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1 Introduction

The recently introducedeference ratio method@Hamelrycket al(2010)) allows combining
distributions over fine grained variables with distribuisoover coarse grained variables in a
meaningful way. This problem is a major bottleneck in thedpoton, simulation and design of
protein structure and dynamics. Hamelrnatkal. introduce the reference ratio method in this
context, and show that the method provides a rigorous statiexplanation of the so callgub-
tentials of mean forc@MFs). These potentials are widely used in protein stregbwediction
and simulation, but their physical justification is highigputed (Thomas and Dill(1996); Ben-
Naim(1997); Koppensteiner and Sippl(1998)). The refegeratio method clarifies, justifies
and extends the scope of these potentials.

As the reference ratio method is of general relevance ftisgtal purposes, we present the
method here in a general statistical setting. Subsequevelgiscuss two example applications
of the method. First, we present a simple educational examgiere the method is applied to
independent normal distributions. Secondly, we reintgrgn example originating from Hamel-
ryck et al, in this example, the reference ratio method is used to coeddetailed distribution
over the dihedral angles of a protein with a distributiort thescribes the compactness of the
protein. Finally, we outline the relation between the refee ratio method and PMFs.

2 Referenceratio method

We start by introducing the reference ratio method usingg@rstatistical terms. Lef(x) be
the probability density function (pdf) aX', which is unknown, but

(i) the pdf f,(y) of Y = m(X) is known for f(-), wherem(-) is a specified many-to-one
function, and

(i) the pdf g(x) is specified and approximately close féx), in the sense thaf,(-|y) ~
g2(+]y) for all practical purposes.

Here, fo(x|y) denotes the conditional pdf oX givenY for f(), and g,(x|y) denotes the
corresponding conditional pdf far(-). Note that these two conditional pdfs are not specified
and that their closed form expressions are not necessaslyyeexpressed. In the work of
Hamelrycket al., X is denoted théne grained variablendY thecoarse grained variabldue
to their functional relation.

Now assume that we want to construct a new denity), close tof (z), such that

(i) the marginal pdf ofY” for f(-) is equal tof; (y) and
(iv) the conditional pdf ofX givenY = y for f(-) is equal togs (x|y).

In other wordsf(z) should have the properties thAt(y) = fi(y) and fa(z|y) = ga(x|y),
where f1(y) and f,(z|y) respectively denotes the marginal distributionYofand the condi-
tional distribution of X givenY for f(-). It would be straightforward to constru¢{x) if the
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conditional pdfgs(x|y) was known. In particular, generation of samples would beiefit,
since we could samplg according tof;(-) and subsequently sampieaccording togs(-|y),
if efficient sampling procedures were available for the tvustributions. However, as previ-
ously statedy, (x|y) is generally not known. An approximate solution for samgloould be to
approximate the density(x|y) by drawing a large amount of sample according te) and
retain those with the required value Bt Obviously, this approach would be intractable for a
large sample space.

The solution to the problem was given by Hamelngtkal. in the form of a closed form
expression forf(-). The authors showed that the conditions (iii) and (iv) aresBad for the

pdf given by o
;o h(y
fl=) = 91(9)

wherejj = m(x). The construction of the densit§(-) in the above expression is known as
the reference ratio methodnd the corresponding distribution is denoted tbkerence ratio
distribution (Hamelrycket al.(2010)). It is easy to check thrft(-) IS properly normalized,
i f(m) dx = 1, and that the two conditions (iii) and (iv) are satisfied.

SinceY is a function ofX, the joint pdf,gs(x, y), of (X,Y) for g(-) is zero for all values
(x,y'), wherey’ # m(x), and we can write the joint pdf as

9(z) (1)

g3(x,y) = g(x) o(y —m(x)) ,

whered(-) is the Dirac delta function. Consequently, we can also esgttee result from equa-
tion (1) as

~

f(x) = f1(9) g2(x[9) . (2)
Based on this expression, we can recast the result as follthespdf f (x) is unknown, but
its marginal densityf;(y) is known and an approximatiogg(x|y), of f2(x|y) is indirectly
available throughy(x) to approximate the densit(x). In the following we will present two
applications of the reference ratio method.

