Validating protein structure using kernel density estimates

Charles C. Taylor, Kanti V. Mardia, Marco Di Marzio, and Agnese Panzera

Measuring the quality of determined protein structures is a very important problem in bioinformatics. Kernel density estimation is a well-known nonparametric method which is often used for exploratory data analysis. Recent advances, which have extended previous linear methods to multi-dimensional circular data, give a sound basis for the analysis of conformational angles of protein backbones, which lie on the torus. By using an energy test, which is based on interpoint distances, we initially investigate the dependence of the angles on the amino acid type. Then by computing tail probabilities which are based on amino-acid conditional density estimates, a method is proposed which permits inference on a test set of data. This can be used, for example, to validate protein structures, choose between possible protein predictions and highlight unusual residue angles.

Keywords: Circular kernel, Conformational angle, Probability contour, Variable bandwidth, von Mises density.