E4.1. There are 274 students on the list of the module MATH1715. Denote by \(X \) the number of students who have their birthday on the 15th of November. Compare the probabilities \(P(X = k) \) for a few values \(k = 0, 1, 2, \ldots \) with those given by the Poisson approximation.

Solution. We assume that a student’s birthday falls on 15 November with probability \(\frac{1}{365} \), independently of other students. That is, we have a sequence of \(n = 274 \) Bernoulli trials with probability of success \(p = \frac{1}{365} = 0.0027397 \ldots \) Then the random variable \(X \) (the number of students, out of 274, having birthday on 15 November) has the binomial distribution with parameters \(n = 274, p = \frac{1}{365} \), so that

\[
P(X = k) = \binom{274}{k} \left(\frac{1}{365} \right)^k \left(\frac{364}{365} \right)^{274-k}, \quad k = 0, 1, \ldots, 274.
\]

Set \(\lambda = np = \frac{274}{365} = 0.750685 \), then the Poisson approximation yields

\[
P(X = k) \approx \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \ldots
\]

The numerical results for a few small values of \(k \) are gathered in the following table:

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(\geq 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>0.47156</td>
<td>0.35496</td>
<td>0.13311</td>
<td>0.03316</td>
<td>0.00617</td>
<td>0.00092</td>
<td>0.00013</td>
</tr>
<tr>
<td>Poisson</td>
<td>0.47204</td>
<td>0.35436</td>
<td>0.13300</td>
<td>0.03328</td>
<td>0.00625</td>
<td>0.00094</td>
<td>0.00013</td>
</tr>
</tbody>
</table>

Here \(P(X \geq 6) \) may be evaluated using the formula

\[
P(X \geq 6) = 1 - P(X \leq 5) = 1 - \sum_{k=0}^{5} P(X = k).
\]

Note that, as known from theory, the error in the Poisson approximation is estimated by

\[
\frac{\lambda^2}{n} = np^2 = \frac{274}{365^2} \leq 0.0021,
\]

but the actual error is even better than that.

E4.2. Let a random variable \(X \) have the geometric distribution with parameter \(p \), that is,

\[
P(X = k) = p(1 - p)^{k-1}, \quad k = 1, 2, \ldots
\]

Find the probability that \(X \) is greater than \(n \), where \(n = 0, 1, 2, \ldots \)

Solution. Using the formula for the sum of geometric series, we obtain

\[
P(X > n) = \sum_{k=n+1}^{\infty} p(1 - p)^{k-1} = p \left\{ (1 - p)^n + (1 - p)^{n+1} + \cdots \right\}
\]

\[
= p(1-p)^n \left\{ 1 + (1 - p) + (1-p)^2 + \cdots \right\}
\]

\[
= p(1-p)^n \cdot \frac{1}{1-(1-p)} = p(1-p)^n \cdot \frac{1}{p} = (1-p)^n.
\]
So the answer is given by

\[P(X > n) = (1 - p)^n. \]

Note that for \(n = 0 \) this gives an obvious result \(P(X > 0) = (1 - p)^0 = 1 \).

E4.3. Suppose that the random variables \(X \) and \(Y \) are independent, and let \(X \) and \(Y \) have Poisson distributions with parameters \(\lambda \) and \(\mu \), respectively.

(a) Show that the sum \(Z = X + Y \) has the Poisson distribution with parameter \(\lambda + \mu \).

(b) Find the conditional probability \(P(X = k \mid Z = n) \) for \(k = 0, 1, \ldots, n \).

Solution. (a) We need to show that

\[P(Z = n) = \frac{(\lambda + \mu)^n}{n!} e^{-(\lambda + \mu)}, \quad n = 0, 1, 2, \ldots \quad (1) \]

Note that in order for the sum \(Z = X + Y \) to take the value \(n \), the random variable \(X \) may take any value \(k = 0, 1, \ldots, n \) (we use that both \(X \) and \(Y \) are non-negative). Therefore,

\[P(Z = n) = P(X + Y = n) = \sum_{k=0}^{n} P(X = k, X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n-k). \]

