(We would like to carry reviews of any of these books in future issues of UK Nonlinear News.)
This book represents the latest developments on both the theory and applications of bifurcations with symmetry. It includes recent experimental work as well as new approaches to and applications of the theory to other sciences. It shows the range of dissemination of the work of Martin Golubitsky and Ian Stewart and its influence in modern mathematics at the same time as it contains work of young mathematicians in new directions. The range of topics includes mathematical biology, pattern formation, ergodic theory, normal forms, one-dimensional dynamics and symmetric dynamics.
2003. 224 pages.
ISBN 3-7643-7020-3, published 2003.
Finding and interpreting the solutions of differential equations is a central and essential part of applied mathematics. This book aims to enable the reader to develop the required skills needed for a thorough understanding of the subject. The authors focus on the business of constructing solutions analytically, and interpreting their meaning, using rigorous analysis where needed. MATLAB is used extensively to illustrate the material. There are many worked examples based on interesting and unusual real world problems. A large selection of exercises is provided, including several lengthier projects, some of which involve the use of MATLAB. The coverage is broad, ranging from basic second-order ODEs and PDEs, through to techniques for nonlinear differential equations, chaos, asymptotics and control theory. This broad coverage, the authors clear presentation and the fact that the book has been thoroughly class-tested will increase its attraction to undergraduates at each stage of their studies.
May 2003, 554 pages, 169 line diagrams, 173 exercises.
ISBN: 0521016878
This introductory text covers the central topological and probabilistic notions in dynamics.
0-521-58304-7 Hardback
0-521-58750-6 Paperback.
This refreshing, introductory textbook covers both standard techniques for solving ordinary differential equations, as well as introducing students to qualitative methods such as phase-plane analysis. The presentation is concise, informal yet rigorous; it can be used either for 1-term or 1-semester courses. Topics such as Euler's method, difference equations, the dynamics of the logistic map, and the Lorenz equations, demonstrate the vitality of the subject, and provide pointers to further study. The author also encourages a graphical approach to the equations and their solutions, and to that end the book is profusely illustrated. The files to produce the figures using MATLAB are all provided in an accompanying website. Numerous worked examples provide motivation for and illustration of key ideas and show how to make the transition from theory to practice. Exercises are also provided to test and extend understanding: solutions for these are available for teachers.
January 2004, 400 pages, 140 line diagrams, 7 half-tones, 120 exercises.
ISBN: 0521533910
The aim of this book is to identify the unifying threads by providing surveys of the uses and concepts of entropy in diverse areas of mathematics and the physical sciences. Two major threads, emphasized throughout the book, are variational principles and Ljapunov functionals.
The chapters were written to provide as cohesive an account as possible, making the book accessible to a wide range of graduate students and researchers. Any scientist dealing with systems that exhibit entropy will find the book an invaluable aid to their understanding.
To Read a sample chapter online, click here: http://www.pupress.princeton.edu/titles/7688.html.