Extreme amenability and ultrahomogeneous posets

Miodrag Sokić

California Institute of Technology

Leeds
July 2011
A continuous action of a topological group G on a compact Hausdorff space is called G-flow.
A continuous action of a topological group G on a compact Hausdorff space is called G-flow.

Topological group G is *extremely amenable* if every G-flow K has a fixed point:

$$gx = x \text{ for all } g \in G, x \in K.$$
Dynamics-flows

G-flow X is *minimal* if every its orbit is dense:

\[G \cdot x = X \text{ for all } x \in X. \]

Theorem (folklore)

Given a topological group G, there is minimal G-flow $M(G)$ such that for any other minimal G-flow Y there exists surjective homomorphism from $M(G)$ onto Y. Moreover such G-flow $M(G)$ is uniquely determined up to isomorphism.

Homomorphism of G-flows:

\[\varphi : X \to Y \]

\[\varphi(gx) = g \varphi(x). \]
G-flow X is *minimal* if every its orbit is dense:

$$G \cdot x = X \text{ for all } x \in X.$$

Theorem (folklore)

Given a topological group G, there is minimal G-flow $M(G)$ such that for any other minimal G-flow Y there exists surjective homomorphism from $M(G)$ onto Y. Moreover such G-flow $M(G)$ is uniquely determined up to isomorphism.

Homomorphism of G-flows:

$$\varphi : X \to Y$$

$$\varphi(gx) = g\varphi(x).$$

The minimal G-flow $M(G)$ established in the previous theorem is called the *universal minimal G-flow.*
Theorem

\textit{(Schmerl, 1979)} A countable partially ordered set \((P, \leq)\) is ultrahomogeneous iff it is isomorphic to the one of the following:

- \((A_n)_{n=1}^{\aleph_0}\) - antichains.
- \((B_n)_{n=1}^{\aleph_0}\) - incomparable chains.
- \((C_n)_{n=2}^{\aleph_0}\) - linearly ordered antichains.
- \(D\) - universal countable ultrahomogeneous poset.
Kečrís-Pestov-Todorčević (KPT theory) 2005

- Fraïssé limits,
- Ramsey theory,
- and topological dynamics of automorphism groups.

\[RP \leftrightarrow \text{extreme amenability,} \]
\[(RP + OP) \leftrightarrow \text{universal minimal flow.} \]

\(\mathcal{K} \) satisfies ordering property (OP) if for every \(A \in \mathcal{K}_0 \) there is \(B \in \mathcal{K}_0 \) such that for every linear ordering \(\prec_A \) with \((A, \prec_A) \in \mathcal{K} \) and every linear ordering \(\prec_B \) with \((B, \prec_B) \in \mathcal{K} \) there is an embedding \(\phi : A \to B \) of structure \((A, \prec_A) \) into structure \((B, \prec_B) \).

- graphs and linearly ordered graphs
- equivalence relations and linearly ordered equivalence relations
\(\mathcal{K}_0 \) -Fraïssé class, \(\mathbf{K}_0 = \text{F} \lim(\mathcal{K}_0) \),
\(\mathcal{K} \) be its reasonable order expansion of \(\mathcal{K}_0 \), \(\mathbf{K} = \text{F} \lim(\mathcal{K}) = (\mathbf{K}_0, \prec_0) \).
We assume that domain of \(\mathbf{K}_0 \) is the set of natural numbers.
Linear ordering \(\prec_0 \) can be treated as a member of compact space
\(\mathcal{L} \mathcal{O} \subset 2^{\mathbb{N}^2} \), where \(\mathbb{N} \) is the set of natural numbers and \(\mathcal{L} \mathcal{O} \) is the set of all linear orderings of natural numbers.
Group of automorphism \(G_0 = \text{Aut}(\text{F} \lim(\mathcal{K}_0)) \) of \(\mathbf{K}_0 \) acts continuously on \(\mathcal{L} \mathcal{O} \), and in particular on:
\[
X_{\mathcal{K}} = \overline{G_0 \cdot \prec_0} \subseteq \mathcal{L} \mathcal{O}.
\]
Ramsey property

Let \mathcal{K} be class of structures in signature L, then the collection of all substructures of B isomorphic with A is denoted by:

$$(B_A) = \{C \leq B : C \cong A\}.$$

We say that class \mathcal{K} satisfies Ramsey property (RP) if for any two structures $B, A \in \mathcal{K}$ and any natural number r there is a structure $C \in \mathcal{K}$ such that for any coloring:

$$c : (C_A) \rightarrow \{1, \ldots, r\},$$

there exist a structure $B' \in (C_B)$ and natural number $l \in \{1, \ldots, r\}$ such that:

$$c \upharpoonright (B_A) = l.$$

We write this in the form:

$$C \rightarrow (B)_r^A.$$
\[A_n : \quad \ldots \]

\[B_n : \]