Due to independence of \(X \) and \(Y \) we can rewrite the right-hand side in the form

\[
\begin{align*}
\sum_{k=0}^{n} P(X = k) \cdot P(Y = n-k) &= \sum_{k=0}^{n} \frac{\lambda^k}{k!} e^{-\lambda} \cdot \frac{\mu^{n-k}}{(n-k)!} e^{-\mu} \\
&= e^{-(\lambda + \mu)} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} \lambda^k \mu^{n-k} \\
&= \frac{1}{n!} e^{-(\lambda + \mu)} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda^k \mu^{n-k} \\
&= \frac{1}{n!} e^{-(\lambda + \mu)} (\lambda + \mu)^n,
\end{align*}
\]

where at the last step we used the binomial theorem. Hence,

\[P(Z = n) = \frac{(\lambda + \mu)^n}{n!} e^{-(\lambda + \mu)}, \]

and formula (1) is proved.

(b) By definition of conditional probabilities and using the result of part (a) we have

\[
\begin{align*}
P(X = k \mid Z = n) &= \frac{P(X = k, X + Y = n)}{P(Z = n)} = \frac{P(X = k, Y = n-k)}{P(Z = n)} \\
&= \frac{P(X = k) \cdot P(Y = n-k)}{P(Z = n)} = \frac{\lambda^k e^{-\lambda}}{k!} \cdot \frac{\mu^{n-k} e^{-\mu}}{(n-k)!} \cdot \frac{n!}{(\lambda + \mu)^n e^{-(\lambda + \mu)}} \\
&= \frac{n!}{k!(n-k)!} \cdot \frac{\lambda^k}{(\lambda + \mu)^k} \cdot \frac{\mu^{n-k}}{(\lambda + \mu)^{n-k}} = \left(\frac{n}{k} \right) \left(\frac{\lambda}{\lambda + \mu} \right)^k \left(\frac{\mu}{\lambda + \mu} \right)^{n-k}.
\end{align*}
\]

So the conditional probabilities \(P(X = k \mid Z = n) \) are given by the binomial distribution with parameters \(n \) and \(p = \lambda/\lambda + \mu \).
E4.4. At each flip, a certain coin shows heads with probability \(p \) and tails with probability \(1 - p \). Suppose that you flip the coin a random number \(N \) of times, where \(N \) has the Poisson distribution with parameter \(\lambda \) and is independent of the outcomes of the flips. Let \(X \) be the number of resulting heads and \(Y \) the number of resulting tails. (If \(N = 0 \) then we don’t flip the coin and so in this case \(X = Y = 0 \).) Find the distributions of \(X \) and \(Y \) and show that \(X \) and \(Y \) are independent.

Remark. This is quite surprising, because if the number of trials is non-random, \(N = n \), then the random variables \(X \) and \(Y \) are not independent because their sum is fixed, \(X + Y = n \), and hence there is a relation between them. So an additional “randomization” of the experiment may lead to additional independence.

Solution. Let us find the probability \(P(X = i) \) \((i = 0, 1, 2, \ldots)\). The idea is to condition on the value of \(N \), because if the number of trials is fixed then the number of heads is a binomial random variable. Noting that the number of trials \(N \) cannot be less than the number of heads observed, and applying the formula of total probability we obtain

\[
P(X = i) = \sum_{n=i}^{\infty} P(X = i \mid N = n) \cdot P(N = n)
\]

\[
= \sum_{n=i}^{\infty} \binom{n}{i} p^i (1 - p)^{n-i} \cdot \frac{\lambda^n}{n!} e^{-\lambda}
\]

\[
= \sum_{n=i}^{\infty} \frac{n!}{(n-i)!i!} p^i (1 - p)^{n-i} \cdot \frac{\lambda^n}{n!} e^{-\lambda}
\]

\[
= \frac{p^i}{i!} e^{-\lambda} \sum_{n=i}^{\infty} \frac{1}{(n-i)!} (1 - p)^{n-i} \cdot \lambda^n.
\]

Introduce another summation index \(k = n - i \) and rewrite expression (12) as

\[
\frac{p^i}{i!} e^{-\lambda} \sum_{k=0}^{\infty} \frac{1}{k!} (1 - p)^k \lambda^{i+k} = \frac{\lambda^i p^i}{i!} e^{-\lambda} \sum_{k=0}^{\infty} \frac{[\lambda(1-p)]^k}{k!}
\]

\[
= \frac{(\lambda p)^i}{i!} e^{-\lambda} \cdot e^{\lambda(1-p)} = \frac{(\lambda p)^i}{i!} e^{-\lambda + \lambda(1-p)} = \frac{(\lambda p)^i}{i!} e^{-\lambda p}.
\]

Thus \(X \) has the Poisson distribution with parameter \(\lambda p \). Similarly, one can show that \(Y \), the number of tails, has the Poisson distribution with parameter \(\lambda(1-p) \).

