with period $2L$, i.e. for which $f(x+2L) = f(x)$ can be expanded as a *Fourier series* as follows

$$f(x) = \sum_{n=0}^{\infty} \left[A_n \cos \frac{n\pi x}{L} + B_n \sin \frac{n\pi x}{L} \right]$$
It is sometimes more convenient to work with an expansion in terms of complex variables

\[f(x) = \sum_{n=-\infty}^{\infty} a_n e^{i n \pi x / L} \]

It is easy to see that both series are equivalent and the coefficients \(A_n \), \(B_n \) can be expressed in terms of the complex coefficients \(a_n \) and vice versa. The central point in working with Fourier series is the integral

\[
\frac{1}{2L} \int_{-L}^{L} e^{i (n-m) \pi x / L} dx = \delta_{nm} = \begin{cases}
1 & , \quad n = m \\
0 & , \quad n \neq m
\end{cases}
\]

where \(\delta_{nm} \) is the Kronecker \(\delta \)-symbol. This integral allows us to recover the Fourier coefficients \(a_n \) from the function \(f \) via the formula:

\[a_m = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-i m \pi x / L} dx \]

The Fourier integral can be viewed as a continuous analogue of the Fourier series, namely the result of taking the limit \(L \to \infty \), in which case we have an infinite period. In fact, since the difference between two successive integers \(\Delta n = 1 \) we can write

\[f(x) = \frac{L}{\pi} \sum_{n} a_n e^{i n \pi x / L} \frac{\pi \Delta n}{L} = \frac{1}{\sqrt{2\pi}} \sum_{n} g(k_n) e^{i k_n x} \Delta k_n \]

with \(k_n = \pi n / L \) and \(g(k_n) = La_n \sqrt{2 / \pi} \). As \(L \to \infty \) the increment \(\Delta k_n \to dk \) infinitesimally small. The Fourier sum then goes over into the Fourier integral

\[f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} g(k) dk \]

The coefficients \(g(k_n) \) will behave as follows:

\[g(k_n) = \frac{\sqrt{2} L a_n}{\sqrt{\pi}} = \frac{1}{\sqrt{2\pi}} \int_{-L}^{L} f(x) e^{-i k_n x} dx \]

which in the limit \(L \to \infty \) obviously goes over into the inverse Fourier integral.