Bifurcations to three-dimensional flows in a periodically driven cylindrical cavity

Carles Panadès1, F. Marques2

1,2Departament de Física Aplicada, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain

Consider a Newtonian fluid of kinematic viscosity ν and density ρ confined in a finite cylinder of radius R and height H, whose sidewall oscillates harmonically in the axial direction, with period T and maximum axial velocity V_{max}, while the top and bottom lids remain at rest. There are three non-dimensional parameters in this problem: the aspect ratio, $G = H/R$, the Reynolds number, $Re = V_{\text{max}}R/\nu$, and the Stokes number, $St = R^2/\nu T$. In the current study, the aspect ratio is fixed at $G = 2$. The flow is governed by the usual Navier-Stokes equations:

\begin{equation}
\left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u = -\frac{1}{\rho} \nabla p + \nu \nabla^2 u, \quad (1a)
\end{equation}

\begin{equation}
\nabla \cdot u = 0, \quad (1b)
\end{equation}

with no-slip velocity boundary conditions on all walls:

\begin{equation}
u(r, \theta, \pm H/2, t) = (0, 0, 0), \quad (2a)
\end{equation}

\begin{equation}
u(R, \theta, z, t) = (0, 0, V_{\text{max}} \sin(2\pi t/T)). \quad (2b)
\end{equation}

where $\nu = (u, v, w)$ is the velocity field in cylindrical coordinates $(r, \theta, z) \in [0, R] \times [0, 2\pi] \times [-H/2, H/2]$, and p is the kinematic pressure. The governing equations and boundary conditions are invariant to the following spatial symmetries:

\begin{equation}
K_\theta(u, v, w)(r, \theta, z, t) = (u, -v, w)(r, -\theta, z, t), \quad (3a)
\end{equation}

\begin{equation}
R_\alpha(u, v, w)(r, \theta, z, t) = (u, v, w)(r, \theta + \alpha, z, t), \quad (3b)
\end{equation}

for any real α. K_θ represents reflections about any meridional plane, whilst R_α signifies rotations about the cylinder axis. K_θ and R_α generate the groups Z_2 and $SO(2)$, but the two operators do not commute, so the symmetry group generated by K_θ and R_α is $O(2)$ and it acts in the periodic azimuthal θ-direction. The horizontal reflection on the mid-plane $z = 0$ acts on the velocity field as:

\begin{equation}
K_z(u, v, w)(r, \theta, z, t) = (u, v, -w)(r, \theta, -z, t). \quad (4)
\end{equation}
Due to the harmonic oscillation of the sidewall, the boundary condition (2b) is not K_z invariant. However, the axial velocity on the sidewall satisfies $K_z w(R, \theta, z, t) = w(R, \theta, z, t + T/2)$, and the system is invariant to the spatio-temporal symmetry consisting of a reflection about the mid-plane $z = 0$ together with a half-period evolution in time:

$$H(u, v, w)(r, \theta, z, t) = (u, v, -w)(r, \theta, -z, t + T/2).$$

The transformation H generates another Z_2 symmetry group that commutes with $O(2)$. Hence, the complete symmetry group of the problem is $Z_2 \times O(2)$ [1]. Mention that these symmetries are analogous to those that were present in bluff-body wakes [2], and periodically forced rectangular [3] and annular [4] cavities. Therefore, the basic flow, having all the symmetries of the problem, is always axisymmetric and time-periodic, synchronous with the forcing. By increasing Re beyond a critical value $Re_c(St)$, the basic state undergoes a symmetry-breaking bifurcation yielding a new 3D state. As it was predicted by Marques et al in [5], the basic state may undergo either synchronous or Neimark-Sacker bifurcations depending on the parameters. The bifurcation curves for the different modes in (St, Re)-space are shown in Figure 1. At low St, mode B is the first to become critical with increasing Re, while at high St mode A is the first. At intermediate values, the quasiperiodic mode bifurcates first, in the form of modulated rotating waves MRW. The synchronous mode A always has an azimuthal wavenumber $m = 2$ (A_2), the quasiperiodic mode has $m = 1$ (MRW_1), and the synchronous mode B may have either $m = 1$ or $m = 2$ depending on St.

As the bifurcated solutions are no longer axisymmetric, the $O(2)$ symmetry has been broken in all cases. On the one hand, for the synchronous modes, of the continuous family of rotations

![Figure 1: Critical Reynolds number, Re_c, as a function of the Stokes number, St, for the transition from the basic state to the different three-dimensional states, B_1, B_2, MRW_1 and A_2. The crosses correspond to the four basic states depicted in [1].](image-url)
there only remains the discrete symmetry $R_2\pi/m$, a rotation of angle $2\pi/m$ around the axis, and its powers. The azimuthal wavenumber of the bifurcated solution is m. The continuous family of reflection symmetries about meridional planes, K_θ, is also reduced to a collection of m reflection planes at angles π/m apart. The only difference between modes A and B, is the fact that B_1 and B_2 are H-symmetric, meanwhile A_2 breaks this symmetry. However, H combined with the rotation R_π/m, with $m = 2$ (half the angle of the rotational symmetry of the state), results in a space-time symmetry of the A_2 eigenfunction. On the other hand, the quasiperiodic mode bifurcation results in a modulated θ-travelling wave, that can travel in the positive or negative θ-direction; after a period of the forcing, the flow pattern repeats itself, but rotated a certain angle, $\pm \theta_0$, related to a quasiperiodic frequency. All the symmetries are broken in this case, but a new space-time symmetry (consisting of advancing one forcing period in time combined with the rotation $R_{\pm \theta_0}$) emerges.

The bifurcations to the four different states (B_1, B_2, MRW, and A_2) when varying the forcing frequency St are separated by three codimension-two bifurcation points at which two of the states bifurcate simultaneously. An examination of the dynamics in the neighborhood of the codimension-two points where two distinct modes bifurcate simultaneously is currently being performed; these codimension-two points act as organizing centers of the dynamics, and are very likely associated with the secondary bifurcations to mixed modes and more complex dynamics. Although we have obtained some results that need to be fully analyzed, it seems that well-organised patterns might arise also in this case.

References