3 Examplewith independent normals

The purpose of our first example is purely educational. It gnaple toy example based on
independent normal distributions, which simplifies thectional form of the pdfs involved.
Let X = (X, X»), whereX; and X, are independent normals with

X ~N(p,1) and X, ~N(0,1).
Accordingly, the pdf ofX is given by

f(x) = ceal@mw=3e8

wherex = (z1,29) andc is the normalizing constant. For the distributigfx), which is
approximately close tg(x), let X; and X, be independently distributed as

X; ~N(0,1), X,~N(0,1).
Consequently the pdf oX is given by
g(x) = d e~ 27137 ,

whered is the normalizing constant. Suppose tlat= m(X) = X;. This means that the
marginal pdf ofY” for f(-) is
fily) = ¢ o721,
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and forg(-) the marginal density is
aly)=d e,

whered andd’ are the appropriate normalizing constants. Note gtiab is only a good ap-
proximation tof (x) for u ~ 0, but for bothf(-) andg(-) the conditional density oX givenY
is the same and equal to the pdf of the normal distributign, 1).

By applying the ratio method from equation (1), we obtaingkpression

— L —u)2 _1l,2 1.2
2 d e 2@~ § o731 372 —5(w1—p)? =53
f(m) = 15 = ce 2 2 .
d' e 2™

In this example we observed thAt) = f(-), which is expected since the conditional distribu-
tion of X givenY is the same for botli(-) andg(-). Accordingly, it is now trivial to check that
the marginal distribution of” for f(-) is equal tof,(-) and that the conditional distribution of
X givenY is go(x|y), as stated in (iii) and (iv).

Generally, the conditional pdf(x|y) is only assumed to be approximately equajitae|y),
which means thaf(-) and f(-) are not guaranteed to be equal. In fact, in most relevant-appl
cations of the reference ratio method this conditionakitistion is unknown forf(-). In next
section we will consider such an example.

4 Sampling compact protein structures

A more realistic application of the reference ratio methodiven by Hamelryclet al.. In this
example the method is used to sample compact proteinsigtesciWe will recount the example
here using the notation introduced above. The setup is svil

(a) Letf(x) be an unknown distribution of the dihedral angles- {(¢;, ¢;) |i =1,...,n}
in a protein with a known sequence@fmino acids.

(b) LetY = m(X) be the radius of gyrationrf) of the protein, and assume tha{y) is a
normal distribution with\'(22 A, 4A”).

(c) The pdf,g(x), of the approximating distribution is given by TorusDBN, ialhis a prob-
abilistic model of local protein structure (Boomsietzal (2008)).

(d) The marginal density; (y) is obtained by sampling from(x), which can be done since
TorusDBN is a generative model.

The reference ratio method is applied to construct the er%i), based on the normal dis-
tribution over the radius of gyratiorf; (v), the TorusDBN distributiong(x), and the marginal
distribution overr, for TorusDBN,g; (y). Itis important to stress that typical samples generated
from TorusDBN,g(x), are unfolded and non-compact, while typical samples fgftﬁm) will

be compact as the radius of gyration is controlled by theiBpdamormal distribution. Accord-
ingly, samples from the reference ratio distributigﬁ(w), are expected to look more like folded
structures than samples frofifx).

Hamelrycket al. test this setup on the protein ubiquitin, which consists@®#ihino acids.
Figure 1 shows the distribution over(r,) obtained by sampling from(x) and f(x), respec-
tively. The figure also shows the normal densftyy). We observe that samples frogix)
have an average radius of gyration aro@idf, while samples fron]f(m) indeed have a dis-
tribution very nearf; (y). As expected, samples froﬁ(m) are compact, unlike samples from
g(x). Examples of such samples are shown in figure 2.
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A key question here is how can we sample frgﬁ(n:) efficiently? As described earlier, we
would from a generative point of view use equation (2) diseahd generate a sample, using
the two steps:

1. sample; according tof;(y) and
2. sampler according tay,(x|7).

