Let K be an algebraically closed field and $\bar{x} = (x_1, \ldots, x_n)$ a tuple of indeterminates. An affine variety over K can be thought of as a set of the form
\[
\{ a \in K^n \mid f_1(a) = \cdots = f_m(a) = 0 \}
\]
for some polynomials $f_1, \ldots, f_m \in K[\bar{x}]$. A projective variety is defined similarly except that the polynomials f_1, \ldots, f_m are homogeneous and $\bar{a} \notin K^n \setminus \{0\}$.

Affine and projective varieties are examples of abstract varieties. We say that a straight variety Y is complete if for any abstract variety X, the projection map $\pi: X \times Y \to X$ is closed in the Zariski topology. Such a closed set is just a finite union of varieties called “Zariski closed”. The theorem we shall prove here is the following

Theorem: Every projective variety is complete.

This is classic result in algebraic geometry but here we show that it can easily be obtained by using some simple model theoretic techniques.

Model Theoretic Aspects

Roughly speaking, we take “positive” to mean “without negations”. Then, in the language of rings ($\mathcal{L}_R = \{0, 1, +, -\}$) affine varieties are positively definable with parameters from K. In fact, they are just the sets that are defined by a conjunction of polynomial equations. Thus, Zariski closed sets are exactly the positively quantifier free definable sets. Furthermore, projective varieties are definable by homogeneous polynomials. Let X be an affine variety and Y a projective variety. Then the product $X \times Y$ is defined by some formula of the form
\[
\bigwedge_{i,j} f_i(x) = 0 \land \bigwedge_{i} g_i(y) = 0 \land y \neq 0
\]
where $f_i, g_i \in K[\bar{x}, y]$ and g_i homogenous in y for all i, j. Hence for any closed subset $Z \subseteq X \times Y$, $\pi(Z)$ is defined by
\[
\exists y \left(\bigwedge_{i,j} f_i(x) = 0 \land \bigwedge_{i} g_i(y) = 0 \land y \neq 0 \right)
\]
we shall denote this formula by $\phi(\bar{x})$ and show that it is positive quantifier free definable using the following theorem.

Lyndon-Robinson Type Lemma: Let T be a first order theory defined in a language \mathcal{L} and $\phi(\bar{x})$ be an \mathcal{L}-formula. Suppose that for each model K of T and each \mathcal{L}-homomorphism $\sigma: A \to K'$ where A a substructure of K and $K' \models T$ we have
\[
\text{if } \sigma \in A' \text{ and } K \models \phi(\bar{c}) \text{, then } K' \models \phi(\bar{\sigma}(\bar{c}));
\]
then there is a positive quantifier free formula $\psi(\bar{x})$ such that $T \vdash \phi(\bar{x}) \leftrightarrow \psi(\bar{x})$.

In our case take $\mathcal{L} = \mathcal{L}_R(\bar{c})$ where \bar{c} is a tuple of constant symbols which for the coefficients of f_i and g_i for all i, j and we take $T = ACF$.

Valuation Theory

A valuation ring \mathcal{O} of K is a subring of K such that for every $a \in K$ either $a \in \mathcal{O}$ or $a^{-1} \in \mathcal{O}$.

Valuation Theory...Contd

We wish to extend homomorphisms to valuations rings since valuation rings have the following property.

Proposition: Let $g \in K[\bar{y}]$ be a homogenous polynomial and \mathcal{O} a valuation ring of K. Then for all $b \in K^m$, $b \neq 0$ there exists $\bar{y} \in \mathcal{O}^m$ such that
1. b has a coordinate equal to 1.
2. $g(\bar{b}) = 0 \leftrightarrow g(\bar{b}') = 0$.

Proof of Main Theorem:

Recall the formula $\phi(\bar{z})$ from before (“Model Theoretic Aspects”). We prove that $\phi(\bar{z})$ is positively quantifier free definable using the Lyndon-Robinson type lemma. So let $K, L \models ACF$ and $\sigma: A \to L$ a homomorphism where $A \subseteq K$ is a substructure. By the Place Extension lemma we can assume that A is a valuation ring. Assume $K \models \phi(\bar{a})$ for some $\bar{a} \in A^n$. Then there exists some $b \in K^n$ such that $g(b) = 0$ for $1 \leq i \leq m$. Since the polynomials g_i are homogeneous, there is some $\bar{y} \in A$ such that $g(\bar{y}) = 0$ for all i and one of the coordinates of \bar{y} is 1. But then
\[
L \models \bigvee_{i=1}^m g_i(\bar{y}) = 0 \land \bigwedge_{i=1}^m g_i(\bar{a}'(\bar{y})) = 0 \land \sigma(\bar{a}') \neq 0
\]
Thus $L \models \phi(\bar{a}(\bar{y}))$.

Semi-Algebraic Geometry

In [1] L. van den Dries applies this same technique to semi-algebraic geometry. In this case K is a real closed field and in place of varieties we consider semi-algebraic sets. An semi-algebraic set is made of finite boolean combinations of sets of the form
\[
\{ a \in K^n \mid f_1(a) \geq 0, \ldots, f_s(a) \geq 0 \}
\]
where $f_1, \ldots, f_s \in R[\bar{x}]$. In particular, positive semi-algebraic sets are made of positive boolean combinations of such sets. Parallel to projective varieties, a homogeneous positive semi-algebraic set is positive semi-algebraic set defined by homogeneous f_1, \ldots, f_s. Completeness of positive semi-algebraic sets is also defined as for varieties but instead we consider the euclidian topology. Then L. van Dries proved the following

Theorem: All homogeneous positive semi-algebraic are complete sets.

Additional Notes

- A. Prestel extended these results to the valued cases, using the same techniques in ACF and RCF in [2]. Here, as well as equations or inequations, we consider sets defined by $v(g(\bar{z})) < v(h(\bar{z}))$ where g, h are polynomials. Projective/positive semi-algebraic sets are as before but we also require that the polynomials h, g are homogeneous and $deg h = deg g$.
- W. Pong used these techniques in DCF to obtain a “Valuating Criterion” for completeness of differential varieties (cf. [3]).
- The problem is still open for differentially closed valued fields.

References