Physica D 146 (2000) 367-387. doi:10.1016/S0167-2789(00)00124-X

Spatial period-multiplying instabilities of hexagonal Faraday waves

D.P. Tse(1), A.M.Rucklidge(1), R.B. Hoyle(1) and M. Silber(2).

(1) Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, CB3 9EW, UK

(2) Department of Engineering Sciences and Applied Mathematics,
Northwestern University, Evanston, IL 60208, USA

Abstract. A recent Faraday wave experiment with two-frequency forcing reports two types of `superlattice' patterns that display periodic spatial structures having two separate scales [1]. These patterns both arise as secondary states once the primary hexagonal pattern becomes unstable. In one of these patterns (so-called `superlattice-II') the original hexagonal symmetry is broken in a subharmonic instability to form a striped pattern with a spatial scale increased by a factor of 2sqrt{3} from the original scale of the hexagons. In contrast, the time-averaged pattern is periodic on a hexagonal lattice with an intermediate spatial scale (sqrt{3} larger than the original scale) and apparently has 60 degree rotation symmetry. We present a symmetry-based approach to the analysis of this bifurcation. Taking as our starting point only the observed instantaneous symmetry of the superlattice-II pattern presented in [1] and the subharmonic nature of the secondary instability, we show (a) that the superlattice-II pattern can bifurcate stably from standing hexagons; (b) that the pattern has a spatio-temporal symmetry not reported in [1]; and (c) that this spatio-temporal symmetry accounts for the intermediate spatial scale and hexagonal periodicity of the time-averaged pattern, but not for the apparent 60 degree rotation symmetry. The approach is based on general techniques that are readily applied to other secondary instabilities of symmetric patterns, and does not rely on the primary pattern having small amplitude.

gzipped PostScript version of this paper (2.1MB)

Also available from the Nonlinear science e-print archive