
A statistical view on the reference ratio method

Kanti V. Mardia1, Jes Frellsen2, Mikael Borg2,
Jesper Ferkinghoff-Borg3 and Thomas Hamelryck2∗

1Department of Statistics, University of Leeds.
2Bioinformatics Centre, University of Copenhagen.

3Department of Electrical Engineering, Technical University of Denmark.

1 Introduction
The recently introducedreference ratio method(Hamelrycket al.(2010)) allows combining
distributions over fine grained variables with distributions over coarse grained variables in a
meaningful way. This problem is a major bottleneck in the prediction, simulation and design of
protein structure and dynamics. Hamelrycket al. introduce the reference ratio method in this
context, and show that the method provides a rigorous statistical explanation of the so calledpo-
tentials of mean force(PMFs). These potentials are widely used in protein structure prediction
and simulation, but their physical justification is highly disputed (Thomas and Dill(1996); Ben-
Naim(1997); Koppensteiner and Sippl(1998)). The reference ratio method clarifies, justifies
and extends the scope of these potentials.

As the reference ratio method is of general relevance for statistical purposes, we present the
method here in a general statistical setting. Subsequently, we discuss two example applications
of the method. First, we present a simple educational example, where the method is applied to
independent normal distributions. Secondly, we reinterpret an example originating from Hamel-
ryck et al.; in this example, the reference ratio method is used to combine a detailed distribution
over the dihedral angles of a protein with a distribution that describes the compactness of the
protein. Finally, we outline the relation between the reference ratio method and PMFs.

2 Reference ratio method
We start by introducing the reference ratio method using general statistical terms. Letf(x) be
the probability density function (pdf) ofX , which is unknown, but

(i) the pdff1(y) of Y = m(X) is known forf(·), wherem(·) is a specified many-to-one
function, and

(ii) the pdf g(x) is specified and approximately close tof(x), in the sense thatf2(·|y) ≈
g2(·|y) for all practical purposes.

Here, f2(x|y) denotes the conditional pdf ofX given Y for f(·), and g2(x|y) denotes the
corresponding conditional pdf forg(·). Note that these two conditional pdfs are not specified
and that their closed form expressions are not necessarily easily expressed. In the work of
Hamelrycket al., X is denoted thefine grained variableandY thecoarse grained variabledue
to their functional relation.

Now assume that we want to construct a new densityf̂(x), close tof(x), such that

(iii) the marginal pdf ofY for f̂(·) is equal tof1(y) and

(iv) the conditional pdf ofX givenY = y for f̂(·) is equal tog2(x|y).

In other wordsf̂(x) should have the properties thatf̂1(y) = f1(y) and f̂2(x|y) = g2(x|y),
where f̂1(y) and f̂2(x|y) respectively denotes the marginal distribution ofY and the condi-
tional distribution ofX givenY for f̂(·). It would be straightforward to construct̂f(x) if the
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conditional pdfg2(x|y) was known. In particular, generation of samples would be efficient,
since we could samplẽy according tof1(·) and subsequently samplẽx according tog2(·|y),
if efficient sampling procedures were available for the two distributions. However, as previ-
ously statedg2(x|y) is generally not known. An approximate solution for sampling could be to
approximate the densityg2(x|y) by drawing a large amount of sample according tog(x) and
retain those with the required value ofY . Obviously, this approach would be intractable for a
large sample space.

The solution to the problem was given by Hamelrycket al. in the form of a closed form
expression forf̂(·). The authors showed that the conditions (iii) and (iv) are satisfied for the
pdf given by

f̂(x) =
f1(ŷ)

g1(ŷ)
g(x) , (1)

whereŷ = m(x). The construction of the densitŷf(·) in the above expression is known as
the reference ratio methodand the corresponding distribution is denoted thereference ratio
distribution (Hamelrycket al.(2010)). It is easy to check that̂f(·) is properly normalized,
∫

f̂(x) dx = 1, and that the two conditions (iii) and (iv) are satisfied.
SinceY is a function ofX, the joint pdf,g3(x, y), of (X, Y ) for g(·) is zero for all values

(x, y′), wherey′ 6= m(x), and we can write the joint pdf as

g3(x, y) = g(x) δ(y −m(x)) ,

whereδ(·) is the Dirac delta function. Consequently, we can also express the result from equa-
tion (1) as

f̂(x) = f1(ŷ) g2(x|ŷ) . (2)

Based on this expression, we can recast the result as follows: the pdff(x) is unknown, but
its marginal densityf1(y) is known and an approximation,g2(x|y), of f2(x|y) is indirectly
available throughg(x) to approximate the densityf(x). In the following we will present two
applications of the reference ratio method.

