Physica D 62 (1993) 323-337.

Chaos in a low-order model of magnetoconvection


Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, CB3 9EW, UK

Abstract. In the limit of tall, thin rolls, weakly nonlinear convection in a vertical magnetic field is described by an asymptotically exact third-order set of ordinary differential equations. These equations are shown here to have three codimension-two bifurcation points: a Takens-Bogdanov bifurcation, at which a gluing bifurcation is created; a point at which the gluing bifurcation is replaced by a pair of homoclinic explosions between which there are Lorenz-like chaotic trajectories; and a new type of bifurcation point at which the first of a cascade of period-doubling bifurcation lines originates. The last two bifurcation points are analysed in terms of a one-dimensional map. The equations also have a T-point, at which there is a heteroclinic connection between a saddle and a pair of saddle-foci; emerging from this point is a line of Shil'nikov bifurcations, involving homoclinic connections to a saddle-focus.

gzipped PostScript version of this paper (0.2MB)