![Diagram of posets \(A_n \) and \(B_n \).]
$C_n :$

```
  ⬤ ⬤ ⬤ ⬤
   ▼
    ⬤
   ▼
  ⬤ ⬤
```

$D :$

```
  ⬤
  ▼
  ⬤ ⬤ ⬤
  ▼
  ⬤
```

Miodrag Sokić (California Institute of TechnoExtreme amenability and ultrahomogeneous p
Ages of structures from the Schmerl list

\[\mathcal{K}^{A_n}, \]

\[\mathcal{K}^{A_{\aleph_0}} = \bigcup_{n<\aleph_0} \mathcal{K}^{A_n}. \]

\[\mathcal{K}^{B_n} \]

\[\mathcal{K}^{B_{\aleph_0}} = \bigcup_{n<\aleph_0} \mathcal{K}^{B_n}. \]

\[\mathcal{K}^{C_n} \]

\[\mathcal{K}^{C_{\aleph_0}} = \bigcup_{n<\aleph_0} \mathcal{K}^{C_n}. \]

\[\mathcal{K}^{D} = \text{Age}((D, \leq)). \]
Fraïssé classes of finite posets

\[\mathcal{K}^{A_{\aleph_0}}, \]

\[\mathcal{K}^{B_n} \text{ for } 1 \leq n \leq \aleph_0, \]

\[\mathcal{K}^{C_n} \text{ for } 2 \leq n \leq \aleph_0, \]

\[\mathcal{K}^{D}. \]

Adding linear ordering to posets:

- linear extensions
- arbitrary linear ordering
\[\mathcal{K}^{e,A_n} = \{(A, \leq, \prec) : (A, \leq) \in \mathcal{K}^{A_n}, \prec \text{ is l. e. of } \leq\} \]

\[= \mathcal{K}^{o,A_n} = \{(A, \leq, \prec) : (A, \leq) \in \mathcal{K}^{A_n}, \prec \text{ is a l. o. on } A\} \]
Posets with linear orderings

\[
\mathcal{K}^{e,A_n} = \{ (A, \leq, \prec) : (A, \leq) \in \mathcal{K}^{A_n}, \prec \text{ is l. e. of } \leq \} \\
= \mathcal{K}^{o,A_n} = \{ (A, \leq, \prec) : (A, \leq) \in \mathcal{K}^{A_n}, \prec \text{ is a l. o. on } A \}
\]

\[
\mathcal{K}^{e,B_n} = \{ (B, \leq, \prec) : (B, \leq) \in \mathcal{K}^{B_n}, \prec \text{ is l. e. of } \leq \} \\
\subset \mathcal{K}^{o,B_n} = \{ (B, \leq, \prec) : (B, \leq) \in \mathcal{K}^{B_n}, \prec \text{ is a l. o. on } B \},
\]
\(\mathcal{K}^{e,C_n} = \{(C, \leq, \prec) : (C, \leq) \in \mathcal{K}^{C_n}, \prec \text{ is l. e. of } \leq\} \)
\(\subset \mathcal{K}^{o,C_n} = \{(C, \leq, \prec) : (C, \leq) \in \mathcal{K}^{C_n}, \prec \text{ is a l. o. on } C\}, \)
Posets with linear orderings

\[\mathcal{K}^e, C_n = \{ (C, \leq, \prec) : (C, \leq) \in \mathcal{K}^{C_n}, \prec \text{ is l. e. of } \leq \} \]
\[\subset \mathcal{K}^{o, C_n} = \{ (C, \leq, \prec) : (C, \leq) \in \mathcal{K}^{C_n}, \prec \text{ is a l. o. on } C \}, \]

\[\mathcal{K}^e, D = \{ (E, \leq, \prec) : (E, \leq) \in \mathcal{K}^D, \prec \text{ is l. e. of } \leq \} \]
\[\subset \mathcal{K}^{o, D} = \{ (E, \leq, \prec) : (E, \leq) \in \mathcal{K}^D, \prec \text{ is a l. o. on } E \}. \]
Class \mathcal{K} of finite structures in signature L that is countable, contains structures of arbitrary large cardinality and satisfies HP, JEP and AP is called *Fraïssé class*.

