DARE: Urban observations and their assimilation

S. Vetra-Carvalho (UoR) S. L. Dance (UoR)
D. Mason (UoR) J. Garcia-Pintado (UoB)

9th January 2018
Which urban observations?

+ *river gauges* (sparse in space, frequent in time);
+ *SAR satellite images* (frequent in time and space, but have some issues);
+ *CCTV cameras* (varied spatial distribution, frequent in time);
+ *rivercams* (sparse in space, frequent in time);
+ *surface water road sensors* (where available);
+ *other crowdsourced data* (e.g. Twitter, smartphone images).
CCTV images

All big cities have a dense network of various CCTV cameras including traffic management cameras.

This image is the property of Leeds City Council.
Difficulties to consider...

Lots of post-processing to do since
- some cameras move, zoom etc;
- obstructed view due to rain, vehicles, etc;
- faulty connections, low light;
- usually low resolution.
Difficulties to consider...

Lots of post-processing to do since
- some cameras move, zoom etc;
- obstructed view due to rain, vehicles, etc;
- faulty connections, low light;
- usually low resolution.
Current work - use CCTV images to improve urban flood prediction

Our aim is to use CCTV images to complement SAR observations in urban areas and assimilate them in the model using ensemble methods to improve the flood forecasts in cities.

![CCTV Image](image1)

![SAR Image](image2)

CSK image of Thames flood west of London on 12/02/2014.
River cameras are used to monitor rivers for various purposes: water heights, fishing, bridge conditions, etc.

The densest network of river cameras in UK is provided by Farson Digital Watercams (https://www.farsondigitalwatercams.com/).

- HD cameras;
- Images available every 10s;
Tewkesbury 2012 testcase

Inflow error correction through the use of: **RiverCams**.

- Perfect test-case
- Hourly images from 6 river cameras with permission from Farson Digital Cameras.
- 21/11/2012 - 05/12/2012
- LisFLOOD-fp model (Garcia-Pintado et al. 2015)
- EnKF, EnKS
Tewkesbury test-case

Tewkesbury camera between 21st Nov 2012 and 5th Dec 2012.
Tewkesbury test-case

Tewkesbury camera between 21st Nov 2012 and 5th Dec 2012.
Tewkesbury test-case

Tewkesbury camera between 21st Nov 2012 and 5th Dec 2012.
Tewkesbury test-case

Tewkesbury camera between 21st Nov 2012 and 5th Dec 2012.
How to use these observations?

Proof of concept in the test-case,

- Manually assess water height/extent in images;
- Field trip to Tewkesbury to inspect the six stations;

Any ensemble data assimilation system requires knowledge of

- observation errors, \(R \);
- observation operator, \(\mathcal{H} \);

\[
x^a = x^f + K \left(y - \mathcal{H}(x^f) \right)
\]
\[
P^a = \left(I - KH^T \right) P^f
\]

where \(K = P^f H^T \left(HP^f H^T + R \right)^{-1} \).
Summary

We are working on improving urban flood predictions using various angles:

- Advancing SAR delineation algorithms for use in urban areas;
- using novel data sets in assimilation methods: rivercam and CCTV images;
- assessing CCTV observation impact using complex system;
- setting up DA system with more advanced urban hydrological model;
- testing different DA methods to improve accuracy of inflow boundary conditions;
Pilot projects

Deadline: January 15

- £75k available - expect to fund 3x £25k projects
- research, knowledge exchange or science outreach activities
- application of digital technologies to help the human and natural environments be more resilient and adaptable to climate change.
- Anything considered! (Some workshop activities to help with ideas)
- Must have a concrete deliverable

Eligibility:
- UoR has to obey EPSRC rules
- Early career
- Business
- Overseas

Application: 1 page case for support; 1 page budget; (letter of support)
