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1 Introduction

Protein structure prediction is at present an unsolved problem, partly due to lack of a suitable en-
ergy function and partly due to the high number of conformational parameters involved. Many
protein structure prediction methods therefore use simplified models (Buchete et al., 2004). A
popular approach is to represent a protein by its C � atoms only, ie. by its C � trace.

Thus a protein can be regarded as a sequence of edges in ��� . To a first approximation
the length of each edge is constant (in practice one unit of length is about 3.8 Å). The angles
between successive edges determine the shape of the protein.

Here we introduce a probabilistic model of the geometry of a random protein’s C � trace.
Such a model has many applications, like for example steering the proposal of protein confor-
mations in a Markov Chain Monte Carlo (MCMC) simulation. The model is based on machine
learning techniques, and is trained from a set of representative protein structures. Central to the
model is the Fisher-Bingham distribution on the 3D sphere (Kent, 1982), an analogue of the
bivariate normal equation in the plane.

2 Simulating the FB � distribution

The FB �	��

��������� distribution, where 
 and � are real concentration parameters and � is a�	���
orthogonal matrix representing orientation, was introduced in Kent (1982) and defines a

statistical model on the unit sphere in � � . Its pdf in polar coordinates is given by� ��������� �"!$#�%
&'
)(+*-,.�0/1�2,4365�78�9��(+*-,�7��	:;,43<5=7>�>��?@,A365B�C� (1)

where �EDGFIH=�AJ
K denotes the colatitude and �LDGFMH=��NOJP� denotes the longitude. Euclidean
coordinates are defined by
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and we write Q^] FB � ( 

��������� . The concentration parameters are usually required to satisfy


`_aH=� Hcbd�ebf
8g[N�� (3)

and we shall restrict attention to this situation in this paper. In this setting the exponent &'
0(Z*-,.�[/�h,4365 7 �=��(+*-, 7 �`:d,43<5 7 �>��? is a nonincreasing function of �eDiFMH=�4J
K for each � . (On the other
hand, if �kjd
.g-N , the pdf increases and then decreases in � when � R H .)

The FB � distribution was created to provide a spherical analogue for the bivariate normal
distribution. The parameter � measures anisotropy. If � Rml in (1) the distribution is standard-
ized so that the mode lies in the Q � direction, and the principal axes are given by the QnV and Q 7
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axes, respectively. Under large concentration, the distribution follows an asymptotic bivariate
normal distribution when orthogonally projected onto the tangent plane of the sphere.

For the purposes of simulation it is helpful to use an equal area projection. Set

�
V R�� (+*-,��n� � 7 R�� ,4365\�P� where �hR ,A365P���-g-N-��� (4)

so that � N �
V ��N � 7 � represents an equal-area projection of the sphere.
In � �
V � � 7 � coordinates, the Jacobian factor ,A365)� disappears and the pdf (with respect to� �
V � � 7 in the unit disk � 7 V / � 77 ��� ) takes the form� � �
V � � 7 ���"!�#=%
& : N-
 � 7@/��-� � � 7�: �
	 �+��(+*-,47��	:;,43<5=7>�>��?R !$#�%
& : N[
n� � 7 V / � 77 � /��-� F � :a� � 7 V / � 77 �+� � 7 V : � 77 � K�?R !$#�%
& : �N F
� � 7 V /�� � 77 /��Y� ��	 V : ��	 7 � K�?�� (5)

where the new parameters

� R ��� 
 :��[� �$� � R ��� 
 /��'�@��� � R �[� (6)

satisfy H b��Eb�� and � b��+g[N . Here we have used the double angle formulas, (+*-,.� R
� :1NY,4365 7 ���[g-N-���@,43<5)� R NY,4365
���[g-N-�=(Z*[, ���[g-N-� .

Note that the pdf splits into a product of a function of �nV alone and � 7 alone. Hence � V and� 7 would be independent except for the constraint � 7 V / � 77 ��� . Our method of simulation,
as sketched below, will be to simulate � �PV � and � � 7 � separately by acceptance-rejection using a
(truncated) exponential envelope, and then additionally to reject any values lying outside the
unit disk.

Wood (1987) has also developed a simulation algorithm for the Fisher-Bingham distribution.
His method is more general because it includes a wider range of parameter values and also
includes the more general FB � distribution. However, the method described here is simpler to
implement when (3) is satisfied.