Structure in a countable signature L that is infinite countable, locally finite and ultrahomogeneous is called *Fraïssé structure*.

Structure $F\lim(\mathcal{K})$ is called *Fraïssé limit* of the class \mathcal{K}.

$$\mathcal{K} \hookrightarrow F\lim(\mathcal{K}), \ A \hookrightarrow \text{Age}(A).$$
Theorem

The following are all Fraïssé classes of linear ordered posets appearing on our list:

\[\mathcal{K}^{e, A_{\aleph_0}} = \mathcal{K}^{o, A_{\aleph_0}}, \]
\[\mathcal{K}^{e, B_n}, \mathcal{K}^{o, B_n} \text{ for } 1 \leq n \leq \aleph_0, \]
\[\mathcal{K}^{e, C_{\aleph_0}}, \mathcal{K}^{o, C_{\aleph_0}}, \]
\[\mathcal{K}^{o, D}, \mathcal{K}^{e, D}. \]
OP-Ordering Property

Theorem

The following are Fraïssé classes of linearly ordered posets with the ordering property:

\[\mathcal{K}^{e,A_{\mathbb{N}_0}} = \mathcal{K}^{o,A_{\mathbb{N}_0}}, \mathcal{K}^{e,B_1}, \mathcal{K}^{e,C_{\mathbb{N}_0}}, \mathcal{K}^{e,D}. \]
Theorem

(1) K^{e, A_n} is without RP for $1 < n < \aleph_0$ and it has RP for $n = \aleph_0$ and $n = 1$.
(2) K^{e, B_n} is without RP for $n \geq 2$ and has RP for $n = 1$.
(3) K^{e, C_n} is without RP for $2 \leq n < \aleph_0$ and has RP for $n = \aleph_0$.
(4) $K^{e, D}$ has RP.
Theorem

(1) \mathcal{K}^{o,B_n} is without RP for $n \geq 2$ and it has RP for $n = 1$.

(2) \mathcal{K}^{o,C_n} is without RP for $2 \leq n < \aleph_0$ and has RP for $n = \aleph_0$.

(3) $\mathcal{K}^{o,D}$ is without RP.
Lemma

$\mathcal{K}^{o,D}$ is not a Ramsey class.

Recall that $\mathcal{K}^{o,D}$ is the class of finite posets with arbitrary linear orderings.
Partite construction

The following theorem requires new version of the partite construction.

Theorem

\mathcal{K}^{o,B_1} has the RP.
Another theorem requires modification of the partite construction.

Theorem

The class $\mathcal{K}^0, C_{\mathbb{N}_0}$ has the RP.
Extreme amenability

Theorem

The following groups:

\[\text{Aut}(F \lim(K^e, A_{\aleph_0})), \text{Aut}(F \lim(K^e, B_1)), \]

\[\text{Aut}(F \lim(K^e, C_{\aleph_0})), \text{Aut}(F \lim(K^e, D)), \]

are extremely amenable, while groups \(\text{Aut}(F \lim(K^e, B_n)), 2 \leq n \leq \aleph_0 \), are not extremely amenable.
Theorem

The following groups

$$\text{Aut}(F \lim(K^o_{B_1})), \text{Aut}(F \lim(K^o_{C_{N_0}})),$$

are extremely amenable, while group

$$\text{Aut}(F \lim(K^o_{B_{N_0}}))$$

is not extremely amenable.
Theorem

The space X_K is the universal minimal G_0-flow in the following cases:

1. $K = K^{e,A_{\infty}}$, $G_0 = \text{Aut}(A_{\infty})$,
2. $K = K^{e,B_{1}}$, $G_0 = \text{Aut}(B_{1})$,
3. $K = K^{e,C_{\infty}}$, $G_0 = \text{Aut}(C_{\infty})$,
4. $K = K^{e,D}$, $G_0 = \text{Aut}(D)$.
Theorem

The space X_K is not a minimal G_0-flow in the following cases:

1. $K = K^{o,B_n}, G_0 = \text{Aut}(B_n), 1 \leq n \leq \aleph_0$,
2. $K = K^{o,C_{\aleph_0}}, G_0 = \text{Aut}(C_{\aleph_0})$,
3. $K = K^{o,D}, G_0 = \text{Aut}(D)$.
alternative approach

add convex linear orderings: chains and antichains are intervals
add convex linear orderings: chains and antichains are intervals