To check that \(X \) and \(Y \) are independent, consider the joint probability

\[
P(X = i, Y = j) = P(X = i, N = i + j)
\]

\[
= P(X = i \mid N = i + j) \cdot P(N = i + j)
\]

\[
= \binom{i + j}{i} p^i (1 - p)^j \cdot \frac{\lambda^{i+j}}{(i+j)!} e^{-\lambda}
\]

\[
= \frac{(i+j)!}{i!j!} p^i (1 - p)^j \cdot \frac{\lambda^{i+j}}{(i+j)!} e^{-\lambda}
\]

\[
= \frac{(\lambda p)^i}{i!} e^{-\lambda p} \cdot \frac{[\lambda(1-p)]^j}{j!} e^{-\lambda(1-p)}
\]

\[
= P(X = i) \cdot P(Y = j),
\]

and the definition of independence is satisfied.

E4.5. Two fair dice are rolled once. Let \(X \) be the smallest value obtained on the dice and \(Y \) be the sum of the two values, so that \(X = \min(X_1, X_2) \), \(Y = X_1 + X_2 \), where \(X_1, X_2 \) are the readings on the dice.

(a) Find the joint probability mass function of \(X \) and \(Y \).
(b) Find the marginal distributions of X and Y.

(c) What is the expected value of $Y - X$?

Solution. (a) Note that if the random variable $X = \min(X_1, X_2)$ assumes value i ($1 \leq i \leq 6$), then the random variable $Y = X_1 + X_2$ may take values $j \in \{i + i, i + (i + 1), \ldots, i + 6\}$. If $j = 2i$ then

$$P(X = i, Y = 2i) = P(X_1 = i, X_2 = i) = \frac{1}{36},$$

whereas for $j \geq 2i + 1$ we have

$$P(X = i, Y = j) = P(X_1 = i, X_2 = j - i) + P(X_1 = j - i, X_2 = i) = \frac{1}{36} + \frac{1}{36} = \frac{1}{18}.$$

Hence, the joint probability mass function $p_{XY}(i, j) = P(X = i, Y = j)$ is given by the following table:

\[
\begin{array}{cccccccccccc}
X & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
1 & \frac{1}{36} & \frac{1}{18} & \frac{1}{18} & \frac{1}{18} & \frac{1}{18} & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & \frac{1}{36} & \frac{1}{18} & \frac{1}{18} & \frac{1}{18} & \frac{1}{18} & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & \frac{1}{36} & \frac{1}{18} & \frac{1}{18} & \frac{1}{18} & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & \frac{1}{36} & \frac{1}{18} & \frac{1}{18} & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{36} & \frac{1}{18} & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{36} & 0 & 0
\end{array}
\]

(b) The marginal distributions of X and Y are obtained by summing up columns and rows of the above table, that is,

$$p_X(i) = \sum_{j=1}^{6} p_{XY}(i, j),$$

$$p_Y(j) = \sum_{i=2}^{12} p_{XY}(i, j).$$

Therefore, we find

\[
\begin{array}{cccccccc}
i & 1 & 2 & 3 & 4 & 5 & 6 \\
p_X(i) & \frac{11}{36} & \frac{1}{4} & \frac{7}{36} & \frac{5}{36} & \frac{1}{12} & \frac{1}{36} \\
\hline
j & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
p_Y(j) & \frac{1}{36} & \frac{1}{18} & \frac{1}{12} & \frac{1}{9} & \frac{5}{36} & \frac{1}{6} & \frac{5}{36} & \frac{1}{9} & \frac{1}{12} & \frac{1}{18} & \frac{1}{36}
\end{array}
\]