3 Example with independent normals
The purpose of our first example is purely educational. It is asimple toy example based on
independent normal distributions, which simplifies the functional form of the pdfs involved.
Let X = (X1, X2), whereX1 andX2 are independent normals with

X1 ∼ N (µ, 1) and X2 ∼ N (0, 1) .

Accordingly, the pdf ofX is given by

f(x) = c e−
1

2
(x1−µ)2− 1

2
x2

2 ,

wherex = (x1, x2) and c is the normalizing constant. For the distributiong(x), which is
approximately close tof(x), letX1 andX2 be independently distributed as

X1 ∼ N (0, 1), X2 ∼ N (0, 1) .

Consequently the pdf ofX is given by

g(x) = d e−
1

2
x2

1
−

1

2
x2

2 ,

whered is the normalizing constant. Suppose thatY = m(X) = X1. This means that the
marginal pdf ofY for f(·) is

f1(y) = c′ e−
1

2
(x1−µ)2 ,
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and forg(·) the marginal density is

g1(y) = d′ e−
1

2
x2

1 ,

wherec′ andd′ are the appropriate normalizing constants. Note thatg(x) is only a good ap-
proximation tof(x) for µ ≃ 0, but for bothf(·) andg(·) the conditional density ofX givenY
is the same and equal to the pdf of the normal distributionN (0, 1).

By applying the ratio method from equation (1), we obtain theexpression

f̂(x) =
c′ e−

1

2
(x1−µ)2 d e−

1

2
x2

1
−

1

2
x2

2

d′ e−
1

2
x2

1

= c e−
1

2
(x1−µ)2− 1

2
x2

2 .

In this example we observed thatf̂(·) = f(·), which is expected since the conditional distribu-
tion of X givenY is the same for bothf(·) andg(·). Accordingly, it is now trivial to check that
the marginal distribution ofY for f̂(·) is equal tof1(·) and that the conditional distribution of
X givenY is g2(x|y), as stated in (iii) and (iv).

Generally, the conditional pdfg2(x|y) is only assumed to be approximately equal tof2(x|y),
which means that̂f(·) andf(·) are not guaranteed to be equal. In fact, in most relevant appli-
cations of the reference ratio method this conditional distribution is unknown forf(·). In next
section we will consider such an example.

4 Sampling compact protein structures
A more realistic application of the reference ratio method is given by Hamelrycket al.. In this
example the method is used to sample compact proteins structures. We will recount the example
here using the notation introduced above. The setup is as follows:

(a) Letf(x) be an unknown distribution of the dihedral anglesx = {(φi, ψi) | i = 1, . . . , n}
in a protein with a known sequence ofn amino acids.

(b) Let Y = m(X) be the radius of gyration (rg) of the protein, and assume thatf1(y) is a

normal distribution withN (22 Å, 4 Å
2
).

(c) The pdf,g(x), of the approximating distribution is given by TorusDBN, which is a prob-
abilistic model of local protein structure (Boomsmaet al.(2008)).

(d) The marginal densityg1(y) is obtained by sampling fromg(x), which can be done since
TorusDBN is a generative model.

The reference ratio method is applied to construct the density f̂(·), based on the normal dis-
tribution over the radius of gyration,f1(y), the TorusDBN distribution,g(x), and the marginal
distribution overrg for TorusDBN,g1(y). It is important to stress that typical samples generated
from TorusDBN,g(x), are unfolded and non-compact, while typical samples fromf̂(x) will
be compact as the radius of gyration is controlled by the specified normal distribution. Accord-
ingly, samples from the reference ratio distribution,f̂(x), are expected to look more like folded
structures than samples fromf(x).

Hamelrycket al. test this setup on the protein ubiquitin, which consists of 76 amino acids.
Figure 1 shows the distribution overy (rg) obtained by sampling fromg(x) andf̂(x), respec-
tively. The figure also shows the normal densityf1(y). We observe that samples fromg(x)
have an average radius of gyration around27 Å, while samples fromf̂(x) indeed have a dis-
tribution very nearf1(y). As expected, samples from̂f(x) are compact, unlike samples from
g(x). Examples of such samples are shown in figure 2.
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A key question here is how can we sample from̂f(x) efficiently? As described earlier, we
would from a generative point of view use equation (2) directly and generate a sample,x̃, using
the two steps:

1. samplẽy according tof1(y) and

2. samplẽx according tog2(x|ỹ).