1. G^{e,B_n} is the class of structures $(A, \leq, \prec) \in \mathcal{K}^{e,B_n}$ such that for all $x, y, z \in A$ it holds

$$x \leq y, x \prec z \prec y \Rightarrow x \leq z \leq y.$$
alternative approach

add convex linear orderings: chains and antichains are intervals

1. G^{e,B_n} is the class of structures $(A, \leq, \prec) \in K^{e,B_n}$ such that for all $x, y, z \in A$ it holds

 $$x \leq y, x \prec z \prec y \Rightarrow x \leq z \leq y.$$

2. G^{o,B_n} is the class of structures $(A, \leq, \prec) \in K^{o,B_n}$ such that for all $x, y, z \in A$ it holds

 $$((x \leq y \text{ or } y \leq x) \text{ and } (x \prec z \prec y)) \Rightarrow (x \leq z \text{ or } z \leq z).$$
Lemma

For $2 \leq n < \aleph_0$, class $G^{e.B_n}$ does not satisfy RP and AP, while class $G^{e.B_{\aleph_0}}$ satisfies RP and AP.
Lemma

For $2 \leq n < \aleph_0$, class $\mathcal{G}^{e.B_n}$ does not satisfy RP and AP, while class $\mathcal{G}^{e.B_{\aleph_0}}$ satisfies RP and AP.

Lemma

Class $\mathcal{G}^{e.B_n}$ satisfies OP with respect to \mathcal{K}^{B_n} for all $n \geq 2$.
Lemma

For $2 \leq n < \aleph_0$, class G^{e,B_n} does not satisfy RP and AP, while class $G^{e,B_{\aleph_0}}$ satisfies RP and AP.

Lemma

Class G^{e,B_n} satisfies OP with respect to K^{B_n} for all $n \geq 2$.

Lemma

Class G^{o,B_n} does not satisfy AP and therefore it does not satisfy RP for all $2 \leq n < \aleph_0$, while it satisfies AP and RP for $n = \aleph_0$. Classes G^{o,B_n} never satisfy OP for $n \geq 2$.
Let \((\mathcal{K}_i)_{i=1}^{s}\) be a sequence of Ramsey classes of finite objects. Then for the two sequences \((B_i)_{i=1}^{s}\) and \((A_i)_{i=1}^{s}\) satisfying \(A_i \in \mathcal{K}_i\) and \(B_i \in \mathcal{K}_i\), we denote by \((B_i)_{i=1}^{s}\) the collection of all sequences \((A'_i)_{i=1}^{s}\) with \(A'_i \in \mathcal{K}_i\), \(A'_i \cong A_i\) and \(A'_i\) is a substructure of \(B_i\). In particular for \(s = 1\) we just write \((B_1)_{A_1}\) instead of \((A_1)_{i=1}^{1}\).
Let \((K_i)_{i=1}^s\) be a sequence of Ramsey classes of finite objects. Then for the two sequences \((B_i)_{i=1}^s\) and \((A_i)_{i=1}^s\) satisfying \(A_i \in K_i\) and \(B_i \in K_i\), we denote by \(\left(\frac{(B_i)_{i=1}^s}{(A_i)_{i=1}^s}\right)\) the collection of all sequences \((A'_i)_{i=1}^s\) with \(A'_i \in K_i\), \(A'_i \cong A_i\) and \(A'_i\) is a substructure of \(B_i\). In particular for \(s = 1\) we just write \(\frac{(B)}{A_1}\) instead of \(\left(\frac{(B_i)_{i=1}^1}{(A_i)_{i=1}^1}\right)\).

Theorem

(Product Ramsey theorem for classes): Let \((K_i)_{i=1}^s\) be a sequence of Ramsey classes of finite objects. Fix the two sequences \((B_i)_{i=1}^s\) and \((A_i)_{i=1}^s\) such that for all \(i \in \{1, \ldots, s\}\) we have \(A_i \in K_i\), \(B_i \in K_i\). Then there is a sequence \((C_i)_{i=1}^s\) such that \(C_i \in K_i\) and for any coloring \(p: \left(\frac{(C_i)_{i=1}^s}{(A_i)_{i=1}^s}\right) \rightarrow \{1, \ldots, r\}\) there exists a sequence \((B'_i)_{i=1}^s\), \(B'_i \in K_i\) and \(B'_i \cong B_i\) for all \(i \in \{1, \ldots, s\}\), and number \(l \in \{1, \ldots, r\}\) such that \(p\left(\frac{(B'_i)_{i=1}^s}{(A_i)_{i=1}^s}\right) = l\).
Theorem

(i) \(\text{Aut}(G^e \cdot B_{\mathbb{N}_0}) \) is an extremely amenable group and \(X_{G^e \cdot B_{\mathbb{N}_0}} \) is a universal minimal \(\text{Aut}(B_{\mathbb{N}_0}) \)-flow.