However, a problem lies in step 2, as there is no efficient wasatnple fromy,(x|y); Torus-
DBN only allows for efficient sampling from(x). One could consider using rejection sampling
or the ABC method (Pritcharet al(1999); Beaumongt al.(2002); Marjoramet al(2003)) for
step 2, but both methods would be very inefficient. Hamelstck. (2010) have given a highly
efficient method, which does not (in principle) involve amppeoximations. The idea is to use
the Metropolis-Hastings algorithm witj{x) as proposal distribution anﬁ{a:) as target distri-
bution. In this case, the probability of accepting a proposduex’ given a previous values
becomes

3)

o(a’|z) = min (1 [1(y)g(x") /91 (y) g(w)) —uin <1 [iY) gl(y))

" hiwg(x)/g1(y) g(x’) " fAily) a(y)

wherey = m(x) andy’ = m(a’). In practice, the proposal distribution in the MCMC algo-
rithm would only change a randomly chosen consecutive sjuesee ofX using TorusDBN
(see supporting information of Boomsmeaal. (2008) for details), as this leads to a higher
acceptance rate. It can be shown that the acceptance pibebihis case also is given by
equation (3).

5 Thereferenceratio method explains PMFs

Methods for predicting the structure of proteins rely on aargy function or probability dis-
tribution that describes the space of possible conformatioOne approach to constructing
such energies or distributions is to estimate them from afsstperimental determined protein
structures. In this case they are calletbwledge based potentials

A subclass of the knowledge based potentials are based talglity distributions over
pairwise distances in proteins. These are caleténtials of mean forc@MFs) and are loosely
based on an analogy with the statistical physics of liquB#s¢Naim(1997); Koppensteiner and
Sippl(1998)). The potential of mean fordé)(r), associated with a set of pairwise distanezes
is given by an expression of the form

fi(r)

W(r) < —log e

9

wheref,(r) is a pdf estimated from a database of known protein structungy, () is the pdf

of r for a so-calledeference stateThe reference state is typically defined based on physical
considerations. The pdf (r) is constructed by assuming that the individual pairwiséatises

are conditionally independent, which constitutes a cryg@@imation. In practice, the poten-
tial of mean force is combined with an additional energy fiog that is concerned with the
local structure of proteins. This additional energy tertyscally brought in via sampling from
afragment library(Simonset al(1997)) — a set of short fragments derived from experimental
protein structures — or any other sampling method that géeeprotein-like conformations.
From a statistical point of view, this means that the samplegenerated according to the pdf

9(x) , (4)
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Figure 1: The reference ratio method applied to sampling proteirctras with a specified distribution
over the radius of gyratiorr). The distribution over., for samples from TorusDBNy(x), is shown as
triangles, while the,-distribution for samples from the ratio distributiof(x), is shown as circles. The
pdf, f1(y), for the desired distribution normal distribution oveiis shown as a solid liney (22 A, 4R%).

The samples are produced using the amino acid sequencegoitubi The figure is adapted from figure
3 in (Hamelrycket al(2010)).

wherex are the dihedral angles in the proteinare the pairwise distances implied y and
g(x) is the pdf of the dihedral angles embodied in the samplindnoukt

In this formulation, it can be seen that PMFs are justifiedigreference ratio method; their
functional form arises from the combination of the samplimgthod (which concerns the fine
grained variable) with the pairwise distance informatiamiCh concerns the coarse grained
variable). This interpretation of PMFs also provides som@igsing new insights. First (r)
is uniquely defined by (x), and does not require any external physical considerat®esond,
if the three involved probability distributions are prolyatefined, the PMF approach is entirely
rigorous and statistically well justified. Third, the PMFpapach generalizes beyond pairwise
distances to arbitrary coarse grained variables. In cerathe reference ratio method settles
a dispute over the validity of PMFs that has been going on forenthan twenty years, and
opens the way to efficient and well-justified probabilistioaels of protein structure.
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