However, a problem lies in step 2, as there is no efficient way to sample fromg2(x|y); Torus-
DBN only allows for efficient sampling fromg(x). One could consider using rejection sampling
or the ABC method (Pritchardet al.(1999); Beaumontet al.(2002); Marjoramet al.(2003)) for
step 2, but both methods would be very inefficient. Hamelrycket al. (2010) have given a highly
efficient method, which does not (in principle) involve any approximations. The idea is to use
the Metropolis-Hastings algorithm withg(x) as proposal distribution and̂f(x) as target distri-
bution. In this case, the probability of accepting a proposed valuex

′ given a previous valuesx
becomes

α(x′|x) = min

(

1,
f1(y

′)g(x′)/g1(y
′)

f1(y)g(x)/g1(y)

g(x)

g(x′)

)

= min

(

1,
f1(y

′)

f1(y)

g1(y)

g1(y′)

)

, (3)

wherey = m(x) andy′ = m(x′). In practice, the proposal distribution in the MCMC algo-
rithm would only change a randomly chosen consecutive subsequence ofX using TorusDBN
(see supporting information of Boomsmaet al. (2008) for details), as this leads to a higher
acceptance rate. It can be shown that the acceptance probability in this case also is given by
equation (3).

5 The reference ratio method explains PMFs
Methods for predicting the structure of proteins rely on an energy function or probability dis-
tribution that describes the space of possible conformations. One approach to constructing
such energies or distributions is to estimate them from a setof experimental determined protein
structures. In this case they are calledknowledge based potentials.

A subclass of the knowledge based potentials are based on probability distributions over
pairwise distances in proteins. These are calledpotentials of mean force(PMFs) and are loosely
based on an analogy with the statistical physics of liquids (Ben-Naim(1997); Koppensteiner and
Sippl(1998)). The potential of mean force,W (r), associated with a set of pairwise distancesr

is given by an expression of the form

W (r) ∝ − log
f1(r)

g1(r)
,

wheref1(r) is a pdf estimated from a database of known protein structure, andg1(r) is the pdf
of r for a so-calledreference state. The reference state is typically defined based on physical
considerations. The pdff1(r) is constructed by assuming that the individual pairwise distances
are conditionally independent, which constitutes a crude approximation. In practice, the poten-
tial of mean force is combined with an additional energy function, that is concerned with the
local structure of proteins. This additional energy term istypically brought in via sampling from
a fragment library(Simonset al.(1997)) – a set of short fragments derived from experimental
protein structures – or any other sampling method that generates protein-like conformations.
From a statistical point of view, this means that the samplesare generated according to the pdf

f̂(x) ∝
f1(r)

g1(r)
g(x) , (4)
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Figure 1: The reference ratio method applied to sampling protein structures with a specified distribution
over the radius of gyration (rg). The distribution overrg for samples from TorusDBN,g(x), is shown as
triangles, while therg-distribution for samples from the ratio distribution,f̂(x), is shown as circles. The

pdf,f1(y), for the desired distribution normal distribution overrg is shown as a solid line,N (22 Å, 4 Å
2
).

The samples are produced using the amino acid sequence of ubiquitin. The figure is adapted from figure
3 in (Hamelrycket al.(2010)).

wherex are the dihedral angles in the protein,r are the pairwise distances implied byx, and
g(x) is the pdf of the dihedral angles embodied in the sampling method.

In this formulation, it can be seen that PMFs are justified by the reference ratio method; their
functional form arises from the combination of the samplingmethod (which concerns the fine
grained variable) with the pairwise distance information (which concerns the coarse grained
variable). This interpretation of PMFs also provides some surprising new insights. First,g1(r)
is uniquely defined byg(x), and does not require any external physical considerations. Second,
if the three involved probability distributions are properly defined, the PMF approach is entirely
rigorous and statistically well justified. Third, the PMF approach generalizes beyond pairwise
distances to arbitrary coarse grained variables. In conclusion, the reference ratio method settles
a dispute over the validity of PMFs that has been going on for more than twenty years, and
opens the way to efficient and well-justified probabilistic models of protein structure.
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