(ii) \(\text{Aut}(G^o \cdot B_{\mathbb{N}_0}) \) is an extremely amenable group, while \(X_{G^o \cdot B_{\mathbb{N}_0}} \) is not a minimal \(\text{Aut}(B_{\mathbb{N}_0}) \)-flow.
G^o,C_n is the class of structures (C, \leq, \prec) from K^o,C_n such that for all $x, y, z \in C$:

$$(x \perp y, x \prec z \prec y) \Rightarrow (x \perp z, y \perp z).$$
G^{o, C_n} is the class of structures (C, \leq, \prec) from K^{o, C_n} such that for all $x, y, z \in C$:

$$(x \perp y, x \prec z \prec y) \Rightarrow (x \perp z, y \perp z).$$

Lemma

For $2 \leq n < \aleph_0$ class G^{o, C_n} does not satisfy the RP and AP, while class $G^{o, C_{\aleph_0}}$ satisfies AP and RP.
\(\mathcal{G}^{o, C_n} \) is the class of structures \((C, \leq, \prec)\) from \(\mathcal{K}^{o, C_n} \) such that for all \(x, y, z \in C \):

\[(x \perp y, x \prec z \prec y) \Rightarrow (x \perp z, y \perp z).\]

Lemma

For \(2 \leq n < \aleph_0 \) class \(\mathcal{G}^{o, C_n} \) does not satisfy the RP and AP, while class \(\mathcal{G}^{o, C_{\aleph_0}} \) satisfies AP and RP.

Theorem

The topological group \(\text{Aut}(\mathcal{G}^{o, C_{\aleph_0}}) \) is extremely amenable, while \(X_{\mathcal{G}^{o, C_{\aleph_0}}} \) is not a minimal \(\text{Aut}(C_{\aleph_0}) \)-flow.
\[g^{e,A_2} \quad \ldots \quad g^{e,A_{\mathbb{N}_0}} \]
\[g^{o,B_2} \quad \ldots \quad g^{o,B_{\mathbb{N}_0}} \]
\[g^{o,C_2} \quad \ldots \quad g^{o,C_{\mathbb{N}_0}} \]
KPT theory does not calculate universal minimal flow for $\text{Aut}(\mathcal{B}_n)$ and $\text{Aut}(\mathcal{C}_n)$.
KPT theory does not calculate universal minimal flow for $\text{Aut}(\mathcal{B}_n)$ and $\text{Aut}(\mathcal{C}_n)$

Points are not Ramsey in any expansion with linear ordering
KPT theory does not calculate universal minimal flow for $Aut(B_n)$ and $Aut(C_n)$
Points are not Ramsey in any expansion with linear ordering
Modified version of KPT could work
Lemma

Suppose that \(G \) is a topological group such that \(G = B \rtimes A \). Groups \(A \) and \(B \) have subspace topology such that \(A \) is compact and \(B \) is extremely amenable. If the action of the group \(G \) on the subgroup \(A \) is continuous then this is a universal minimal flow for the group \(G \).
\[\text{Aut}(B_n) = (\text{Aut}(\mathbb{Q}, <))^n \rtimes S_n \]

\[\sigma : S_n \to \text{Aut}(\text{Aut}(\mathbb{Q}, <))^n \]

\[(\sigma \cdot x)(r) = x(\sigma^{-1}r). \]
Lemma

Suppose that G is a topological group such that $G = B \times A$. Groups A and B have subspace topology such that A is extremely amenable and B is compact. If the action of the group G on the subgroup B is continuous then this is a universal minimal flow for the group G.
\[\text{Aut}(C_n) = (S_n)^Q \times \text{Aut}(Q, \prec)\]

\[\sigma : (\text{Aut}(Q, \prec) \to \text{Aut}((S_n)^n))\]

\[(\sigma \cdot x)(r) = x(\sigma^{-1} r).\]
Let \mathcal{L} be the class of finite lattices with limit \mathbb{L}. Calculate universal minimal flow for $Aut(\mathbb{L})$ and get respective Ramsey statement.
Problems

Let \mathcal{L} be the class of finite lattices with limit \mathbb{L}. Calculate universal minimal flow for $\text{Aut}(\mathbb{L})$ and get respective Ramsey statement. Let \mathcal{OB} be the class of finite ordered boolean algebras $(B, \wedge, \vee, 0, 1, <)$ such that for $b \in B$ we have $0 < b < 1$. Is \mathcal{OB} a Ramsey class?