The starting point for our simulation method is the simple inequality

�
N ����� ���Z:! .� 7 _aH (7)

for any parameters �>�" j H and for all � . Hence

: �N �
7#�\7\b
�
N  =7 :$�% &� ���'� (8)

After exponentiation, this inequality provides the basis for simulating a Gaussian random vari-
able from a double exponential random variable by acceptance-rejection. But for our purposes
some refinement is needed.

For �
V we need to apply (8) twice, first with � R � V)( 7 �& R � and � R*� 7 V , and second with
� R �)� / N
� V)( 7 � V)( 7 �& R � and � R*�
V , to get

: �N �)� � 7 V /�� ��	 V �Bb
�
N :

�
N �)� / N
� V)( 7$� � 7 V

b,+ V :�- V � �
V � (9)

where
+ V�R � � - V�R �)� / N
� V)( 7�� V)( 7.� (10)
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To develop a suitable envelope for � 7 recall that H bmN
��b�� . To begin with suppose � jaH .
From (8) with � R �)��: �
� V)( 7 ,  R ���$g9�)��: �
�A� V)( 7 , and � R,� 77 ,

: �N �)� � 77 :!� � 	 7 ��b : �N ���2:!�>� � 77 b,+ 7 :�- 7 � � 7 � (11)

where
+ 7 R �$gC&'N9��� :!�>��?2b � � - 7 R � V)( 7.� (12)

If � R H (and so � R H ) then (11) continues to hold with - 7 R H and + 7 R H .
3 A random walk protein model

Consider a sequence of vertices & ��� � � R � � � � �$��� ? in � � representing the C � trace of a protein.
Edges can be defined by � �>R��	� : �	��
 V . By assumption the � � all have unit size.

Two successive edges � ��
 V and � � determine a
� � �

orthogonal matrix � R F 
 V ��
 7 ��
 � K
defining a frame of reference at vertex

�
as follows:


 � R � � � 
 V R � ��
 V :f�������
 V � � ��� � � 
 7 R 
 � � 
 V �
Our first model for the protein structure will be a third-order Markov process. Consider an

FB � distribution ��� � ��
 �4� ����� with fixed parameters. Then ������V�R��	� /�� ����V is simulated by

����� ����V ] ��� � ��

��������� �
where the different FB � simulations are independent for each

�
. The process is third-order

Markov because of the need to determine a frame of reference at each vertex.

4 An HMM protein model

The previous model is a bit too simplistic to be useful in practice. Hence we let the parame-
ters ��

��������� vary according to a hidden Markov model (HMM) with a finite number of states.
We call this HMM with discrete hidden nodes and observed FB5 nodes FB5-HMM. The dis-
crete hidden nodes of the FB5-HMM can be considered to model a sequence of fine-grained
’secondary structures’. The observed FB5 nodes translate these ’secondary structures’ into cor-
responding angular distributions.

The FB5-HMM was implemented using Mocapy (Hamelryck, 2004). Mocapy is a paral-
lelized Dynamic Bayesian Network (Jordon, 1998) toolkit that supports Discrete, (Multidimen-
sional) Gaussian, Dirichlet, Von Mises-Fisher and FB5 nodes. Mocapy optimizes a model’s
parameters by Stochastic Expectation Maximization using Gibbs sampling to infer the values
of the hidden nodes (Gilks et al., 1996).

For training FB5-HMM, we used a set of 1600 representative protein structures. The size
of the discrete hidden nodes in the HMM was 50. The calculations were done on the 240 CPU
cluster of the Bioinformatics center. Preliminary results indicate that the trained FB5-HMM is
an excellent model of a protein’s C � trace.

5 Possible applications

In general, the FB5-HMM model can be used to generate ’random proteins’, ie. sequences of C �
atoms whose consecutive orientations resemble those of real proteins. This is where simulation
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of the FB5 distribution as presented in this article comes into play. Of course, the model does not
automatically lead to compact structures or structures that avoid self-intersections. However, it
is relatively easy to generate structures that broadly resemble real proteins by introducing some
rejection criteria for the sampled angles.

In particular, an obvious application of the method described here is in MCMC simulations
of simplified protein models. The model can be used to generate protein conformations that
can be accepted or rejected according to some energy function. Another application is in loop
modelling: the model can be used to steer the generation of loops, for example in homology
modelling. In this case, it is ensured that the proposed loops will adopt reasonably realistic
conformations. The model can also be used to generate decoy structures that adopt realistic
backbone conformations: decoys are widely used to evaluate energy function that are used for
protein structure prediction.
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