(c) We use the formula

$$E(Y - X) = E(Y) - E(X).$$

Each of the expectations on the right-hand side can be computed using the marginal distributions:

$$E(X) = 1 \cdot \frac{11}{36} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{7}{36} + 4 \cdot \frac{5}{36} + 5 \cdot \frac{1}{12} + 6 \cdot \frac{1}{36} = \frac{91}{36} = 2.52777 \ldots.$$
Finally, comparing equations (3) and (4), we obtain the equation

\[\sigma_1^2 + \sigma_2^2 = \sigma_1^2 + 2\sigma_2^2 + \sigma_3^2 + 2 \text{Cov}(Y_1, Y_2), \]

whence

\[\text{Cov}(Y_1, Y_2) = -\sigma_2^2. \]

Finally,

\[\text{Cor}(Y_1, Y_2) = \frac{\text{Cov}(Y_1, Y_2)}{\sqrt{\text{Var}(Y_1) \text{Var}(Y_2)}} = -\frac{\sigma_2^2}{\sqrt{(\sigma_1^2 + \sigma_2^2)(\sigma_2^2 + \sigma_3^2)}}. \]

Note that the expectation \(E(Y) \) could be computed easier using that \(Y = X_1 + X_2 \), where \(X_1 \) and \(X_2 \) are the values obtained on the dice:

\[E(Y) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7. \]

Hence,

\[E(Y - X) = E(Y) - E(X) = 7 - \frac{91}{36} = \frac{161}{36} = 4.47222 \ldots \]

Remark. Note that

\[Y - X = X_1 + X_2 - \min(X_1, X_2) = \max(X_1, X_2). \]

It is therefore not surprising that while

\[E(X) = E(\min(X_1, X_2)) = 2.52778 < 3.5, \]

we have

\[E(Y - X) = E(\max(X_1, X_2)) = 4.47222 > 3.5, \]

where \(3.5 = E(X_1) = E(X_2) \).

E4.6. Let \(X_1, X_2, \) and \(X_3 \) be independent random variables having finite non-zero variances \(\sigma_1^2, \sigma_2^2 \) and \(\sigma_3^2 \), respectively. Find the correlation between \(Y_1 = X_1 - X_2 \) and \(Y_2 = X_2 + X_3 \).

Solution. Since \(X_i, X_j \, (i \neq j) \) are independent, we have

\[\text{Var}(Y_1) = \text{Var}(X_1 - X_2) = \text{Var}(X_1) + \text{Var}(X_2) = \sigma_1^2 + \sigma_2^2, \]

\[\text{Var}(Y_2) = \text{Var}(X_2 + X_3) = \text{Var}(X_2) + \text{Var}(X_3) = \sigma_2^2 + \sigma_3^2. \]

We also note that \(Y_1 + Y_2 = (X_1 - X_2) + (X_2 + X_3) = X_1 + X_3 \) and hence

\[\text{Var}(Y_1 + Y_2) = \text{Var}(X_1 + X_3) = \sigma_1^2 + \sigma_3^2. \]

(3)

On the other hand, a general formula for the variance of the sum yields

\[\text{Var}(Y_1 + Y_2) = \text{Var}(Y_1) + \text{Var}(Y_2) + 2 \text{Cov}(Y_1, Y_2) = \sigma_1^2 + \sigma_2^2 + \sigma_2^2 + \sigma_3^2 + 2 \text{Cov}(Y_1, Y_2) \]

\[= \sigma_1^2 + 2\sigma_2^2 + \sigma_3^2 + 2 \text{Cov}(Y_1, Y_2). \]

(4)

Comparing equations (3) and (4), we obtain the equation

\[\sigma_1^2 + \sigma_3^2 = \sigma_1^2 + 2\sigma_2^2 + \sigma_3^2 + 2 \text{Cov}(Y_1, Y_2), \]

whence

\[\text{Cov}(Y_1, Y_2) = -\sigma_2^2. \]

Finally,

\[\text{Cor}(Y_1, Y_2) = \frac{\text{Cov}(Y_1, Y_2)}{\sqrt{\text{Var}(Y_1) \text{Var}(Y_2)}} = -\frac{\sigma_2^2}{\sqrt{(\sigma_1^2 + \sigma_2^2)(\sigma_2^2 + \sigma_3^2)}}. \]